Skip to main content
Top
Published in: Medical Oncology 2/2019

01-02-2019 | Original Paper

A feedback regulation of CREB activation through the CUL4A and ERK signaling

Authors: Cheemala Ashok, Sheikh Owais, Loudu Srijyothi, Murugan Selvam, Saravanaraman Ponne, Sudhakar Baluchamy

Published in: Medical Oncology | Issue 2/2019

Login to get access

Abstract

CUL4A; an E3 ubiquitin ligase is involved in the degradation of negative regulators of cell cycle such as p21, p27, p53, etc., through polyubiquitination-mediated protein degradation. The functional role(s) of CUL4A proteins on their targets are well characterized; however, the transcriptional regulation of CUL4A, particularly at its promoter level is not yet studied. Therefore, in this study, using computational tools, we found cAMP responsive elements (CRE) at the locations of − 926 and − 764 with respect to transcription state site + 1 of CUL4A promoter. Hence, we investigated the role of CREB on the regulation of CUL4A transcription. Our chromatin immunoprecipitation (ChIP) data clearly showed increased levels of promoter occupancy of both CREB and pCREB on both CREs of CUL4A promoter. As expected, the expression of CUL4A increases and decreases upon the overexpression of and knocking down of CREB, respectively. Moreover, the inhibition of ERK pathway by U0126 not only reduces the CREB activation but also the CUL4A levels suggesting that CREB is the upstream activator of CUL4A transcription. The reduction of CUL4A levels upon the knocking down of CREB or by U0126 treatment increases the protein levels of CUL4A substrates such as p21 and p27. It is reported that CUL4A activates the ERK1/2 transcription and ERK1/2 pathway activates the CREB by phosphorylation. Based on our data and earlier findings, we report that CREB regulates the CUL4A levels positively which in turn activates the CREB through ERK1/2 pathway in the form of auto-regulatory looped mechanism.This suggests that CUL4A might be involved in proliferation of cancer cells by regulating the ERK1/2 and CREB signaling.
Literature
1.
go back to reference Deshaies RJ. Proteotoxic crisis, the ubiquitin-proteasome system, and cancer therapy. BMC Biol. 2014;12(1):94.CrossRef Deshaies RJ. Proteotoxic crisis, the ubiquitin-proteasome system, and cancer therapy. BMC Biol. 2014;12(1):94.CrossRef
2.
go back to reference Clarke HJ, Chambers JE, Liniker E, Marciniak SJ. Endoplasmic reticulum stress in malignancy. Cancer cell. 2014;25(5):563–73.CrossRef Clarke HJ, Chambers JE, Liniker E, Marciniak SJ. Endoplasmic reticulum stress in malignancy. Cancer cell. 2014;25(5):563–73.CrossRef
3.
go back to reference Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell. 2004;6(4):463–77.CrossRef Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell. 2004;6(4):463–77.CrossRef
4.
go back to reference Grune T, Shringarpure R, Sitte N, Davies K. Age-related changes in protein oxidation and proteolysis in mammalian cells. J Gerontol Ser A: Biol Sci Med Sci. 2001;56(11):B459-67.CrossRef Grune T, Shringarpure R, Sitte N, Davies K. Age-related changes in protein oxidation and proteolysis in mammalian cells. J Gerontol Ser A: Biol Sci Med Sci. 2001;56(11):B459-67.CrossRef
5.
go back to reference Goldberg AL. Protein degradation and protection against misfolded or damaged proteins. Nature. 2003;426(6968):895.CrossRef Goldberg AL. Protein degradation and protection against misfolded or damaged proteins. Nature. 2003;426(6968):895.CrossRef
6.
