Skip to main content
Top
Published in: Neurocritical Care 2/2017

01-04-2017 | Original Article

Risk of Hyponatremia in Patients with Aneurysmal Subarachnoid Hemorrhage Treated with Exogenous Vasopressin Infusion

Authors: Nancy Marr, Jessica Yu, Demetrios J. Kutsogiannis, Sherif Hanafy Mahmoud

Published in: Neurocritical Care | Issue 2/2017

Login to get access

Abstract

Background

Vasopressin is one of the vasopressors used to augment blood pressure in subarachnoid hemorrhage (SAH) patients with clinically significant vasospasm. The purpose of the present study was to determine whether the administration of vasopressin to a population of SAH patients was an independent predictor of developing hyponatremia.

Methods

A retrospective review on the health records of 106 patients admitted to the University of Alberta Hospital Neurosciences ICU, Edmonton AB, Canada, with SAH from June 2013 to December 2015 was conducted. Serum sodium changes in patients receiving vasoactive drugs were compared. In addition, independent predictors for hyponatremia (Na < 135 mmol/L) were determined using a multivariate logistic regression model.

Results

Patients treated with vasopressin in addition to other vasoactive drugs had significantly higher sodium changes compared to those treated with other vasoactive drugs (−4.7 ± 6 vs −0.1 ± 2.4 mmol/L, respectively, p value 0.001). Hyponatremia occurred in 14 patients (70 %) treated with vasopressin, 10 patients (44 %) treated with vasoactive drugs other than vasopressin (p value 0.081), and 24 patients (38 %) who did not receive any vasoactive drug (p value 0.013). In multivariate logistic regression analysis, when adjusting for disease severity, age, sex, aneurysm location, and treatment, vasopressin was associated with hyponatremia (OR 3.58, 95 % CI, 1.02–12.5, p value 0.046).

