Skip to main content
Top
Published in: Annals of Nuclear Medicine 8/2017

01-10-2017 | Original Article

Design and evaluation of two multi-pinhole collimators for brain SPECT

Authors: Ling Chen, Benjamin M. W. Tsui, Greta S. P. Mok

Published in: Annals of Nuclear Medicine | Issue 8/2017

Login to get access

Abstract

Objective

SPECT is a powerful tool for diagnosing or staging brain diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD) but is limited by its inferior resolution and sensitivity. At the same time, pinhole SPECT provides superior resolution and detection efficiency trade-off as compared to the conventional parallel-hole collimator for imaging small field-of-view (FOV), which fits for the case of brain imaging. In this study, we propose to develop and evaluate two multi-pinhole (MPH) collimator designs to improve the imaging of cerebral blood flow and striatum.

Methods

We set the target resolutions to be 12 and 8 mm, respectively, and the FOV at 200 mm which is large enough to cover the whole brain. The constraints for system optimization include maximum and minimum detector-to-center-of-FOV (CFOV) distances of 344 and 294 mm, respectively, and minimal radius-of-rotation (ROR) of 135 mm to accommodate patients’ shoulder. According to the targeted FOV, resolutions, and constraints, we determined the pinhole number, ROR, focal length, aperture acceptance angle, and aperture diameter which maximized the system sensitivity. We then assessed the imaging performance of the proposed MPH and standard low-energy high-resolution (LEHR) collimators using analytical simulations of a digital NCAT brain phantom with 99mTc-HMPAO/99mTc-TRODAT-1 distributions; Monte Carlo simulations of a hot-rod phantom; and a Defrise phantom using GATE v6.1. Projections were generated over 360° and reconstructed using the 3D MPH/LEHR OS-EM methods with up to 720 updates. The normalized mean square error (NMSE) was calculated over the cerebral and striatal regions extracted from the reconstructed images for 99mTc-HMPAO and 99mTc-TRODAT-1 simulations, respectively, and average normalized standard deviation (NSD) based on 20 noise realizations was assessed on selected uniform 3D regions as the noise index. Visual assessment and image profiles were applied to the results of Monte Carlo simulations.

Results

The optimized design parameters of the MPH collimators were 9 pinholes with 4.7 and 2.8 mm pinhole diameter, 73° acceptance angle, 127 mm focal length, 167 mm ROR for 12 mm and 8 mm target resolution, respectively. According to the optimization results, the detection efficiencies of the proposed collimators were 270 and 40% more as compared to LEHR. The Monte Carlo simulations showed that 7.9 and 6.4 mm rods can be discriminated for the MPH collimators with target resolutions of 12 and 8 mm, respectively. The eight 12 mm-thick discs of the Defrise phantom can also be resolved clearly in the axial plane as demonstrated by the image profiles generated with the MPH collimators.