go back to reference Berke SJS, Paulson HL. Protein aggregation and the ubiquitin proteasome pathway: gaining the UPPer hand on neurodegeneration. Curr Opin Genet Dev. 2003;13(3):253–61.CrossRef Berke SJS, Paulson HL. Protein aggregation and the ubiquitin proteasome pathway: gaining the UPPer hand on neurodegeneration. Curr Opin Genet Dev. 2003;13(3):253–61.CrossRef
7.
go back to reference Pickart CM. Mechanisms underlying ubiquitination. Annu Rev Biochem. 2001;70(1):503–33.CrossRef Pickart CM. Mechanisms underlying ubiquitination. Annu Rev Biochem. 2001;70(1):503–33.CrossRef
8.
go back to reference Bosu DR, Kipreos ET. Cullin-RING ubiquitin ligases: global regulation and activation cycles. Cell Div. 2008;3(1):7.CrossRef Bosu DR, Kipreos ET. Cullin-RING ubiquitin ligases: global regulation and activation cycles. Cell Div. 2008;3(1):7.CrossRef
9.
go back to reference Deshaies RJ, Emberley ED, Saha A. Control of cullin-ring ubiquitin ligase activity by nedd8. Conjugation and deconjugation of ubiquitin family modifiers. Subcell Biochem. 2010;54:41–56.CrossRef Deshaies RJ, Emberley ED, Saha A. Control of cullin-ring ubiquitin ligase activity by nedd8. Conjugation and deconjugation of ubiquitin family modifiers. Subcell Biochem. 2010;54:41–56.CrossRef
10.
go back to reference Sarikas A, Hartmann T, Pan Z-Q. The cullin protein family. Genome Biol. 2011;12(4):220.CrossRef Sarikas A, Hartmann T, Pan Z-Q. The cullin protein family. Genome Biol. 2011;12(4):220.CrossRef
11.
go back to reference Zou Y, Mi J, Cui J, Lu D, Zhang X, Guo C, et al. Characterization of nuclear localization signal in N-terminus of CUL4B and its essential role in cyclin E degradation and cell cycle progression. J Biol Chem. 2009;284(48):33320–32.CrossRef Zou Y, Mi J, Cui J, Lu D, Zhang X, Guo C, et al. Characterization of nuclear localization signal in N-terminus of CUL4B and its essential role in cyclin E degradation and cell cycle progression. J Biol Chem. 2009;284(48):33320–32.CrossRef
12.
go back to reference Jackson S, Xiong Y. CRL4s: the CUL4-RING E3 ubiquitin ligases. Trends Biochem Sci. 2009;34(11):562–70.CrossRef Jackson S, Xiong Y. CRL4s: the CUL4-RING E3 ubiquitin ligases. Trends Biochem Sci. 2009;34(11):562–70.CrossRef
13.
go back to reference Chen C-Y, Tsai M-S, Lin C-Y, Yu I-S, Chen Y-T, Lin S-R, et al. Rescue of the genetically engineered Cul4b mutant mouse as a potential model for human X-linked mental retardation. Hum Mol Genet. 2012;21(19):4270–85.CrossRef Chen C-Y, Tsai M-S, Lin C-Y, Yu I-S, Chen Y-T, Lin S-R, et al. Rescue of the genetically engineered Cul4b mutant mouse as a potential model for human X-linked mental retardation. Hum Mol Genet. 2012;21(19):4270–85.CrossRef
14.
go back to reference Yasui K, Arii S, Zhao C, Imoto I, Ueda M, Nagai H, et al. TFDP1, CUL4A, and CDC16 identified as targets for amplification at 13q34 in hepatocellular carcinomas. Hepatology. 2002;35(6):1476–84.CrossRef Yasui K, Arii S, Zhao C, Imoto I, Ueda M, Nagai H, et al. TFDP1, CUL4A, and CDC16 identified as targets for amplification at 13q34 in hepatocellular carcinomas. Hepatology. 2002;35(6):1476–84.CrossRef
15.
go back to reference Shinomiya T, Mori T, Ariyama Y, Sakabe T, Fukuda Y, Murakami Y, et al. Comparative genomic hybridization of squamous cell carcinoma of the esophagus: the possible involvement of the DP1 gene in the 13q34 amplicon. Genes Chromosom Cancer. 1999;24(4):337–44.CrossRef Shinomiya T, Mori T, Ariyama Y, Sakabe T, Fukuda Y, Murakami Y, et al. Comparative genomic hybridization of squamous cell carcinoma of the esophagus: the possible involvement of the DP1 gene in the 13q34 amplicon. Genes Chromosom Cancer. 1999;24(4):337–44.CrossRef
