Skip to main content
Top
Published in: Clinical and Translational Oncology 10/2016

01-10-2016 | Research Article

Stereotactic body radiation therapy and intensity modulated radiation therapy induce different plasmatic cytokine changes in non-small cell lung cancer patients: a pilot study

Authors: M. Trovo, N. Giaj-Levra, C. Furlan, M. T. Bortolin, E. Muraro, J. Polesel, E. Minatel, R. Tedeschi, A. R. Filippi, F. Alongi, U. Ricardi

Published in: Clinical and Translational Oncology | Issue 10/2016

Login to get access

Abstract

Purpose

To assess kinetics of plasmatic cytokines during radiation therapy (RT) for locally advanced and early-stage non-small cell lung cancer (NSCLC).

Methods

This prospective study was conducted on 15 early-stage NSCLC underwent to extreme hypofractionated regimen (52 Gy in 8 fractions) with stereotactic body RT (SBRT), and 13 locally advanced NSCLC underwent to radical moderated hypofractionated regimen (60 Gy in 25 fractions) with intensity modulated RT (IMRT). For patients undergoing SBRT, peripheral blood samples were collected on the first day of SBRT (TFd), the last day (TLd) and 45 days (T45d) after the end of SBRT. For patients undergoing IMRT, blood samples were collected at: TFd, 2 weeks (T2w), 4 weeks (T4w), TLd, and T45d. The following cytokines were measured: IL-1, IL-1ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12, IL-13, IL-15, IL-17A, EGF, FGF-2, INF-γ, MIP-1α, MIP-1β, TGF-α, TNF-α, and VEGF. Cytokine levels measured in different RT time and compared.

Results

No difference in baseline levels of cytokines was documented between patient radiation approaches (except for MIP-1α). For SBRT patients, a mean reduction of IL-10 and IL-17 plasma level was documented between TLd and TFd, respectively (p < 0.05). For IMRT patients, a statistically significant (p < 0.05) mean plasma level reduction was documented between T4w and TFd for all the following cytokines: IL-1, IL-1ra, IL-2, IL-12, FGF-2, MIP-1α, MIP-1β, TGF-α, TNF-α, VEGF.