Conclusion

The two collimator designs provide superior image quality as compared to the conventional LEHR, and shows potential to improve current brain SPECT imaging based on a conventional SPECT scanner.
Literature
1.
go back to reference DiLuca M, Olesen J. The cost of brain diseases: a burden or a challenge? Neuron. 2014;82(6):1205–8.CrossRefPubMed DiLuca M, Olesen J. The cost of brain diseases: a burden or a challenge? Neuron. 2014;82(6):1205–8.CrossRefPubMed
2.
go back to reference Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–59.CrossRefPubMed Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–59.CrossRefPubMed
3.
go back to reference Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron. 2003;39(6):889–909.CrossRefPubMed Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron. 2003;39(6):889–909.CrossRefPubMed
4.
go back to reference Quigley H, Colloby SJ, O’Brien JT. PET imaging of brain amyloid in dementia: a review. Int J Geriatr Psychiatry. 2011;26(10):991–9.CrossRefPubMed Quigley H, Colloby SJ, O’Brien JT. PET imaging of brain amyloid in dementia: a review. Int J Geriatr Psychiatry. 2011;26(10):991–9.CrossRefPubMed
5.
go back to reference Villemagne VL, Fodero-Tavoletti MT, Masters CL, Rowe CC. Tau imaging: early progress and future directions. The Lancet Neurol. 2015;14(1):114–24.CrossRefPubMed Villemagne VL, Fodero-Tavoletti MT, Masters CL, Rowe CC. Tau imaging: early progress and future directions. The Lancet Neurol. 2015;14(1):114–24.CrossRefPubMed
6.
go back to reference Wu H, Lou C, Huang Z, Shi G. SPECT imaging of dopamine transporters with 99mTc-TRODAT-1 in major depression and Parkinson’s disease. J Neuropsychiatr Clin Neurosci. 2011;23(1):63–7.CrossRef Wu H, Lou C, Huang Z, Shi G. SPECT imaging of dopamine transporters with 99mTc-TRODAT-1 in major depression and Parkinson’s disease. J Neuropsychiatr Clin Neurosci. 2011;23(1):63–7.CrossRef
7.
go back to reference Weng Y-H, Yen T-C, Chen M-C, Kao P-F, Tzen K-Y, Chen R-S, et al. Sensitivity and specificity of 99mTc-TRODAT-1 SPECT imaging in differentiating patients with idiopathic Parkinson’s disease from healthy subjects. J Nucl Med. 2004;45(3):393–401.PubMed Weng Y-H, Yen T-C, Chen M-C, Kao P-F, Tzen K-Y, Chen R-S, et al. Sensitivity and specificity of 99mTc-TRODAT-1 SPECT imaging in differentiating patients with idiopathic Parkinson’s disease from healthy subjects. J Nucl Med. 2004;45(3):393–401.PubMed
8.
go back to reference Jaszczak R, Li J, Wang H, Zalutsky M, Coleman R. Pinhole collimation for ultra-high-resolution, small-field-of-view SPECT. Phys Med Biol. 1994;39(3):425.CrossRefPubMed Jaszczak R, Li J, Wang H, Zalutsky M, Coleman R. Pinhole collimation for ultra-high-resolution, small-field-of-view SPECT. Phys Med Biol. 1994;39(3):425.CrossRefPubMed
9.
go back to reference Beekman F, van der Have F. The pinhole: gateway to ultra-high-resolution three-dimensional radionuclide imaging. Eur J Nucl Med Mol Imaging. 2007;34(2):151–61.CrossRefPubMed Beekman F, van der Have F. The pinhole: gateway to ultra-high-resolution three-dimensional radionuclide imaging. Eur J Nucl Med Mol Imaging. 2007;34(2):151–61.CrossRefPubMed
10.
go back to reference Vanhove C, Defrise M, Lahoutte T, Bossuyt A. Three-pinhole collimator to improve axial spatial resolution and sensitivity in pinhole SPECT. Eur J Nucl Med Mol Imaging. 2008;35(2):407–15.CrossRefPubMed Vanhove C, Defrise M, Lahoutte T, Bossuyt A. Three-pinhole collimator to improve axial spatial resolution and sensitivity in pinhole SPECT. Eur J Nucl Med Mol Imaging. 2008;35(2):407–15.CrossRefPubMed
11.