16.
go back to reference Dohna M, Reincke M, Mincheva A, Allolio B, Toldo SS, Lichter P. Adrenocortical carcinoma is characterized by a high frequency of chromosomal gains and high level amplifications. Genes Chromosom Cancer. 2000;28(2):145–52.CrossRef Dohna M, Reincke M, Mincheva A, Allolio B, Toldo SS, Lichter P. Adrenocortical carcinoma is characterized by a high frequency of chromosomal gains and high level amplifications. Genes Chromosom Cancer. 2000;28(2):145–52.CrossRef
17.
go back to reference Michiels EM, Weiss MM, Hoovers JM, Baak JP, Voute P, Baas F, et al. Genetic alterations in childhood medulloblastoma analyzed by comparative genomic hybridization. J Pediatr Hematol/Oncol. 2002;24(3):205–10.CrossRef Michiels EM, Weiss MM, Hoovers JM, Baak JP, Voute P, Baas F, et al. Genetic alterations in childhood medulloblastoma analyzed by comparative genomic hybridization. J Pediatr Hematol/Oncol. 2002;24(3):205–10.CrossRef
18.
go back to reference Lo Y-H, Ho P-C, Wang S-C. Epidermal growth factor receptor (EGFR) protects proliferating cell nuclear antigen (PCNA) from cullin 4a (CUL4A)-mediated proteolysis. J Biol Chem. 2012;287(32):27148–57.CrossRef Lo Y-H, Ho P-C, Wang S-C. Epidermal growth factor receptor (EGFR) protects proliferating cell nuclear antigen (PCNA) from cullin 4a (CUL4A)-mediated proteolysis. J Biol Chem. 2012;287(32):27148–57.CrossRef
19.
go back to reference Li B, Jia N, Kapur R, Chun KT. Cul4A targets p27 for degradation and regulates proliferation, cell cycle exit, and differentiation during erythropoiesis. Blood. 2006;107(11):4291–9.CrossRef Li B, Jia N, Kapur R, Chun KT. Cul4A targets p27 for degradation and regulates proliferation, cell cycle exit, and differentiation during erythropoiesis. Blood. 2006;107(11):4291–9.CrossRef
20.
go back to reference Abbas T, Sivaprasad U, Terai K, Amador V, Pagano M, Dutta A. PCNA-dependent regulation of p21 ubiquitylation and degradation via the CRL4Cdt2 ubiquitin ligase complex. Genes Dev. 2008;22(18):2496–506.CrossRef Abbas T, Sivaprasad U, Terai K, Amador V, Pagano M, Dutta A. PCNA-dependent regulation of p21 ubiquitylation and degradation via the CRL4Cdt2 ubiquitin ligase complex. Genes Dev. 2008;22(18):2496–506.CrossRef
21.
go back to reference Nag A, Bagchi S, Raychaudhuri P. Cul4A physically associates with MDM2 and participates in the proteolysis of p53. Cancer Res. 2004;64(22):8152–5.CrossRef Nag A, Bagchi S, Raychaudhuri P. Cul4A physically associates with MDM2 and participates in the proteolysis of p53. Cancer Res. 2004;64(22):8152–5.CrossRef
22.
go back to reference Hu J, McCall CM, Ohta T, Xiong Y. Targeted ubiquitination of CDT1 by the DDB1–CUL4A–ROC1 ligase in response to DNA damage. Nat Cell Biol. 2004;6(10):1003.CrossRef Hu J, McCall CM, Ohta T, Xiong Y. Targeted ubiquitination of CDT1 by the DDB1–CUL4A–ROC1 ligase in response to DNA damage. Nat Cell Biol. 2004;6(10):1003.CrossRef
23.
go back to reference Wertz IE, O’rourke KM, Zhang Z, Dornan D, Arnott D, Deshaies RJ, et al. Human de-etiolated-1 regulates c-Jun by assembling a CUL4A ubiquitin ligase. Science. 2004;303(5662):1371–4.CrossRef Wertz IE, O’rourke KM, Zhang Z, Dornan D, Arnott D, Deshaies RJ, et al. Human de-etiolated-1 regulates c-Jun by assembling a CUL4A ubiquitin ligase. Science. 2004;303(5662):1371–4.CrossRef
24.