Conclusions

SBRT and IMRT induce different plasmatic cytokine changes in NSCLC patients, supporting hypothesis that RT regimes of dose schedules and techniques have different impacts on the host immune response.
Literature
1.
go back to reference Bradley JD, El Naqua I, Drzymala RE, Trovò M, Jones G, Denning MD. Stereotactic body radiation therapy for early-stage non-small cell lung cancer: the pattern of failure is distant. Int J Radiat Oncol Biol Phys. 2010;77:1146–50.CrossRefPubMed Bradley JD, El Naqua I, Drzymala RE, Trovò M, Jones G, Denning MD. Stereotactic body radiation therapy for early-stage non-small cell lung cancer: the pattern of failure is distant. Int J Radiat Oncol Biol Phys. 2010;77:1146–50.CrossRefPubMed
3.
go back to reference Ricardi U, Frezza G, Filippi AR, et al. Stereotactic ablative radiotherapy for stage I hisologically proven non-small cell lung cancer: an Italian multicenter observational study. Lung Cancer. 2014;84:248–53.CrossRefPubMed Ricardi U, Frezza G, Filippi AR, et al. Stereotactic ablative radiotherapy for stage I hisologically proven non-small cell lung cancer: an Italian multicenter observational study. Lung Cancer. 2014;84:248–53.CrossRefPubMed
4.
go back to reference Curran W, Paulus R, Langer C, Komaki R, Lee JD, Hauser S, et al. Sequential vs concurrent chemoradiation for stage III non-small cell lung cancer: randomized phase III trial RTOG 9410. J Natl Cancer Inst. 2011;103:1452–60.CrossRefPubMedPubMedCentral Curran W, Paulus R, Langer C, Komaki R, Lee JD, Hauser S, et al. Sequential vs concurrent chemoradiation for stage III non-small cell lung cancer: randomized phase III trial RTOG 9410. J Natl Cancer Inst. 2011;103:1452–60.CrossRefPubMedPubMedCentral
5.
go back to reference Bearz A, Minatel E, Rumeileh IA, et al. Concurrent chemoradiotherapy with tomotherapy in locally advanced non-small cell lung cancer: a phase I, docetaxel dose-escalation study, with hypofractionated radiation regimen. BMC Cancer. 2013;13:513.CrossRefPubMedPubMedCentral Bearz A, Minatel E, Rumeileh IA, et al. Concurrent chemoradiotherapy with tomotherapy in locally advanced non-small cell lung cancer: a phase I, docetaxel dose-escalation study, with hypofractionated radiation regimen. BMC Cancer. 2013;13:513.CrossRefPubMedPubMedCentral
6.
go back to reference Faivre-Finn C. Dose escalation in lung cancer: have we gone full circle? Lancet Oncol. 2015;16:125–7.CrossRefPubMed Faivre-Finn C. Dose escalation in lung cancer: have we gone full circle? Lancet Oncol. 2015;16:125–7.CrossRefPubMed
7.
go back to reference Trovo M, Linda A, El Naqua I, Javidan-Nejad C, Bradley J. Early and late radiographic injurie following stereotactic body radiation therapy (SBRT). Lung Cancer. 2010;69:77–85.CrossRefPubMed Trovo M, Linda A, El Naqua I, Javidan-Nejad C, Bradley J. Early and late radiographic injurie following stereotactic body radiation therapy (SBRT). Lung Cancer. 2010;69:77–85.CrossRefPubMed
8.
go back to reference Linda A, Trovo M, Bradley JD. Radiation injury of the lung after stereotactic body radiation therapy (SBRT) for lung cancer: a timeline and pattern of CT changes. Eur J Radiol. 2011;79:147–54.CrossRefPubMed Linda A, Trovo M, Bradley JD. Radiation injury of the lung after stereotactic body radiation therapy (SBRT) for lung cancer: a timeline and pattern of CT changes. Eur J Radiol. 2011;79:147–54.CrossRefPubMed
9.
go back to reference McBride WH, Chiang CS, Olson JL, Wang CC, Hong JH, Pajonk F, et al. A sense of danger from radiation. Radiat Res. 2004;162:1–19.CrossRefPubMed McBride WH, Chiang CS, Olson JL, Wang CC, Hong JH, Pajonk F, et al. A sense of danger from radiation. Radiat Res. 2004;162:1–19.CrossRefPubMed
10.
go back to reference Barcellos-Hoff MH, Park C, Wright EG. Radiation and the microenvironment—tumorigenesis and therapy. Nat Rev Cancer. 2005;5:867–75.CrossRefPubMed Barcellos-Hoff MH, Park C, Wright EG. Radiation and the microenvironment—tumorigenesis and therapy. Nat Rev Cancer. 2005;5:867–75.CrossRefPubMed
11.