go back to reference Beekman F, van der Have F, Goorden M, Vaissier P, van Roosmalen J, During H, et al., editors. G-SPECT-I: a full ring high sensitivity and ultra-fast clinical molecular imaging system with <3 mm resolution. Eur J Nucl Med Mol Imaging. 2015. Beekman F, van der Have F, Goorden M, Vaissier P, van Roosmalen J, During H, et al., editors. G-SPECT-I: a full ring high sensitivity and ultra-fast clinical molecular imaging system with <3 mm resolution. Eur J Nucl Med Mol Imaging. 2015.
12.
go back to reference Klein W, Barrett H, Pang I, Patton D, Rogulski M, Sain J, et al., editors. FASTSPECT: electrical and mechanical design of a high-resolution dynamic SPECT imager. In: Nuclear Science Symposium and Medical Imaging Conference Record, 1995 IEEE; 1995. Klein W, Barrett H, Pang I, Patton D, Rogulski M, Sain J, et al., editors. FASTSPECT: electrical and mechanical design of a high-resolution dynamic SPECT imager. In: Nuclear Science Symposium and Medical Imaging Conference Record, 1995 IEEE; 1995.
13.
go back to reference Lee T-C, Ellin JR, Huang Q, Shrestha U, Gullberg GT, Seo Y. Multipinhole collimator with 20 apertures for a brain SPECT application. Med Phys. 2014;41(11):112501.CrossRefPubMedPubMedCentral Lee T-C, Ellin JR, Huang Q, Shrestha U, Gullberg GT, Seo Y. Multipinhole collimator with 20 apertures for a brain SPECT application. Med Phys. 2014;41(11):112501.CrossRefPubMedPubMedCentral
14.
go back to reference King MA, Mukherjee JM, Konik A, Zubal IG, Dey J, Licho R. Design of a multi-pinhole collimator for I-123 DaTscan imaging on dual-headed SPECT systems in combination with a fan-beam collimator. IEEE Trans Nucl Sci. 2016;63(1):90–7.CrossRefPubMedPubMedCentral King MA, Mukherjee JM, Konik A, Zubal IG, Dey J, Licho R. Design of a multi-pinhole collimator for I-123 DaTscan imaging on dual-headed SPECT systems in combination with a fan-beam collimator. IEEE Trans Nucl Sci. 2016;63(1):90–7.CrossRefPubMedPubMedCentral
15.
go back to reference Van Audenhaege K, Vandenberghe S, Deprez K, Vandeghinste B, Van Holen R. Design and simulation of a full-ring multi-lofthole collimator for brain SPECT. Phys Med Biol. 2013;58(18):6317.CrossRefPubMed Van Audenhaege K, Vandenberghe S, Deprez K, Vandeghinste B, Van Holen R. Design and simulation of a full-ring multi-lofthole collimator for brain SPECT. Phys Med Biol. 2013;58(18):6317.CrossRefPubMed
16.
go back to reference Ter-Antonyan R, Jaszczak RJ, Greer KL, Bowsher JE, Metzler SD, Coleman RE. Combination of converging collimators for high-sensitivity brain SPECT. J Nucl Med. 2009;50(9):1548–56.CrossRefPubMed Ter-Antonyan R, Jaszczak RJ, Greer KL, Bowsher JE, Metzler SD, Coleman RE. Combination of converging collimators for high-sensitivity brain SPECT. J Nucl Med. 2009;50(9):1548–56.CrossRefPubMed
17.
18.
go back to reference Cao Z, Bal G, Accorsi R, Acton PD. Optimal number of pinholes in multi-pinhole SPECT for mouse brain imaging—a simulation study. Phys Med Biol. 2005;50(19):4609.CrossRefPubMed Cao Z, Bal G, Accorsi R, Acton PD. Optimal number of pinholes in multi-pinhole SPECT for mouse brain imaging—a simulation study. Phys Med Biol. 2005;50(19):4609.CrossRefPubMed
19.
go back to reference The State Bureau of Quality and Technical Supervision (1998) Head-face dimension of adults. Strandard Press of China. ISBN:155066115295 The State Bureau of Quality and Technical Supervision (1998) Head-face dimension of adults. Strandard Press of China. ISBN:155066115295
20.