Conclusions

The results of the present study suggest that hyponatremia may be more common in SAH patients treated with exogenous vasopressin compared to those who did not receive it. Serum sodium should be monitored closely when vasopressin is being used in the SAH population. Further studies are needed to confirm the effect of exogenous vasopressin on serum sodium levels in SAH populations.
Literature
1.
go back to reference Connolly ES Jr, Rabinstein AA, Carhuapoma JR, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American heart association/American stroke association. Stroke. 2012;43:1711–37.CrossRefPubMed Connolly ES Jr, Rabinstein AA, Carhuapoma JR, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American heart association/American stroke association. Stroke. 2012;43:1711–37.CrossRefPubMed
2.
go back to reference Diringer MN, Bleck TP, Claude Hemphill J 3rd, et al. Critical care management of patients following aneurysmal subarachnoid hemorrhage: recommendations from the neurocritical care society’s multidisciplinary consensus conference. Neurocrit Care. 2011;15:211–40.CrossRefPubMed Diringer MN, Bleck TP, Claude Hemphill J 3rd, et al. Critical care management of patients following aneurysmal subarachnoid hemorrhage: recommendations from the neurocritical care society’s multidisciplinary consensus conference. Neurocrit Care. 2011;15:211–40.CrossRefPubMed
3.
go back to reference Suarez JI, Tarr RW, Selman WR. Aneurysmal subarachnoid hemorrhage. N Engl J Med. 2006;354:387–96.CrossRefPubMed Suarez JI, Tarr RW, Selman WR. Aneurysmal subarachnoid hemorrhage. N Engl J Med. 2006;354:387–96.CrossRefPubMed
4.
go back to reference Muehlschlegel S, Dunser MW, Gabrielli A, Wenzel V, Layon AJ. Arginine vasopressin as a supplementary vasopressor in refractory hypertensive, hypervolemic, hemodilutional therapy in subarachnoid hemorrhage. Neurocrit Care. 2007;6:3–10.CrossRefPubMed Muehlschlegel S, Dunser MW, Gabrielli A, Wenzel V, Layon AJ. Arginine vasopressin as a supplementary vasopressor in refractory hypertensive, hypervolemic, hemodilutional therapy in subarachnoid hemorrhage. Neurocrit Care. 2007;6:3–10.CrossRefPubMed
5.
go back to reference Rang HP, Ritter JM, Flower RJ, Henderson G. The pituitary and the adrenal cortex. In: Rang and Dale's pharmacology. 8th ed. Edinburgh; New York: Elsevier/Churchill Livingstone; 2015. p. 402–417. Rang HP, Ritter JM, Flower RJ, Henderson G. The pituitary and the adrenal cortex. In: Rang and Dale's pharmacology. 8th ed. Edinburgh; New York: Elsevier/Churchill Livingstone; 2015. p. 402–417.
6.
go back to reference Russell JA, Walley KR, Singer J, et al. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med. 2008;358:877–87.CrossRefPubMed Russell JA, Walley KR, Singer J, et al. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med. 2008;358:877–87.CrossRefPubMed
7.
go back to reference Salazar M, Hu BB, Vazquez J, Wintz RL, Varon J. Exogenous vasopressin-induced hyponatremia in patients with vasodilatory shock: two case reports and literature review. J Intensive Care Med. 2015;30:253–8.CrossRefPubMed Salazar M, Hu BB, Vazquez J, Wintz RL, Varon J. Exogenous vasopressin-induced hyponatremia in patients with vasodilatory shock: two case reports and literature review. J Intensive Care Med. 2015;30:253–8.CrossRefPubMed
8.
go back to reference Mapa B, Taylor BE, Appelboom G, Bruce EM, Claassen J, Connolly ES. Impact of hyponatremia on morbidity, mortality, and complications after aneurysmal subarachnoid hemorrhage: a systematic review. World Neurosurg. 2016;85:305–14.CrossRefPubMed Mapa B, Taylor BE, Appelboom G, Bruce EM, Claassen J, Connolly ES. Impact of hyponatremia on morbidity, mortality, and complications after aneurysmal subarachnoid hemorrhage: a systematic review. World Neurosurg. 2016;85:305–14.CrossRefPubMed
9.
go back to reference Wijdicks EFM, Vermeulen M, Hijdra A, Van Gijn J. Hyponatremia and cerebral infarction in patients with ruptured intracranial aneurysms: is fluid restriction harmful? Ann Neurol. 1985;17:137–40.CrossRefPubMed Wijdicks EFM, Vermeulen M, Hijdra A, Van Gijn J. Hyponatremia and cerebral infarction in patients with ruptured intracranial aneurysms: is fluid restriction harmful? Ann Neurol. 1985;17:137–40.CrossRefPubMed
10.
go back to reference Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42:377–81.CrossRefPubMed Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42:377–81.CrossRefPubMed
11.