go back to reference Rübe CE, Wilfert F, Uthe D, König J, Liu L, Schuck A, et al. Increased expression of pro-inflammatory cytokines as a cause of lung toxicity after combined treatment with gemcitabine and thoracic irradiation. Radiother Oncol. 2004;72:231–41.CrossRefPubMed Rübe CE, Wilfert F, Uthe D, König J, Liu L, Schuck A, et al. Increased expression of pro-inflammatory cytokines as a cause of lung toxicity after combined treatment with gemcitabine and thoracic irradiation. Radiother Oncol. 2004;72:231–41.CrossRefPubMed
12.
go back to reference Chen Y, Williams J, Ding I, Hernady E, Liu W, Smudzin T, et al. Radiation pneumonitis and early circulatory cytokine markers. Semin Radiat Oncol. 2002;12(1 suppl 1):26–33.CrossRefPubMed Chen Y, Williams J, Ding I, Hernady E, Liu W, Smudzin T, et al. Radiation pneumonitis and early circulatory cytokine markers. Semin Radiat Oncol. 2002;12(1 suppl 1):26–33.CrossRefPubMed
13.
go back to reference Hong ZY, Song KH, Yoon JH, Cho J, Story MD. An experimental model-based exploration of cytokines in ablative radiation-induced lung injury in vivo and in vitro. Lung. 2015;193:409–19.CrossRefPubMed Hong ZY, Song KH, Yoon JH, Cho J, Story MD. An experimental model-based exploration of cytokines in ablative radiation-induced lung injury in vivo and in vitro. Lung. 2015;193:409–19.CrossRefPubMed
14.
go back to reference Yang X, Walton W, Cook DN, Hua X, Tilley S, Haskell CA, et al. The chemokine, CCL3, and its receptor, CCR1, mediate thoracic radiation-induced pulmonary fibrosis. Am J Respir Cell Mol Biol. 2011;45:127–35.CrossRefPubMed Yang X, Walton W, Cook DN, Hua X, Tilley S, Haskell CA, et al. The chemokine, CCL3, and its receptor, CCR1, mediate thoracic radiation-induced pulmonary fibrosis. Am J Respir Cell Mol Biol. 2011;45:127–35.CrossRefPubMed
15.
go back to reference van Tinteren H, Hoekstra OS, Smit EF, et al. Effectiveness of positron emission tomography in the preoperative assessment of patients with suspected non-small-cell lung cancer: the PLUS multicentre randomised trial. Lancet. 2002;359(9315):1388–93.CrossRefPubMed van Tinteren H, Hoekstra OS, Smit EF, et al. Effectiveness of positron emission tomography in the preoperative assessment of patients with suspected non-small-cell lung cancer: the PLUS multicentre randomised trial. Lancet. 2002;359(9315):1388–93.CrossRefPubMed
16.
go back to reference Ansher MS, Kong FM, Andrews K, Clough R, Marks LB, Bentel G, et al. Plasma transforming growth factor beta1 as a predictor of radiation pneumonitis. Int J Radiat Oncol Biol Phys. 1998;41:1029–35.CrossRef Ansher MS, Kong FM, Andrews K, Clough R, Marks LB, Bentel G, et al. Plasma transforming growth factor beta1 as a predictor of radiation pneumonitis. Int J Radiat Oncol Biol Phys. 1998;41:1029–35.CrossRef
17.
go back to reference Ansher MS, Marks LB, Shafman TD, Clough R, Huang H, Tisch A, et al. Risk of long-term complications after TFG-beta1-guided very-high-dose thoracic radiotherapy. Int J Radiat Oncol Biol Phys. 2003;56:988–95.CrossRef Ansher MS, Marks LB, Shafman TD, Clough R, Huang H, Tisch A, et al. Risk of long-term complications after TFG-beta1-guided very-high-dose thoracic radiotherapy. Int J Radiat Oncol Biol Phys. 2003;56:988–95.CrossRef
18.
go back to reference Chen Y, Rubin P, William J, Hernady E, Smudzin T, Okunieff P. Circulating IL-6 as a predictor of radiation pneumonitis. Int J Radiat Oncol Biol Phys. 2001;49:641–8.CrossRefPubMed Chen Y, Rubin P, William J, Hernady E, Smudzin T, Okunieff P. Circulating IL-6 as a predictor of radiation pneumonitis. Int J Radiat Oncol Biol Phys. 2001;49:641–8.CrossRefPubMed
19.
go back to reference Bright RK. Immunology of lung cancer. In: Pass HI, Mitchel IB, Johnson DH, et al., editors. Lung cancer. Philadelphia: Lippincott W&W; 2000. p. 304–18. Bright RK. Immunology of lung cancer. In: Pass HI, Mitchel IB, Johnson DH, et al., editors. Lung cancer. Philadelphia: Lippincott W&W; 2000. p. 304–18.
20.
