Skip to main content
Top
Published in: EJNMMI Research 1/2016

Open Access 01-12-2016 | Original research

Quantitative accuracy of 177Lu SPECT reconstruction using different compensation methods: phantom and patient studies

Authors: Eero Hippeläinen, Mikko Tenhunen, Hanna Mäenpää, Antti Sohlberg

Published in: EJNMMI Research | Issue 1/2016

Login to get access

Abstract

Background

In targeted radionuclide therapy (TRT), accurate quantification using SPECT/CT images is important for optimizing radiation dose delivered to both the tumour and healthy tissue. Quantitative SPECT images are regularly reconstructed using the ordered subset expectation maximization (OSEM) algorithm with various compensation methods such as attenuation (A), scatter (S) and detector and collimator response (R). In this study, different combinations of the compensation methods are applied during OSEM reconstruction and the effect on the 177Lu quantification accuracy is studied in an anthropomorphic torso phantom. In addition, the phantom results are reflected to (177)Lu-DOTA-Tyr3-octreotate (177Lu-DOTATATE)-treated patient data and kidney absorbed dose estimates.

Methods

The torso phantom was imaged with nine various sized (0.4–104.4 cm3) spherical inserts, filled with known 177Lu activity ranging from 0.5 to 105.5 MBq. Images were reconstructed using OSEM algorithm using A, AR and ARS compensation method combinations. The compensation method combinations were compared by calculating the concentration recovery coefficient (cRC) for each insert. In addition, ten 177Lu-DOTATATE-treated patient’s post-therapy dosimetry acquisitions were reconstructed, and the absorbed dose to kidneys was estimated.

Results

cRC values depend on the insert size for all compensation methods. AR and ARS produced significantly higher cRC values than attenuation correction alone. There were no cRC value differences between the methods for the smallest 1-cm-diameter insert, cRC being 0.18. However, the collimator and detector response compensation method (R) made the 1.3-cm-diameter insert clearly visible and improved cRC estimate from 0.19 to 0.43. ARS produced slightly higher cRC values for small- and medium-sized inserts than AR. On the patient data, a similar trend could be seen. AR and ARS produced higher kidney activities than using attenuation correction alone; the total absorbed doses to the right and left kidneys were on average 15 and 20 % higher for AR and 19 and 25 % higher for ARS, respectively. The effective half-life decay estimated from time-activity curves however showed no notable difference between the compensation methods.

