Skip to main content
Top
Published in: Neurocritical Care 1/2022

Open Access 23-02-2022 | Subarachnoid Hemorrhage | Original work

Cerebrospinal Fluid and Arterial Acid–Base Equilibrium of Spontaneously Breathing Patients with Aneurismal Subarachnoid Hemorrhage

Authors: Thomas Langer, Francesco Zadek, Marco Carbonara, Alessio Caccioppola, Serena Brusatori, Tommaso Zoerle, Francesco Bottazzini, Chiara Ferraris Fusarini, Adriana di Modugno, Alberto Zanella, Elisa R. Zanier, Roberto Fumagalli, Antonio Pesenti, Nino Stocchetti

Published in: Neurocritical Care | Issue 1/2022

Login to get access

Abstract

Background

Hyperventilation resulting in hypocapnic alkalosis (HA) is frequently encountered in spontaneously breathing patients with acute cerebrovascular conditions. The underlying mechanisms of this respiratory response have not been fully elucidated. The present study describes, applying the physical–chemical approach, the acid-base characteristics of cerebrospinal fluid (CSF) and arterial plasma of spontaneously breathing patients with aneurismal subarachnoid hemorrhage (SAH) and compares these results with those of control patients. Moreover, it investigates the pathophysiologic mechanisms leading to HA in SAH.

Methods

Patients with SAH admitted to the neurological intensive care unit and patients (American Society of Anesthesiologists physical status of 1 and 2) undergoing elective surgery under spinal anesthesia were enrolled. CSF and arterial samples were collected simultaneously. Electrolytes, strong ion difference (SID), partial pressure of carbon dioxide (PCO2), weak noncarbonic acids (ATOT), and pH were measured in CSF and arterial blood samples.

Results

Twenty spontaneously breathing patients with SAH and 25 controls were enrolled. The CSF of patients with SAH, as compared with controls, was characterized by a lower SID (23.1 ± 2.3 vs. 26.5 ± 1.4 mmol/L, p < 0.001) and PCO2 (40 ± 4 vs. 46 ± 3 mm Hg, p < 0.001), whereas no differences in ATOT (1.2 ± 0.5 vs. 1.2 ± 0.2 mmol/L, p = 0.95) and pH (7.34 ± 0.06 vs. 7.35 ± 0.02, p = 0.69) were observed. The reduced CSF SID was mainly caused by a higher lactate concentration (3.3 ± 1.3 vs. 1.4 ± 0.2 mmol/L, p < 0.001). A linear association (r = 0.71, p < 0.001) was found between CSF SID and arterial PCO2. A higher proportion of patients with SAH were characterized by arterial HA, as compared with controls (40 vs. 4%, p = 0.003). A reduced CSF-to-plasma difference in PCO2 was observed in nonhyperventilating patients with SAH (0.4 ± 3.8 vs. 7.8 ± 3.7 mm Hg, p < 0.001).