go back to reference Zhang Y, Morrone G, Zhang J, Chen X, Lu X, Ma L, et al. CUL4A stimulates ubiquitylation and degradation of the HOXA9 homeodomain protein. EMBO J. 2003;22(22):6057–67.CrossRef Zhang Y, Morrone G, Zhang J, Chen X, Lu X, Ma L, et al. CUL4A stimulates ubiquitylation and degradation of the HOXA9 homeodomain protein. EMBO J. 2003;22(22):6057–67.CrossRef
25.
go back to reference Wang H, Zhai L, Xu J, Joo H-Y, Jackson S, Erdjument-Bromage H, et al. Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage. Mol Cell. 2006;22(3):383–94.CrossRef Wang H, Zhai L, Xu J, Joo H-Y, Jackson S, Erdjument-Bromage H, et al. Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage. Mol Cell. 2006;22(3):383–94.CrossRef
26.
go back to reference Zhang Y-W, Otterness DM, Chiang GG, Xie W, Liu Y-C, Mercurio F, et al. Genotoxic stress targets human Chk1 for degradation by the ubiquitin-proteasome pathway. Mol Cell. 2005;19(5):607–18.CrossRef Zhang Y-W, Otterness DM, Chiang GG, Xie W, Liu Y-C, Mercurio F, et al. Genotoxic stress targets human Chk1 for degradation by the ubiquitin-proteasome pathway. Mol Cell. 2005;19(5):607–18.CrossRef
27.
go back to reference Ren S, Xu C, Cui Z, Yu Y, Xu W, Wang F, et al. Oncogenic CUL4A determines the response to thalidomide treatment in prostate cancer. J Mol Med. 2012;90(10):1121–32.CrossRef Ren S, Xu C, Cui Z, Yu Y, Xu W, Wang F, et al. Oncogenic CUL4A determines the response to thalidomide treatment in prostate cancer. J Mol Med. 2012;90(10):1121–32.CrossRef
28.
go back to reference Wang Y, Ma G, Wang Q, Wen M, Xu Y, He X, et al. Involvement of CUL4A in regulation of multidrug resistance to P-gp substrate drugs in breast cancer cells. Molecules. 2013;19(1):159–76.CrossRef Wang Y, Ma G, Wang Q, Wen M, Xu Y, He X, et al. Involvement of CUL4A in regulation of multidrug resistance to P-gp substrate drugs in breast cancer cells. Molecules. 2013;19(1):159–76.CrossRef
29.
go back to reference Barlow CA, Barrett TF, Shukla A, Mossman BT, Lounsbury KM. Asbestos-mediated CREB phosphorylation is regulated by protein kinase A and extracellular signal-regulated kinases 1/2. Am J Physiol-Lung Cell Mol Physiol. 2007;292(6):L1361–9.CrossRef Barlow CA, Barrett TF, Shukla A, Mossman BT, Lounsbury KM. Asbestos-mediated CREB phosphorylation is regulated by protein kinase A and extracellular signal-regulated kinases 1/2. Am J Physiol-Lung Cell Mol Physiol. 2007;292(6):L1361–9.CrossRef
30.
go back to reference Naqvi S, Martin KJ, Arthur JSC. CREB phosphorylation at Ser133 regulates transcription via distinct mechanisms downstream of cAMP and MAPK signalling. Biochem J. 2014;458(3):469–79.CrossRef Naqvi S, Martin KJ, Arthur JSC. CREB phosphorylation at Ser133 regulates transcription via distinct mechanisms downstream of cAMP and MAPK signalling. Biochem J. 2014;458(3):469–79.CrossRef
31.
go back to reference Carlezon WA Jr, Duman RS, Nestler EJ. The many faces of CREB. Trends Neurosci. 2005;28(8):436–45.CrossRef Carlezon WA Jr, Duman RS, Nestler EJ. The many faces of CREB. Trends Neurosci. 2005;28(8):436–45.CrossRef
32.
go back to reference Xiao X, Li BX, Mitton B, Ikeda A, Sakamoto KM. Targeting CREB for cancer therapy: friend or foe. Curr Cancer Drug Targets. 2010;10(4):384–91.CrossRef Xiao X, Li BX, Mitton B, Ikeda A, Sakamoto KM. Targeting CREB for cancer therapy: friend or foe. Curr Cancer Drug Targets. 2010;10(4):384–91.CrossRef
33.
go back to reference Steven A, Seliger B. Control of CREB expression in tumors: from molecular mechanisms and signal transduction pathways to therapeutic target. Oncotarget. 2016;7(23):35454.CrossRef Steven A, Seliger B. Control of CREB expression in tumors: from molecular mechanisms and signal transduction pathways to therapeutic target. Oncotarget. 2016;7(23):35454.CrossRef