go back to reference Witz IP. Tumor-microenvironment interactions: the selectin-selectin ligand axis in tumor-endothelium cross talk. Cancer Treat Res. 2006;130:125–40.CrossRefPubMed Witz IP. Tumor-microenvironment interactions: the selectin-selectin ligand axis in tumor-endothelium cross talk. Cancer Treat Res. 2006;130:125–40.CrossRefPubMed
21.
go back to reference Travès PG, Luque A, Hortelano S. Macrophages, inflammation, and tumor suppressors: ARF, a new player in the game. Mediators Inflamm. 2012;2012:568783.CrossRefPubMedPubMedCentral Travès PG, Luque A, Hortelano S. Macrophages, inflammation, and tumor suppressors: ARF, a new player in the game. Mediators Inflamm. 2012;2012:568783.CrossRefPubMedPubMedCentral
22.
go back to reference Kong FM, Washington MK, Jirtle RL, Anscher MS. Plasma transforming growth factor-beta 1 reflects disease status in patients with lung cancer after radiotherapy: a possible tumor marker. Lung Cancer. 1996;16:47–59.CrossRefPubMed Kong FM, Washington MK, Jirtle RL, Anscher MS. Plasma transforming growth factor-beta 1 reflects disease status in patients with lung cancer after radiotherapy: a possible tumor marker. Lung Cancer. 1996;16:47–59.CrossRefPubMed
23.
go back to reference Woo SR, Fuertes MB, Corrales L, Spranger S, Furdyna MJ, Leung MY, et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity. 2014;41(5):830–42.CrossRefPubMedPubMedCentral Woo SR, Fuertes MB, Corrales L, Spranger S, Furdyna MJ, Leung MY, et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity. 2014;41(5):830–42.CrossRefPubMedPubMedCentral
24.
go back to reference Fuertes MB, Kacha AK, Kline J, Woo SR, Kranz DM, Murphy KM, et al. Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8alpha+ dendritic cells. J Exp Med. 2011;208(10):2005–16.CrossRefPubMedPubMedCentral Fuertes MB, Kacha AK, Kline J, Woo SR, Kranz DM, Murphy KM, et al. Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8alpha+ dendritic cells. J Exp Med. 2011;208(10):2005–16.CrossRefPubMedPubMedCentral
25.
go back to reference Deng L, Liang H, Xu M, Yang X, Burnette B, Arina A, et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity. 2014;41(5):843–52.CrossRefPubMed Deng L, Liang H, Xu M, Yang X, Burnette B, Arina A, et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity. 2014;41(5):843–52.CrossRefPubMed
26.
go back to reference Lippitz BE. Cytokine patterns in patients with cancer: a systematic review. Lancet Oncol. 2013;14(6):e218–28.CrossRefPubMed Lippitz BE. Cytokine patterns in patients with cancer: a systematic review. Lancet Oncol. 2013;14(6):e218–28.CrossRefPubMed
27.
go back to reference Chen X, Wan J, Liu J, Xie W, Diao X, Xu J, et al. Increased IL-17-producing cells correlate with poor survival and lymphangiogenesis in NSCLC patients. Lung Cancer. 2010;69:348–54.CrossRefPubMed Chen X, Wan J, Liu J, Xie W, Diao X, Xu J, et al. Increased IL-17-producing cells correlate with poor survival and lymphangiogenesis in NSCLC patients. Lung Cancer. 2010;69:348–54.CrossRefPubMed
28.
go back to reference Fleckenstein K, Gauter-Fleckenstein B, Jackson IL, Rabbani Z, Anscher M, Vujaskovic Z. Using biological markers to predict risk of radiation injury. Semin Radiat Oncol. 2007;17:89–98.CrossRefPubMed Fleckenstein K, Gauter-Fleckenstein B, Jackson IL, Rabbani Z, Anscher M, Vujaskovic Z. Using biological markers to predict risk of radiation injury. Semin Radiat Oncol. 2007;17:89–98.CrossRefPubMed
29.
go back to reference Han G, Zhang H, Xie CH, Zhou YF. Th2-like immune response in radiation-induced lung fibrosis. Oncol Rep. 2011;26:383–8.PubMed Han G, Zhang H, Xie CH, Zhou YF. Th2-like immune response in radiation-induced lung fibrosis. Oncol Rep. 2011;26:383–8.PubMed
31.
go back to reference Zeng L, O’Connor C, Zhang J, Kaplan AM, Cohen DA. IL-10 promotes resistance to apoptosis and metastatic potential in lung tumor cell lines. Cytokine. 2010;49:294–302.CrossRefPubMed Zeng L, O’Connor C, Zhang J, Kaplan AM, Cohen DA. IL-10 promotes resistance to apoptosis and metastatic potential in lung tumor cell lines. Cytokine. 2010;49:294–302.CrossRefPubMed
32.