Conclusions

Patients with SAH have a reduction of CSF SID due to an increased lactate concentration. The resulting localized acidifying effect is compensated by CSF hypocapnia, yielding normal CSF pH values and resulting in a higher incidence of arterial HA.
Appendix
Available only for authorised users
Literature
1.
go back to reference Fencl V, Leith DE. Stewart’s quantitative acid-base chemistry: Applications in biology and medicine. Respir Physiol. 1993;91(1):1–16.PubMedCrossRef Fencl V, Leith DE. Stewart’s quantitative acid-base chemistry: Applications in biology and medicine. Respir Physiol. 1993;91(1):1–16.PubMedCrossRef
2.
go back to reference Sakka L, Coll G, Chazal J. Anatomy and physiology of cerebrospinal fluid [Internet]. Eur Ann Otorhinolaryngol Head Neck Dis. 2011;128(6):309–16.PubMedCrossRef Sakka L, Coll G, Chazal J. Anatomy and physiology of cerebrospinal fluid [Internet]. Eur Ann Otorhinolaryngol Head Neck Dis. 2011;128(6):309–16.PubMedCrossRef
3.
go back to reference Langer T, Zanella A, Caironi P. Understanding the role of the cerebrospinal fluid in acid–base disorders. Intensive Care Med. 2016;42(3):436–9.PubMedCrossRef Langer T, Zanella A, Caironi P. Understanding the role of the cerebrospinal fluid in acid–base disorders. Intensive Care Med. 2016;42(3):436–9.PubMedCrossRef
4.
go back to reference Siesjö BK, Kjällquist Å, Pontén U, Zwetnow N. Extracellular pH in the brain and cerebral blood flow. Prog Brain Res. 1968;30:93–8.PubMedCrossRef Siesjö BK, Kjällquist Å, Pontén U, Zwetnow N. Extracellular pH in the brain and cerebral blood flow. Prog Brain Res. 1968;30:93–8.PubMedCrossRef
5.
go back to reference Fencl V, Miller T, Pappenheimer. Studies on the respiratory response to disturbances of acid-base balance, with deductions concerning the ionic composition of cerebral interstitial fluid. Am J Physiol Content. 1966;210(3):459–72.CrossRef Fencl V, Miller T, Pappenheimer. Studies on the respiratory response to disturbances of acid-base balance, with deductions concerning the ionic composition of cerebral interstitial fluid. Am J Physiol Content. 1966;210(3):459–72.CrossRef
6.
go back to reference Froman C, Smith AC. Hyperventilation associated with low pH of cerebrospinal fluid after intracranial haemorrhage. Lancet. 1966;1(7441):780–2.PubMedCrossRef Froman C, Smith AC. Hyperventilation associated with low pH of cerebrospinal fluid after intracranial haemorrhage. Lancet. 1966;1(7441):780–2.PubMedCrossRef
7.
go back to reference Froman C, Smith AC. Metabolic acidosis of the cerebrospinal fluid associated with subarachnoid haemorrhage. Lancet. 1967;1(7497):965–7.PubMedCrossRef Froman C, Smith AC. Metabolic acidosis of the cerebrospinal fluid associated with subarachnoid haemorrhage. Lancet. 1967;1(7497):965–7.PubMedCrossRef
9.
go back to reference Froman C. Alterations of respiratory function in patients with severe head injuries. Br J Anaesth. 1968;40(5):354–60.PubMedCrossRef Froman C. Alterations of respiratory function in patients with severe head injuries. Br J Anaesth. 1968;40(5):354–60.PubMedCrossRef
10.
go back to reference Plum F, Swanson AG. Central Neurogenic Hyperventilation in Man. Arch Neurol Psychiatry. 1959;81(5):535–49.CrossRef Plum F, Swanson AG. Central Neurogenic Hyperventilation in Man. Arch Neurol Psychiatry. 1959;81(5):535–49.CrossRef
11.