go back to reference Yan P, Chen L, Tsui BM, Mok GS. Evaluation of stationary and semi-stationary acquisitions from dual-head multi-pinhole collimator for myocardial perfusion SPECT. J Med Biol Eng. 2016;36(5):675–85.CrossRef Yan P, Chen L, Tsui BM, Mok GS. Evaluation of stationary and semi-stationary acquisitions from dual-head multi-pinhole collimator for myocardial perfusion SPECT. J Med Biol Eng. 2016;36(5):675–85.CrossRef
21.
go back to reference Si C, Mok GS, Chen L, Tsui BM. Design and evaluation of an adaptive multipinhole collimator for high-performance clinical and preclinical imaging. Nucl Med Commun. 2016;37(3):313–21.PubMed Si C, Mok GS, Chen L, Tsui BM. Design and evaluation of an adaptive multipinhole collimator for high-performance clinical and preclinical imaging. Nucl Med Commun. 2016;37(3):313–21.PubMed
22.
go back to reference Nillius P, Danielsson M. Theoretical bounds and system design for multipinhole SPECT. IEEE Trans Med Imaging. 2010;29(7):1390–400.CrossRefPubMed Nillius P, Danielsson M. Theoretical bounds and system design for multipinhole SPECT. IEEE Trans Med Imaging. 2010;29(7):1390–400.CrossRefPubMed
23.
go back to reference Van Audenhaege K, Vanhove C, Vandenberghe S, Van Holen R. The evaluation of data completeness and image quality in multiplexing multi-pinhole SPECT. IEEE Trans Med Imaging. 2015;34(2):474–86.CrossRefPubMed Van Audenhaege K, Vanhove C, Vandenberghe S, Van Holen R. The evaluation of data completeness and image quality in multiplexing multi-pinhole SPECT. IEEE Trans Med Imaging. 2015;34(2):474–86.CrossRefPubMed
24.
go back to reference Mok GS, Wang Y, Tsui BM. Quantification of the multiplexing effects in multi-pinhole small animal SPECT: a simulation study. IEEE Trans Nucl Sci. 2009;56(5):2636–43.CrossRefPubMedPubMedCentral Mok GS, Wang Y, Tsui BM. Quantification of the multiplexing effects in multi-pinhole small animal SPECT: a simulation study. IEEE Trans Nucl Sci. 2009;56(5):2636–43.CrossRefPubMedPubMedCentral
25.
go back to reference Bal G, Acton PD. Analytical derivation of the point spread function for pinhole collimators. Phys Med Biol. 2006;51(19):4923.CrossRefPubMed Bal G, Acton PD. Analytical derivation of the point spread function for pinhole collimators. Phys Med Biol. 2006;51(19):4923.CrossRefPubMed
26.
go back to reference Bom V, Goorden M, Beekman F. Comparison of pinhole collimator materials based on sensitivity equivalence. Phys Med Biol. 2011;56(11):3199.CrossRefPubMed Bom V, Goorden M, Beekman F. Comparison of pinhole collimator materials based on sensitivity equivalence. Phys Med Biol. 2011;56(11):3199.CrossRefPubMed
27.
go back to reference Bonte FJ, Hynan L, Harris TS, White CL. TC-99 m HMPAO brain blood flow imaging in the dementias with histopathologic correlation in 73 patients. Int J Mol Imaging. 2010;2011. Bonte FJ, Hynan L, Harris TS, White CL. TC-99 m HMPAO brain blood flow imaging in the dementias with histopathologic correlation in 73 patients. Int J Mol Imaging. 2010;2011.
28.
go back to reference Wang Y, Tsui BM. Pinhole SPECT with different data acquisition geometries: usefulness of unified projection operators in homogeneous coordinates. IEEE Trans Med Imaging. 2007;26(3):298–308.CrossRefPubMed Wang Y, Tsui BM. Pinhole SPECT with different data acquisition geometries: usefulness of unified projection operators in homogeneous coordinates. IEEE Trans Med Imaging. 2007;26(3):298–308.CrossRefPubMed
29.
go back to reference Henderson TA. The diagnosis and evaluation of dementia and mild cognitive impairment with emphasis on SPECT perfusion neuroimaging. CNS Spectr. 2012;17(04):176–206.CrossRefPubMed Henderson TA. The diagnosis and evaluation of dementia and mild cognitive impairment with emphasis on SPECT perfusion neuroimaging. CNS Spectr. 2012;17(04):176–206.CrossRefPubMed
