Skip to main content
Top
Published in: Annals of Nuclear Medicine 8/2017

01-10-2017 | Original Article

Comparison of Bayesian penalized likelihood reconstruction versus OS-EM for characterization of small pulmonary nodules in oncologic PET/CT

Authors: Brandon A. Howard, Rustain Morgan, Matthew P. Thorpe, Timothy G. Turkington, Jorge Oldan, Olga G. James, Salvador Borges-Neto

Published in: Annals of Nuclear Medicine | Issue 8/2017

Login to get access

Abstract

Objective

To determine whether the recently introduced Bayesian penalized likelihood PET reconstruction (Q.Clear) increases the visual conspicuity and SUVmax of small pulmonary nodules near the PET resolution limit, relative to ordered subset expectation maximization (OS-EM).

Methods

In this institutional review board-approved and HIPAA-compliant study, 29 FDG PET/CT scans performed on a five-ring GE Discovery IQ were retrospectively selected for pulmonary nodules described in the radiologist’s report as “too small to characterize”, or small lung nodules in patients at high risk for lung cancer. Thirty-two pulmonary nodules were assessed, with mean CT diameter of 8 mm (range 2–18). PET images were reconstructed with OS-EM and Q.Clear with noise penalty strength β values of 150, 250, and 350. Lesion visual conspicuity was scored by three readers on a 3-point scale, and lesion SUVmax and background liver and blood pool SUVmean and SUVstdev were recorded. Comparison was made by linear mixed model with modified Bonferroni post hoc testing; significance cutoff was p < 0.05.

Results

Q.Clear improved lesion visual conspicuity compared to OS-EM at β = 150 (p < 0.01), but not 250 or 350. Lesion SUVmax was increased compared to OS-EM at β = 150 and 250 (p < 0.01), but not 350.