34.
go back to reference Shaywitz AJ, Greenberg ME. CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem. 1999;68(1):821–61.CrossRef Shaywitz AJ, Greenberg ME. CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem. 1999;68(1):821–61.CrossRef
35.
go back to reference Radhakrishnan I, Pérez-Alvarado GC, Parker D, Dyson HJ, Montminy MR, Wright PE. Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: a model for activator: coactivator interactions. Cell. 1997;91(6):741–52.CrossRef Radhakrishnan I, Pérez-Alvarado GC, Parker D, Dyson HJ, Montminy MR, Wright PE. Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: a model for activator: coactivator interactions. Cell. 1997;91(6):741–52.CrossRef
36.
go back to reference Thakur JK, Yadav A, Yadav G. Molecular recognition by the KIX domain and its role in gene regulation. Nucleic Acids Res. 2013;42(4):2112–25.CrossRef Thakur JK, Yadav A, Yadav G. Molecular recognition by the KIX domain and its role in gene regulation. Nucleic Acids Res. 2013;42(4):2112–25.CrossRef
37.
go back to reference Wang F, Marshall CB, Ikura M. Transcriptional/epigenetic regulator CBP/p300 in tumorigenesis: structural and functional versatility in target recognition. Cell Mol Life Sci. 2013;70(21):3989–4008.CrossRef Wang F, Marshall CB, Ikura M. Transcriptional/epigenetic regulator CBP/p300 in tumorigenesis: structural and functional versatility in target recognition. Cell Mol Life Sci. 2013;70(21):3989–4008.CrossRef
38.
go back to reference Hagiwara M, Alberts A, Brindle P, Meinkoth J, Feramisco J, Deng T, et al. Transcriptional attenuation following cAMP induction requires PP-1-mediated dephosphorylation of CREB. Cell. 1992;70(1):105–13.CrossRef Hagiwara M, Alberts A, Brindle P, Meinkoth J, Feramisco J, Deng T, et al. Transcriptional attenuation following cAMP induction requires PP-1-mediated dephosphorylation of CREB. Cell. 1992;70(1):105–13.CrossRef
39.
go back to reference Wadzinski B, Wheat W, Jaspers S, Peruski L, Lickteig R, Johnson G, et al. Nuclear protein phosphatase 2A dephosphorylates protein kinase A-phosphorylated CREB and regulates CREB transcriptional stimulation. Mol Cell Biol. 1993;13(5):2822–34.CrossRef Wadzinski B, Wheat W, Jaspers S, Peruski L, Lickteig R, Johnson G, et al. Nuclear protein phosphatase 2A dephosphorylates protein kinase A-phosphorylated CREB and regulates CREB transcriptional stimulation. Mol Cell Biol. 1993;13(5):2822–34.CrossRef
40.
go back to reference Gu T, Zhang Z, Wang J, Guo J, Shen WH, Yin Y. CREB is a novel nuclear target of PTEN phosphatase. Cancer Res. 2011;71(8):2821–5.CrossRef Gu T, Zhang Z, Wang J, Guo J, Shen WH, Yin Y. CREB is a novel nuclear target of PTEN phosphatase. Cancer Res. 2011;71(8):2821–5.CrossRef
41.
go back to reference Sharma P, Nag A. CUL4A ubiquitin ligase: a promising drug target for cancer and other human diseases. Open Biol. 2014;4(2):130217.CrossRef Sharma P, Nag A. CUL4A ubiquitin ligase: a promising drug target for cancer and other human diseases. Open Biol. 2014;4(2):130217.CrossRef
Metadata
Title
A feedback regulation of CREB activation through the CUL4A and ERK signaling
Authors
Cheemala Ashok
Sheikh Owais
Loudu Srijyothi
Murugan Selvam
Saravanaraman Ponne
Sudhakar Baluchamy
Publication date
01-02-2019
Publisher
Springer US
Published in
Medical Oncology / Issue 2/2019
Print ISSN: 1357-0560
Electronic ISSN: 1559-131X
DOI
https://doi.org/10.1007/s12032-018-1240-2

Other articles of this Issue 2/2019

Medical Oncology 2/2019 Go to the issue