30.
31.
go back to reference Cherry SR, Sorenson JA, Phelps ME. Physics in nuclear medicine. Amsterdam: Elsevier; 2012. Cherry SR, Sorenson JA, Phelps ME. Physics in nuclear medicine. Amsterdam: Elsevier; 2012.
32.
go back to reference Pareto D, Pavía J, Falcón C, Juvells I, Cot A, Ros D. Characterisation of fan-beam collimators. Eur J Nucl Med. 2001;28(2):144–9.CrossRefPubMed Pareto D, Pavía J, Falcón C, Juvells I, Cot A, Ros D. Characterisation of fan-beam collimators. Eur J Nucl Med. 2001;28(2):144–9.CrossRefPubMed
33.
go back to reference Nishimura T, Hashikawa K, Fukuyama H, Kubota T, Kitamura S, Matsuda H, et al. Decreased cerebral blood flow and prognosis of Alzheimer’s disease: a multicenter HMPAO-SPECT study. Ann Nucl Med. 2007;21(1):15–23.CrossRefPubMed Nishimura T, Hashikawa K, Fukuyama H, Kubota T, Kitamura S, Matsuda H, et al. Decreased cerebral blood flow and prognosis of Alzheimer’s disease: a multicenter HMPAO-SPECT study. Ann Nucl Med. 2007;21(1):15–23.CrossRefPubMed
34.
go back to reference Brinkmann BH, Jones DT, Stead M, Kazemi N, O’brien TJ, So EL, et al. Statistical parametric mapping demonstrates asymmetric uptake with Tc-99 m ECD and Tc-99 m HMPAO SPECT in normal brain. J Cereb Blood Flow Metab. 2012;32(1):190–8.CrossRefPubMed Brinkmann BH, Jones DT, Stead M, Kazemi N, O’brien TJ, So EL, et al. Statistical parametric mapping demonstrates asymmetric uptake with Tc-99 m ECD and Tc-99 m HMPAO SPECT in normal brain. J Cereb Blood Flow Metab. 2012;32(1):190–8.CrossRefPubMed
35.
go back to reference Chou K, Hurtig H, Stern M, Colcher A, Ravina B, Newberg A, et al. Diagnostic accuracy of [99 m Tc] TRODAT-1 SPECT imaging in early Parkinson’s disease. Parkinsonism Relat Disord. 2004;10(6):375–9.CrossRefPubMed Chou K, Hurtig H, Stern M, Colcher A, Ravina B, Newberg A, et al. Diagnostic accuracy of [99 m Tc] TRODAT-1 SPECT imaging in early Parkinson’s disease. Parkinsonism Relat Disord. 2004;10(6):375–9.CrossRefPubMed
36.
go back to reference Wang L, Zhang Q, Li H, Zhang H. SPECT molecular imaging in Parkinson’s disease. BioMed Res Int. 2012;2012. Wang L, Zhang Q, Li H, Zhang H. SPECT molecular imaging in Parkinson’s disease. BioMed Res Int. 2012;2012.
37.
go back to reference Ono M, Saji H. SPECT imaging agents for detecting cerebral β-amyloid plaques. Int J Mol Imaging. 2011;2011. Ono M, Saji H. SPECT imaging agents for detecting cerebral β-amyloid plaques. Int J Mol Imaging. 2011;2011.
38.
go back to reference Toossi MB, Islamian JP, Momennezhad M, Ljungberg M, Naseri S. SIMIND Monte Carlo simulation of a single photon emission CT. J Med Phys/Assoc Med Phys India. 2010;35(1):42. Toossi MB, Islamian JP, Momennezhad M, Ljungberg M, Naseri S. SIMIND Monte Carlo simulation of a single photon emission CT. J Med Phys/Assoc Med Phys India. 2010;35(1):42.
39.
go back to reference Mok GS, Yu J, Du Y, Wang Y, Tsui BM. Evaluation of a multi-pinhole collimator for imaging small animals with different sizes. Mol Imag Biol. 2012;14(1):60–9.CrossRef Mok GS, Yu J, Du Y, Wang Y, Tsui BM. Evaluation of a multi-pinhole collimator for imaging small animals with different sizes. Mol Imag Biol. 2012;14(1):60–9.CrossRef
Metadata
Title
Design and evaluation of two multi-pinhole collimators for brain SPECT
Authors
Ling Chen
Benjamin M. W. Tsui
Greta S. P. Mok
Publication date
01-10-2017
Publisher
Springer Japan
Published in
Annals of Nuclear Medicine / Issue 8/2017
Print ISSN: 0914-7187
Electronic ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-017-1195-y

Other articles of this Issue 8/2017

Annals of Nuclear Medicine 8/2017 Go to the issue