Conclusions

The highest cRC values were achieved by applying ARS compensation during reconstruction. The results were notably higher than those using attenuation correction alone. Similarly, higher activity estimates and thus higher absorbed dose estimates were found in patient data when all compensation methods were applied. ARS improved cRC especially in small-sized sources, and it thus might aid tumour dosimetry for 177Lu PRRT treatments.
Literature
1.
go back to reference Reubi JC, Schar JC, Waser B, Wenger S, Heppeler A, Schmitt JS, et al. Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med. 2000;27(3):273–82.CrossRefPubMed Reubi JC, Schar JC, Waser B, Wenger S, Heppeler A, Schmitt JS, et al. Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med. 2000;27(3):273–82.CrossRefPubMed
2.
go back to reference Kwekkeboom DJ, Bakker WH, Kooij PP, Konijnenberg MW, Srinivasan A, Erion JL, et al. [177Lu-DOTA0, Tyr3]octreotate: comparison with [111In-DTPA0]octreotide in patients. Eur J Nucl Med. 2001;28:1319–25. doi:10.1007/s002590100574.CrossRefPubMed Kwekkeboom DJ, Bakker WH, Kooij PP, Konijnenberg MW, Srinivasan A, Erion JL, et al. [177Lu-DOTA0, Tyr3]octreotate: comparison with [111In-DTPA0]octreotide in patients. Eur J Nucl Med. 2001;28:1319–25. doi:10.​1007/​s002590100574.CrossRefPubMed
3.
go back to reference Sandström M, Garske-Román U, Granberg D, Johansson S, Widström C, Eriksson B, et al. Individualized dosimetry of kidney and bone marrow in patients undergoing 177Lu-DOTA-octreotate treatment. J Nuclear Med. 2013;54:33–41. doi:10.2967/jnumed.112.107524.CrossRef Sandström M, Garske-Román U, Granberg D, Johansson S, Widström C, Eriksson B, et al. Individualized dosimetry of kidney and bone marrow in patients undergoing 177Lu-DOTA-octreotate treatment. J Nuclear Med. 2013;54:33–41. doi:10.​2967/​jnumed.​112.​107524.CrossRef
4.
go back to reference Ilan E, Sandström M, Wassberg C, Sundin A, Garske-Román U, Eriksson B et al. Dose response of pancreatic neuroendocrine tumours treated with peptide receptor radionuclide therapy using 177Lu-DOTATATE. J Nuclear Med. 2015:jnumed.114.148437-. doi:10.2967/jnumed.114.148437. Ilan E, Sandström M, Wassberg C, Sundin A, Garske-Román U, Eriksson B et al. Dose response of pancreatic neuroendocrine tumours treated with peptide receptor radionuclide therapy using 177Lu-DOTATATE. J Nuclear Med. 2015:jnumed.114.148437-. doi:10.​2967/​jnumed.​114.​148437.
6.
go back to reference Bardies M, Flux G, Lassmann M, Monsieurs M, Savolainen S, Strand S. Quantitative imaging for clinical dosimetry. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2006;569:467–71. doi:doi: 10.1016/j.nima.2006.08.068. Bardies M, Flux G, Lassmann M, Monsieurs M, Savolainen S, Strand S. Quantitative imaging for clinical dosimetry. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2006;569:467–71. doi:doi: 10.​1016/​j.​nima.​2006.​08.​068.
7.
go back to reference Sandström M, Garske U, Granberg D, Sundin A, Lundqvist H. Individualized dosimetry in patients undergoing therapy with (177)Lu-DOTA-D-Phe (1)-Tyr (3)-octreotate. Eur J Nucl Med Mol Imaging. 2010;37:212–25. doi:10.1007/s00259-009-1216-8.CrossRefPubMed Sandström M, Garske U, Granberg D, Sundin A, Lundqvist H. Individualized dosimetry in patients undergoing therapy with (177)Lu-DOTA-D-Phe (1)-Tyr (3)-octreotate. Eur J Nucl Med Mol Imaging. 2010;37:212–25. doi:10.​1007/​s00259-009-1216-8.CrossRefPubMed
12.
go back to reference Sanders JC, Kuwert T, Hornegger J, Ritt P. Quantitative SPECT/CT imaging of Lu-177 with in vivo validation in patients undergoing peptide receptor radionuclide therapy. Mol Imaging Biol. 2015;17(4):585–93. doi:10.1007/s11307-014-0806-4.CrossRefPubMed Sanders JC, Kuwert T, Hornegger J, Ritt P. Quantitative SPECT/CT imaging of Lu-177 with in vivo validation in patients undergoing peptide receptor radionuclide therapy. Mol Imaging Biol. 2015;17(4):585–93. doi:10.​1007/​s11307-014-0806-4.CrossRefPubMed
15.
go back to reference Zeintl J, Vija A, Yahil A, Hornegger J, Kuwert T. Quantitative accuracy of clinical 99mTc SPECT/CT using ordered-subset expectation maximization with 3-dimensional resolution recovery, attenuation, and scatter correction. J Nucl Med. 2010;51:921–8. doi:10.2967/jnumed.109.071571.CrossRefPubMed Zeintl J, Vija A, Yahil A, Hornegger J, Kuwert T. Quantitative accuracy of clinical 99mTc SPECT/CT using ordered-subset expectation maximization with 3-dimensional resolution recovery, attenuation, and scatter correction. J Nucl Med. 2010;51:921–8. doi:10.​2967/​jnumed.​109.​071571.CrossRefPubMed
Metadata
Title
Quantitative accuracy of 177Lu SPECT reconstruction using different compensation methods: phantom and patient studies
Authors
Eero Hippeläinen
Mikko Tenhunen
Hanna Mäenpää
Antti Sohlberg
Publication date
01-12-2016
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2016
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-016-0172-0

Other articles of this Issue 1/2016

EJNMMI Research 1/2016 Go to the issue