Conclusion

In a cohort of small pulmonary nodules with size near an 8 mm PET full-width half maximum, Q.Clear significantly increased lesion visual conspicuity and SUVmax compared to our standard non- time-of-flight OS-EM reconstruction, but only with low noise penalization. Q.Clear with β = 150 may be advantageous when evaluation of small pulmonary nodules is of primary concern.
Literature
1.
go back to reference Garcia-Velloso MJ, Bastarrika G, de-Torres JP, Lozano MD, Sanchez-Salcedo P, Sancho L, et al. Assessment of indeterminate pulmonary nodules detected in lung cancer screening: diagnostic accuracy of FDG PET/CT. Lung Cancer. 2016;97:81–6.CrossRefPubMed Garcia-Velloso MJ, Bastarrika G, de-Torres JP, Lozano MD, Sanchez-Salcedo P, Sancho L, et al. Assessment of indeterminate pulmonary nodules detected in lung cancer screening: diagnostic accuracy of FDG PET/CT. Lung Cancer. 2016;97:81–6.CrossRefPubMed
2.
go back to reference Verhagen AF, Bootsma GP, Tjan-Heijnen VC, van der Wilt GJ, Cox AL, Brouwer MH, et al. FDG-PET in staging lung cancer: how does it change the algorithm? Lung Cancer. 2004;44:175–81.CrossRefPubMed Verhagen AF, Bootsma GP, Tjan-Heijnen VC, van der Wilt GJ, Cox AL, Brouwer MH, et al. FDG-PET in staging lung cancer: how does it change the algorithm? Lung Cancer. 2004;44:175–81.CrossRefPubMed
3.
go back to reference Grootjans W, de Geus-Oei LF, Meeuwis AP, van der Vos CS, Gotthardt M, Oyen WJ, et al. Amplitude-based optimal respiratory gating in positron emission tomography in patients with primary lung cancer. Eur Radiol. 2014;24:3242–50.CrossRefPubMed Grootjans W, de Geus-Oei LF, Meeuwis AP, van der Vos CS, Gotthardt M, Oyen WJ, et al. Amplitude-based optimal respiratory gating in positron emission tomography in patients with primary lung cancer. Eur Radiol. 2014;24:3242–50.CrossRefPubMed
4.
go back to reference Vriens D, Visser EP, de Geus-Oei LF, Oyen WJ. Methodological considerations in quantification of oncological FDG PET studies. Eur J Nucl Med Mol Imaging. 2010;37:1408–25.CrossRefPubMed Vriens D, Visser EP, de Geus-Oei LF, Oyen WJ. Methodological considerations in quantification of oncological FDG PET studies. Eur J Nucl Med Mol Imaging. 2010;37:1408–25.CrossRefPubMed
5.
go back to reference Asma E, Ahn S, Ross S, Chen A, Manjeshwar R. Accurate and consistent lesion quantitation with clinically acceptable penalized likelihood images. IEEE Nuclear Science Symposium Conference Record 2012. Asma E, Ahn S, Ross S, Chen A, Manjeshwar R. Accurate and consistent lesion quantitation with clinically acceptable penalized likelihood images. IEEE Nuclear Science Symposium Conference Record 2012.
6.
go back to reference Moyer VA, Force USPST. Screening for lung cancer: U.S. Preventive services task force recommendation statement. Ann Intern Med. 2014;160:330–8.PubMed Moyer VA, Force USPST. Screening for lung cancer: U.S. Preventive services task force recommendation statement. Ann Intern Med. 2014;160:330–8.PubMed
7.
go back to reference Fletcher JW, Djulbegovic B, Soares HP, Siegel BA, Lowe VJ, Lyman GH, et al. Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med. 2008;49:480–508.CrossRefPubMed Fletcher JW, Djulbegovic B, Soares HP, Siegel BA, Lowe VJ, Lyman GH, et al. Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med. 2008;49:480–508.CrossRefPubMed
8.
go back to reference Cherry SR, Sorenson JA, Phelps ME. Physics in nuclear medicine. 4th ed. Philadelphia: Elsevier/Saunders; 2012. Cherry SR, Sorenson JA, Phelps ME. Physics in nuclear medicine. 4th ed. Philadelphia: Elsevier/Saunders; 2012.
9.
go back to reference Kinahan PE, Fletcher JW. Positron emission tomography-computed tomography standardized uptake values in clinical practice and assessing response to therapy. Semin Ultrasound CT MR. 2010;31:496–505.CrossRefPubMedPubMedCentral Kinahan PE, Fletcher JW. Positron emission tomography-computed tomography standardized uptake values in clinical practice and assessing response to therapy. Semin Ultrasound CT MR. 2010;31:496–505.CrossRefPubMedPubMedCentral
10.
go back to reference Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging. 1994;13:601–9.CrossRefPubMed Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging. 1994;13:601–9.CrossRefPubMed
11.
go back to reference Ahn S, Ross SG, Asma E, Miao J, Jin X, Cheng L, et al. Quantitative comparison of OSEM and penalized likelihood image reconstruction using relative difference penalties for clinical PET. Phys Med Biol. 2015;60:5733–51.CrossRefPubMed Ahn S, Ross SG, Asma E, Miao J, Jin X, Cheng L, et al. Quantitative comparison of OSEM and penalized likelihood image reconstruction using relative difference penalties for clinical PET. Phys Med Biol. 2015;60:5733–51.CrossRefPubMed
12.
go back to reference Teoh EJ, McGowan DR, Macpherson RE, Bradley KM, Gleeson FV. Phantom and clinical evaluation of the Bayesian penalized likelihood reconstruction algorithm Q.Clear on an LYSO PET/CT system. J Nucl Med. 2015;56:1447–52.CrossRefPubMedPubMedCentral Teoh EJ, McGowan DR, Macpherson RE, Bradley KM, Gleeson FV. Phantom and clinical evaluation of the Bayesian penalized likelihood reconstruction algorithm Q.Clear on an LYSO PET/CT system. J Nucl Med. 2015;56:1447–52.CrossRefPubMedPubMedCentral
13.
go back to reference Teoh EJ, McGowan DR, Bradley KM, Belcher E, Black E, Gleeson FV. Novel penalised likelihood reconstruction of PET in the assessment of histologically verified small pulmonary nodules. Eur Radiol. 2016;26:576–84.CrossRefPubMed Teoh EJ, McGowan DR, Bradley KM, Belcher E, Black E, Gleeson FV. Novel penalised likelihood reconstruction of PET in the assessment of histologically verified small pulmonary nodules. Eur Radiol. 2016;26:576–84.CrossRefPubMed
14.
go back to reference Teoh EJ, McGowan DR, Bradley KM, Belcher E, Black E, Moore A, et al. 18F-FDG PET/CT assessment of histopathologically confirmed mediastinal lymph nodes in non-small cell lung cancer using a penalised likelihood reconstruction. Eur Radiol 2016;26:4098–4106CrossRefPubMedPubMedCentral Teoh EJ, McGowan DR, Bradley KM, Belcher E, Black E, Moore A, et al. 18F-FDG PET/CT assessment of histopathologically confirmed mediastinal lymph nodes in non-small cell lung cancer using a penalised likelihood reconstruction. Eur Radiol 2016;26:4098–4106CrossRefPubMedPubMedCentral
15.
go back to reference MacMahon H, Austin JH, Gamsu G, Herold CJ, Jett JR, Naidich DP, et al. Guidelines for management of small pulmonary nodules detected on CT scans: a statement from the Fleischner Society. Radiology. 2005;237:395–400.CrossRefPubMed MacMahon H, Austin JH, Gamsu G, Herold CJ, Jett JR, Naidich DP, et al. Guidelines for management of small pulmonary nodules detected on CT scans: a statement from the Fleischner Society. Radiology. 2005;237:395–400.CrossRefPubMed
16.
go back to reference Gore RM, Thakrar KH, Wenzke DR, Newmark GM, Mehta UK, Berlin JW. That liver lesion on MDCT in the oncology patient: is it important? Cancer Imaging. 2012;12:373–84.CrossRefPubMedPubMedCentral Gore RM, Thakrar KH, Wenzke DR, Newmark GM, Mehta UK, Berlin JW. That liver lesion on MDCT in the oncology patient: is it important? Cancer Imaging. 2012;12:373–84.CrossRefPubMedPubMedCentral
17.
go back to reference Parvizi N, Franklin JM, McGowan DR, Teoh EJ, Bradley KM, Gleeson FV. Does a novel penalized likelihood reconstruction of 18F-FDG PET-CT improve signal-to-background in colorectal liver metastases? Eur J Radiol. 2015;84:1873–8.CrossRefPubMed Parvizi N, Franklin JM, McGowan DR, Teoh EJ, Bradley KM, Gleeson FV. Does a novel penalized likelihood reconstruction of 18F-FDG PET-CT improve signal-to-background in colorectal liver metastases? Eur J Radiol. 2015;84:1873–8.CrossRefPubMed
Metadata
Title
Comparison of Bayesian penalized likelihood reconstruction versus OS-EM for characterization of small pulmonary nodules in oncologic PET/CT
Authors
Brandon A. Howard
Rustain Morgan
Matthew P. Thorpe
Timothy G. Turkington
Jorge Oldan
Olga G. James
Salvador Borges-Neto
Publication date
01-10-2017
Publisher
Springer Japan
Published in
Annals of Nuclear Medicine / Issue 8/2017
Print ISSN: 0914-7187
Electronic ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-017-1192-1

Other articles of this Issue 8/2017

Annals of Nuclear Medicine 8/2017 Go to the issue