go back to reference De Vita F, Orditura M, Galizia G, Ciaramella F, Musicò M, Ferrigno A, et al. Serum interleukin-10 levels as a prognostic factor in advanced non-small cell lung cancer patients. Chest. 2000;117:365–73.CrossRefPubMed De Vita F, Orditura M, Galizia G, Ciaramella F, Musicò M, Ferrigno A, et al. Serum interleukin-10 levels as a prognostic factor in advanced non-small cell lung cancer patients. Chest. 2000;117:365–73.CrossRefPubMed
33.
go back to reference Mocellin S, Panelli MC, Wang E, Nagorsen D, Marincola FM. The dual role of IL-10. Trends Immunol. 2003;24:36–43.CrossRefPubMed Mocellin S, Panelli MC, Wang E, Nagorsen D, Marincola FM. The dual role of IL-10. Trends Immunol. 2003;24:36–43.CrossRefPubMed
34.
go back to reference Wang YC, Sung WW, Wu TC, Wang L, Chien WP, Cheng YW, et al. Interleukin-10 haplotype may predict survival and relapse in resected non-small cell lung cancer. PLoS One. 2012;7:e39525.CrossRefPubMedPubMedCentral Wang YC, Sung WW, Wu TC, Wang L, Chien WP, Cheng YW, et al. Interleukin-10 haplotype may predict survival and relapse in resected non-small cell lung cancer. PLoS One. 2012;7:e39525.CrossRefPubMedPubMedCentral
35.
go back to reference Arpin D, Perol D, Blay JY, Falchero L, Claude L, Vuillermoz-Blas S, et al. Early variations of circulating interleukin-6 and interleukin-10 levels during thoracic radiotherapy are predictive for radiation pneumonitis. J Clin Oncol. 2005;23:8748–56.CrossRefPubMed Arpin D, Perol D, Blay JY, Falchero L, Claude L, Vuillermoz-Blas S, et al. Early variations of circulating interleukin-6 and interleukin-10 levels during thoracic radiotherapy are predictive for radiation pneumonitis. J Clin Oncol. 2005;23:8748–56.CrossRefPubMed
36.
go back to reference Neurath MF, Finotto S. The emerging role of T cell cytokines in non-small cell lung cancer. Cytokine Growth Factor Rev. 2012;23:315–22.CrossRefPubMed Neurath MF, Finotto S. The emerging role of T cell cytokines in non-small cell lung cancer. Cytokine Growth Factor Rev. 2012;23:315–22.CrossRefPubMed
37.
go back to reference Li Y, Cao ZY, Sun B, Wang GY, Fu Z, Liu YM, et al. Effects of IL-17A on the occurrence of lung adenocarcinoma. Cancer Biol Ther. 2011;12:610–6.CrossRefPubMed Li Y, Cao ZY, Sun B, Wang GY, Fu Z, Liu YM, et al. Effects of IL-17A on the occurrence of lung adenocarcinoma. Cancer Biol Ther. 2011;12:610–6.CrossRefPubMed
38.
go back to reference Crittenden M, Gough M, Harrington K, Olivier K, Thompson J, Vile RG. Expression of inflammatory chemokines combined with local tumor destruction enhances tumor regression and long-term immunity. Cancer Res. 2003;63:5505–12.PubMed Crittenden M, Gough M, Harrington K, Olivier K, Thompson J, Vile RG. Expression of inflammatory chemokines combined with local tumor destruction enhances tumor regression and long-term immunity. Cancer Res. 2003;63:5505–12.PubMed
39.
go back to reference Kono SA, Heasley LE, Doebele RC, Camidge DR. Adding to the mix: fibroblast growth factor and platelet-derived growth factor receptor pathways as targets in non-small cell lung cancer. Curr Cancer Drug Targets. 2012;12:107–23.CrossRefPubMedPubMedCentral Kono SA, Heasley LE, Doebele RC, Camidge DR. Adding to the mix: fibroblast growth factor and platelet-derived growth factor receptor pathways as targets in non-small cell lung cancer. Curr Cancer Drug Targets. 2012;12:107–23.CrossRefPubMedPubMedCentral
40.
go back to reference Umekita Y, Ohi Y, Sagara Y, Yoshida H. Co-expression of epidermal growth factor receptor and transforming growth factor-alpha predicts worse prognosis in breast-cancer patients. Int J Cancer. 2000;89:484–7.CrossRefPubMed Umekita Y, Ohi Y, Sagara Y, Yoshida H. Co-expression of epidermal growth factor receptor and transforming growth factor-alpha predicts worse prognosis in breast-cancer patients. Int J Cancer. 2000;89:484–7.CrossRefPubMed
41.
go back to reference Arend WP. The balance between IL-1 and IL-1Ra in disease. Cytokine Growth Factor Rev. 2002;3:323–40.CrossRef Arend WP. The balance between IL-1 and IL-1Ra in disease. Cytokine Growth Factor Rev. 2002;3:323–40.CrossRef