go back to reference Obeid JS, McGraw CA, Minor BL, et al. Procurement of shared data instruments for research electronic data capture (REDCap). J Biomed Inform. 2013;46:259–65.CrossRefPubMed Obeid JS, McGraw CA, Minor BL, et al. Procurement of shared data instruments for research electronic data capture (REDCap). J Biomed Inform. 2013;46:259–65.CrossRefPubMed
12.
go back to reference Obritsch MD, Jung R, Fish DN, MacLaren R. Effects of continuous vasopressin infusion in patients with septic shock. Ann Pharmacother. 2004;38:1117–22.CrossRefPubMed Obritsch MD, Jung R, Fish DN, MacLaren R. Effects of continuous vasopressin infusion in patients with septic shock. Ann Pharmacother. 2004;38:1117–22.CrossRefPubMed
13.
go back to reference Grinevich V, Knepper MA, Verbalis J, Reyes I, Aguilera G. Acute endotoxemia in rats induces down-regulation of V2 vasopressin receptors and aquaporin-2 content in the kidney medulla. Kidney Int. 2004;65:54–62.CrossRefPubMed Grinevich V, Knepper MA, Verbalis J, Reyes I, Aguilera G. Acute endotoxemia in rats induces down-regulation of V2 vasopressin receptors and aquaporin-2 content in the kidney medulla. Kidney Int. 2004;65:54–62.CrossRefPubMed
14.
go back to reference Sharshar T, Blanchard A, Paillard M, Raphael JC, Gajdos P, Annane D. Circulating vasopressin levels in septic shock. Crit Care Med. 2003;31:1752–8.CrossRefPubMed Sharshar T, Blanchard A, Paillard M, Raphael JC, Gajdos P, Annane D. Circulating vasopressin levels in septic shock. Crit Care Med. 2003;31:1752–8.CrossRefPubMed
15.
16.
go back to reference Liu ZW, Gu H, Zhang BF, et al. Rapidly increased vasopressin promotes acute platelet aggregation and early brain injury after experimental subarachnoid hemorrhage in a rat model. Brain Res. 2016;1639:108–19.CrossRefPubMed Liu ZW, Gu H, Zhang BF, et al. Rapidly increased vasopressin promotes acute platelet aggregation and early brain injury after experimental subarachnoid hemorrhage in a rat model. Brain Res. 2016;1639:108–19.CrossRefPubMed
17.
go back to reference Diringer MN, Wu KC, Verbalis JG, Hanley DF. Hypervolemic therapy prevents volume contraction but not hyponatremia following subarachnoid hemorrhage. Ann Neurol. 1992;31:543–50.CrossRefPubMed Diringer MN, Wu KC, Verbalis JG, Hanley DF. Hypervolemic therapy prevents volume contraction but not hyponatremia following subarachnoid hemorrhage. Ann Neurol. 1992;31:543–50.CrossRefPubMed
18.
go back to reference Hannon MJ, Behan LA, O’Brien MM, et al. Hyponatremia following mild/moderate subarachnoid hemorrhage is due to SIAD and glucocorticoid deficiency and not cerebral salt wasting. J Clin Endocrinol Metab. 2014;99:291–8.CrossRefPubMed Hannon MJ, Behan LA, O’Brien MM, et al. Hyponatremia following mild/moderate subarachnoid hemorrhage is due to SIAD and glucocorticoid deficiency and not cerebral salt wasting. J Clin Endocrinol Metab. 2014;99:291–8.CrossRefPubMed
19.
go back to reference Wijdicks EF, Vermeulen M, ten Haaf JA, Hijdra A, Bakker WH, van Gijn J. Volume depletion and natriuresis in patients with a ruptured intracranial aneurysm. Ann Neurol. 1985;18:211–6.CrossRefPubMed Wijdicks EF, Vermeulen M, ten Haaf JA, Hijdra A, Bakker WH, van Gijn J. Volume depletion and natriuresis in patients with a ruptured intracranial aneurysm. Ann Neurol. 1985;18:211–6.CrossRefPubMed
20.
go back to reference Sayama T, Inamura T, Matsushima T, Inoha S, Inoue T, Fukui M. High incidence of hyponatremia in patients with ruptured anterior communicating artery aneurysms. Neurol Res. 2000;22:151–5.CrossRefPubMed Sayama T, Inamura T, Matsushima T, Inoha S, Inoue T, Fukui M. High incidence of hyponatremia in patients with ruptured anterior communicating artery aneurysms. Neurol Res. 2000;22:151–5.CrossRefPubMed
21.
go back to reference Saramma P, Menon RG, Srivastava A, Sarma PS. Hyponatremia after aneurysmal subarachnoid hemorrhage: implications and outcomes. J Neurosci Rural Pract. 2013;4:24–8.CrossRefPubMedPubMedCentral Saramma P, Menon RG, Srivastava A, Sarma PS. Hyponatremia after aneurysmal subarachnoid hemorrhage: implications and outcomes. J Neurosci Rural Pract. 2013;4:24–8.CrossRefPubMedPubMedCentral
Metadata
Title
Risk of Hyponatremia in Patients with Aneurysmal Subarachnoid Hemorrhage Treated with Exogenous Vasopressin Infusion
Authors
Nancy Marr
Jessica Yu
Demetrios J. Kutsogiannis
Sherif Hanafy Mahmoud
Publication date
01-04-2017
Publisher
Springer US
Published in
Neurocritical Care / Issue 2/2017
Print ISSN: 1541-6933
Electronic ISSN: 1556-0961
DOI
https://doi.org/10.1007/s12028-016-0300-8

Other articles of this Issue 2/2017

Neurocritical Care 2/2017 Go to the issue