go back to reference Sambrook MA, Hutchinson EC, Aber GM. Metabolic studies in subarachnoid hæmorrhage and strokes. I: Serial changes in acid-base values in blood and cerebrospinal fluid. Brain. 1973;96(1):171–90.PubMedCrossRef Sambrook MA, Hutchinson EC, Aber GM. Metabolic studies in subarachnoid hæmorrhage and strokes. I: Serial changes in acid-base values in blood and cerebrospinal fluid. Brain. 1973;96(1):171–90.PubMedCrossRef
12.
go back to reference Zoerle T, Lombardo A, Colombo A, et al. Intracranial pressure after subarachnoid hemorrhage. Crit Care Med. 2015;43(1):168–76.PubMedCrossRef Zoerle T, Lombardo A, Colombo A, et al. Intracranial pressure after subarachnoid hemorrhage. Crit Care Med. 2015;43(1):168–76.PubMedCrossRef
13.
go back to reference Rosen DS, Macdonald RL. Subarachnoid hemorrhage grading scales: A systematic review. Neurocrit Care. 2005;2(2):110–8.PubMedCrossRef Rosen DS, Macdonald RL. Subarachnoid hemorrhage grading scales: A systematic review. Neurocrit Care. 2005;2(2):110–8.PubMedCrossRef
14.
go back to reference Langer T, Carlesso E, Protti A, et al. In vivo conditioning of acid-base equilibrium by crystalloid solutions: An experimental study on pigs. Intens Care Med. 2012;38(4):686–93.CrossRef Langer T, Carlesso E, Protti A, et al. In vivo conditioning of acid-base equilibrium by crystalloid solutions: An experimental study on pigs. Intens Care Med. 2012;38(4):686–93.CrossRef
15.
go back to reference Langer T, Ferrari M, Zazzeron L, Gattinoni L, Caironi P. Effects of intravenous solutions on acid-base equilibrium: from crystalloids to colloids and blood components. Rev Anaesthesiol Intensive Ther. 2014;46(5):350–60.CrossRef Langer T, Ferrari M, Zazzeron L, Gattinoni L, Caironi P. Effects of intravenous solutions on acid-base equilibrium: from crystalloids to colloids and blood components. Rev Anaesthesiol Intensive Ther. 2014;46(5):350–60.CrossRef
16.
go back to reference Fencl V, Jabor A, Kazda A, Figge J. Diagnosis of metabolic acid-base disturbances in critically III patients. Am J Respir Crit Care Med. 2000;162(6):2246–51.PubMedCrossRef Fencl V, Jabor A, Kazda A, Figge J. Diagnosis of metabolic acid-base disturbances in critically III patients. Am J Respir Crit Care Med. 2000;162(6):2246–51.PubMedCrossRef
17.
go back to reference Mitchell RA, Carman CT, Severinghaus JW, Richardson BW, Singer MM, Shnide S. Stability of cerebrospinal fluid pH in chronic acid-base disturbances in blood. J Appl Physiol. 1965;20(3):443–52.PubMedCrossRef Mitchell RA, Carman CT, Severinghaus JW, Richardson BW, Singer MM, Shnide S. Stability of cerebrospinal fluid pH in chronic acid-base disturbances in blood. J Appl Physiol. 1965;20(3):443–52.PubMedCrossRef
18.
go back to reference Wilson JTL, Pettigrew LEL, Teasdale GM. Structured interviews for the glasgow outcome scale and the extended glasgow outcome scale: Guidelines for their use. J Neurotrauma. 1998;15(8):573–80.PubMedCrossRef Wilson JTL, Pettigrew LEL, Teasdale GM. Structured interviews for the glasgow outcome scale and the extended glasgow outcome scale: Guidelines for their use. J Neurotrauma. 1998;15(8):573–80.PubMedCrossRef
19.
go back to reference Lu J, Marmarou A, Lapane K, Turf E, Wilson L. A method for reducing misclassification in the extended Glasgow Outcome Score. J Neurotrauma. 2010;27(5):843–52.PubMedPubMedCentralCrossRef Lu J, Marmarou A, Lapane K, Turf E, Wilson L. A method for reducing misclassification in the extended Glasgow Outcome Score. J Neurotrauma. 2010;27(5):843–52.PubMedPubMedCentralCrossRef
20.
21.
go back to reference Wijdicks EFM. Recording Neurogenic Breathing Patterns in Acute Brain Injury. Neurocrit Care. 2021;34(2):674–6.PubMedCrossRef Wijdicks EFM. Recording Neurogenic Breathing Patterns in Acute Brain Injury. Neurocrit Care. 2021;34(2):674–6.PubMedCrossRef
22.
go back to reference Leusen IR. Chemosensitivity of the respiratory center. Am J Physiol Content. 1953;176(1):39–44.CrossRef Leusen IR. Chemosensitivity of the respiratory center. Am J Physiol Content. 1953;176(1):39–44.CrossRef
23.
go back to reference Pappenheimer JR, Fencl V, Heisey SR, Held D. Role of cerebral fluids in control of respiration as studied in unanesthetized goats. Am J Physiol Content. 1965;208(3):436–50.CrossRef Pappenheimer JR, Fencl V, Heisey SR, Held D. Role of cerebral fluids in control of respiration as studied in unanesthetized goats. Am J Physiol Content. 1965;208(3):436–50.CrossRef
24.
go back to reference Leusen I. Regulation of cerebrospinal fluid composition with reference to breathing. Physiol Rev. 1972;52(1):1–56.PubMedCrossRef Leusen I. Regulation of cerebrospinal fluid composition with reference to breathing. Physiol Rev. 1972;52(1):1–56.PubMedCrossRef
25.
go back to reference Mascheroni D, Kolobow T, Fumagalli R, Moretti MP, Chen V, Buckhold D. Acute respiratory failure following pharmacologically induced hyperventilation: an experimental animal study. Intens Care Med. 1988;15(1):8–14.CrossRef Mascheroni D, Kolobow T, Fumagalli R, Moretti MP, Chen V, Buckhold D. Acute respiratory failure following pharmacologically induced hyperventilation: an experimental animal study. Intens Care Med. 1988;15(1):8–14.CrossRef
26.
go back to reference Choma L, Kazemi H. Importance of changes in plasma HCO3- on regulation of CSF HCO3- in respiratory alkalosis. Respir Physiol. 1976;26(2):265–78.PubMedCrossRef Choma L, Kazemi H. Importance of changes in plasma HCO3- on regulation of CSF HCO3- in respiratory alkalosis. Respir Physiol. 1976;26(2):265–78.PubMedCrossRef
27.
go back to reference Kazemi H, Johnson DC. Regulation of cerebrospinal fluid acid-base balance. Physiol Rev. 1986;66(4):953–1037.PubMedCrossRef Kazemi H, Johnson DC. Regulation of cerebrospinal fluid acid-base balance. Physiol Rev. 1986;66(4):953–1037.PubMedCrossRef
28.
go back to reference Kazemi H. Regulation of CSF composition- blocking chloride-bicarbonate exchange. 2018; Kazemi H. Regulation of CSF composition- blocking chloride-bicarbonate exchange. 2018;
29.
go back to reference Rossanda M, Sganzerla EP. Acid-base and gas tension measurements in cerebrospinal fluid. Br J Anaesth. 1976;48(8):753–60.PubMedCrossRef Rossanda M, Sganzerla EP. Acid-base and gas tension measurements in cerebrospinal fluid. Br J Anaesth. 1976;48(8):753–60.PubMedCrossRef
30.
go back to reference Yatsu FM, Lee LW, Liao CL. Energy metabolism during brain ischemia: stability during reversible and irreversible damage. Stroke. 1975;6(6):678–83.PubMedCrossRef Yatsu FM, Lee LW, Liao CL. Energy metabolism during brain ischemia: stability during reversible and irreversible damage. Stroke. 1975;6(6):678–83.PubMedCrossRef
31.
go back to reference Mendelow AD, McCalden TA, Hattingh J, Coull A, Rosendorff C, Eldelman BH. Cerebrovascular reactivity and metabolism after subarachnoid hemorrhage in Baboons. Stroke. 1981;12(1):58–65.PubMedCrossRef Mendelow AD, McCalden TA, Hattingh J, Coull A, Rosendorff C, Eldelman BH. Cerebrovascular reactivity and metabolism after subarachnoid hemorrhage in Baboons. Stroke. 1981;12(1):58–65.PubMedCrossRef
32.
33.
go back to reference Fujishima M, Sugi T. Cerebrospinal fluid and arterial lactate, pyruvate and acid-base balance in patients with intracranial hemorrhages. Stroke. 1975;6(6):707–14.PubMedCrossRef Fujishima M, Sugi T. Cerebrospinal fluid and arterial lactate, pyruvate and acid-base balance in patients with intracranial hemorrhages. Stroke. 1975;6(6):707–14.PubMedCrossRef
34.
go back to reference Maas AI, Stocchetti N, Bullock R. Moderate and severe traumatic brain injury in adults. Lancet Neurol. 2008;7(8):728–41.PubMedCrossRef Maas AI, Stocchetti N, Bullock R. Moderate and severe traumatic brain injury in adults. Lancet Neurol. 2008;7(8):728–41.PubMedCrossRef
35.
go back to reference Langer T, Brusatori S, Carlesso E, et al. Low noncarbonic buffer power amplifies acute respiratory acid-base disorders in patients with sepsis: an in vitro study. J Appl Physiol. 2021;131(2):464–73.PubMedCrossRef Langer T, Brusatori S, Carlesso E, et al. Low noncarbonic buffer power amplifies acute respiratory acid-base disorders in patients with sepsis: an in vitro study. J Appl Physiol. 2021;131(2):464–73.PubMedCrossRef
36.
go back to reference The SAFE Study Investigators. Saline or albumin for fluid resuscitation in patients with traumatic brain injury. N Engl J Med. 2007;357(9):874–84.CrossRef The SAFE Study Investigators. Saline or albumin for fluid resuscitation in patients with traumatic brain injury. N Engl J Med. 2007;357(9):874–84.CrossRef
37.
go back to reference Suarez JI, Martin RH, Calvillo E, et al. The albumin in subarachnoid hemorrhage (ALISAH) multicenter pilot clinical trial. Stroke. 2012;43(3):683–90.PubMedPubMedCentralCrossRef Suarez JI, Martin RH, Calvillo E, et al. The albumin in subarachnoid hemorrhage (ALISAH) multicenter pilot clinical trial. Stroke. 2012;43(3):683–90.PubMedPubMedCentralCrossRef
38.
go back to reference Krapf R, Beeler I, Hertner D, Hulter HN. Chronic respiratory alkalosis. N Engl J Med. 1991;324(20):1394–401.PubMedCrossRef Krapf R, Beeler I, Hertner D, Hulter HN. Chronic respiratory alkalosis. N Engl J Med. 1991;324(20):1394–401.PubMedCrossRef
39.
go back to reference Carpenter DA, Grubb RL, Tempel LW, Powers WJ. Cerebral oxygen metabolism after aneurysmal subarachnoid hemorrhage. J Cereb Blood Flow Metab. 1991;11(5):837–44.PubMedCrossRef Carpenter DA, Grubb RL, Tempel LW, Powers WJ. Cerebral oxygen metabolism after aneurysmal subarachnoid hemorrhage. J Cereb Blood Flow Metab. 1991;11(5):837–44.PubMedCrossRef
40.
go back to reference Solaiman O, Singh JM. Hypocapnia in aneurysmal subarachnoid hemorrhage: Incidence and association with poor clinical outcomes. J Neurosurg Anesthesiol. 2013;25(3):254–61.PubMedCrossRef Solaiman O, Singh JM. Hypocapnia in aneurysmal subarachnoid hemorrhage: Incidence and association with poor clinical outcomes. J Neurosurg Anesthesiol. 2013;25(3):254–61.PubMedCrossRef
41.
go back to reference van Heijst ANP, Maas AHJ, Visser BF. Comparison of the acid-base balance in cisternal and lumbar cerebrospinal fluid. Pflugers Arch Gesamte Physiol Menschen Tiere. 1966;287(3):242–6.PubMedCrossRef van Heijst ANP, Maas AHJ, Visser BF. Comparison of the acid-base balance in cisternal and lumbar cerebrospinal fluid. Pflugers Arch Gesamte Physiol Menschen Tiere. 1966;287(3):242–6.PubMedCrossRef
42.
go back to reference Shimoda M, Yamada S, Yamamoto I, Tsugane R, Sato O. Time course of csf lactate level in subarachnoid haemorrhage correlation with clinical grading and prognosis. Acta Neurochir (Wien) 1989; Shimoda M, Yamada S, Yamamoto I, Tsugane R, Sato O. Time course of csf lactate level in subarachnoid haemorrhage correlation with clinical grading and prognosis. Acta Neurochir (Wien) 1989;
43.
go back to reference Plum F, Price RW. Acid-Base Balance of Cisternal and Lumbar Cerebrospinal Fluid in Hospital Patients. N Engl J Med. 1973;289(25):1346–51.PubMedCrossRef Plum F, Price RW. Acid-Base Balance of Cisternal and Lumbar Cerebrospinal Fluid in Hospital Patients. N Engl J Med. 1973;289(25):1346–51.PubMedCrossRef
44.
go back to reference Mitchell RA, Loeschcke HH, Massion WH, Severinghaus JW. Respiratory responses mediated through superficial chemosensitive areas on the medulla. J Appl Physiol. 1963;18(3):523–33.PubMedCrossRef Mitchell RA, Loeschcke HH, Massion WH, Severinghaus JW. Respiratory responses mediated through superficial chemosensitive areas on the medulla. J Appl Physiol. 1963;18(3):523–33.PubMedCrossRef
45.
go back to reference Kiley JP, Eldridge FL, Millhorn DE. The roles of medullary extracellular and cerebrospinal fluid pH in control of respiration. Respir Physiol. 1985;59(2):117–30.PubMedCrossRef Kiley JP, Eldridge FL, Millhorn DE. The roles of medullary extracellular and cerebrospinal fluid pH in control of respiration. Respir Physiol. 1985;59(2):117–30.PubMedCrossRef
47.
go back to reference Monroe CB, Kazemi H. Effect of changes in plasma bicarbonate level on CSF bicarbonate in respiratory acidosis. Respir Physiol. 1973;17(3):386–93.PubMedCrossRef Monroe CB, Kazemi H. Effect of changes in plasma bicarbonate level on CSF bicarbonate in respiratory acidosis. Respir Physiol. 1973;17(3):386–93.PubMedCrossRef
49.
go back to reference Kilic O, Gultekin Y, Yazici S. The impact of intravenous fluid therapy on acidbase status of critically ill adults: A stewart approach-based perspective. Int J Nephrol Renovasc Dis. 2020;13:219–30.PubMedPubMedCentralCrossRef Kilic O, Gultekin Y, Yazici S. The impact of intravenous fluid therapy on acidbase status of critically ill adults: A stewart approach-based perspective. Int J Nephrol Renovasc Dis. 2020;13:219–30.PubMedPubMedCentralCrossRef
50.
go back to reference Rundgren M, Jonasson H, Hjelmqvist H. Water intake and changes in plasma and CSF composition in response to acute administration of hypertonic NaCl and water deprivation in sheep. Acta Physiol Scand. 1990;138(1):85–92.PubMedCrossRef Rundgren M, Jonasson H, Hjelmqvist H. Water intake and changes in plasma and CSF composition in response to acute administration of hypertonic NaCl and water deprivation in sheep. Acta Physiol Scand. 1990;138(1):85–92.PubMedCrossRef
51.
go back to reference Langer T, Santini A, Scotti E, Van Regenmortel N, Malbrain MLNG, Caironi P. Intravenous balanced solutions: From physiology to clinical evidence. Anaesthesiol Intensive Ther. 2015;47(1):s78-88.PubMedCrossRef Langer T, Santini A, Scotti E, Van Regenmortel N, Malbrain MLNG, Caironi P. Intravenous balanced solutions: From physiology to clinical evidence. Anaesthesiol Intensive Ther. 2015;47(1):s78-88.PubMedCrossRef
Metadata
Title
Cerebrospinal Fluid and Arterial Acid–Base Equilibrium of Spontaneously Breathing Patients with Aneurismal Subarachnoid Hemorrhage
Authors
Thomas Langer
Francesco Zadek
Marco Carbonara
Alessio Caccioppola
Serena Brusatori
Tommaso Zoerle
Francesco Bottazzini
Chiara Ferraris Fusarini
Adriana di Modugno
Alberto Zanella
Elisa R. Zanier
Roberto Fumagalli
Antonio Pesenti
Nino Stocchetti
Publication date
23-02-2022
Publisher
Springer US
Published in
Neurocritical Care / Issue 1/2022
Print ISSN: 1541-6933
Electronic ISSN: 1556-0961
DOI
https://doi.org/10.1007/s12028-022-01450-1

Other articles of this Issue 1/2022

Neurocritical Care 1/2022 Go to the issue