42.
go back to reference Kong FM, Ao X, Wang L, Lawrence TS. The use of blood biomarkers to predict radiation lung toxicity: a potential strategy to individualize thoracic radiation therapy. Cancer Control. 2008;15:140–50.PubMed Kong FM, Ao X, Wang L, Lawrence TS. The use of blood biomarkers to predict radiation lung toxicity: a potential strategy to individualize thoracic radiation therapy. Cancer Control. 2008;15:140–50.PubMed
43.
go back to reference Golden EB, Frances D, Pellicciotta I, Demaria S, Helen Barcellos-Hoff M, Formenti SC. Radiation fosters dose-dependent and chemotherapy induced immunogenic cell death. Oncoimmunology. 2014;3:e28518.CrossRefPubMedPubMedCentral Golden EB, Frances D, Pellicciotta I, Demaria S, Helen Barcellos-Hoff M, Formenti SC. Radiation fosters dose-dependent and chemotherapy induced immunogenic cell death. Oncoimmunology. 2014;3:e28518.CrossRefPubMedPubMedCentral
44.
go back to reference Demaria S, Formenti SC. Radiation as an immunological adjuvant: current evidence on dose and fractionation. Front Oncol. 2012;2:153.PubMedPubMedCentral Demaria S, Formenti SC. Radiation as an immunological adjuvant: current evidence on dose and fractionation. Front Oncol. 2012;2:153.PubMedPubMedCentral
45.
go back to reference Lee Y, Auh SL, Wang Y, et al. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood. 2009;114(3):589–95.CrossRefPubMedPubMedCentral Lee Y, Auh SL, Wang Y, et al. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood. 2009;114(3):589–95.CrossRefPubMedPubMedCentral
46.
go back to reference Klug F, Prakash H, Huber PE, et al. Low-dose irradiation programs macrophage differentiation to an iNOS+/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell. 2013;24(5):589–602.CrossRefPubMed Klug F, Prakash H, Huber PE, et al. Low-dose irradiation programs macrophage differentiation to an iNOS+/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell. 2013;24(5):589–602.CrossRefPubMed
47.
go back to reference Park HJ, Griffin RJ, Hui S, Levitt SH, Song CW. Radiation-induced vascular damage in tumors: implications of vascular damage in ablative hypofractionated radiotherapy (SBRT and SRS). Radiat Res. 2012;177(3):311–27.CrossRefPubMed Park HJ, Griffin RJ, Hui S, Levitt SH, Song CW. Radiation-induced vascular damage in tumors: implications of vascular damage in ablative hypofractionated radiotherapy (SBRT and SRS). Radiat Res. 2012;177(3):311–27.CrossRefPubMed
48.
go back to reference Tsavaris N, Kosmas C, Vadiaka M, Kanelopoulos P, Boulamatsis D. Immune changes in patients with advanced breast cancer undergoing chemotherapy with taxanes. Br J Cancer. 2002;87:21–7.CrossRefPubMedPubMedCentral Tsavaris N, Kosmas C, Vadiaka M, Kanelopoulos P, Boulamatsis D. Immune changes in patients with advanced breast cancer undergoing chemotherapy with taxanes. Br J Cancer. 2002;87:21–7.CrossRefPubMedPubMedCentral
49.
go back to reference Heuvers ME, Aerts JG, Cornelissen R, Groen H, Hoogsteden HC, Hegmans JP. Patient-tailored modulation of the immune system may revolutionize future lung cancer treatment. BMC Cancer. 2012;12:580.CrossRefPubMedPubMedCentral Heuvers ME, Aerts JG, Cornelissen R, Groen H, Hoogsteden HC, Hegmans JP. Patient-tailored modulation of the immune system may revolutionize future lung cancer treatment. BMC Cancer. 2012;12:580.CrossRefPubMedPubMedCentral
Metadata
Title
Stereotactic body radiation therapy and intensity modulated radiation therapy induce different plasmatic cytokine changes in non-small cell lung cancer patients: a pilot study
Authors
M. Trovo
N. Giaj-Levra
C. Furlan
M. T. Bortolin
E. Muraro
J. Polesel
E. Minatel
R. Tedeschi
A. R. Filippi
F. Alongi
U. Ricardi
Publication date
01-10-2016
Publisher
Springer International Publishing
Published in
Clinical and Translational Oncology / Issue 10/2016
Print ISSN: 1699-048X
Electronic ISSN: 1699-3055
DOI
https://doi.org/10.1007/s12094-015-1473-x

Other articles of this Issue 10/2016

Clinical and Translational Oncology 10/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine