Skip to main content
Top
Published in: Immunologic Research 5-6/2016

01-12-2016 | Review

Inflammasomes and its importance in viral infections

Authors: Gaurav Shrivastava, Moisés León-Juárez, Julio García-Cordero, David Eduardo Meza-Sánchez, Leticia Cedillo-Barrón

Published in: Immunologic Research | Issue 5-6/2016

Login to get access

Abstract

A complex interplay between pathogen and host determines the immune response during viral infection. A set of cytosolic sensors are expressed by immune cells to detect viral infection. NOD-like receptors (NLRs) comprise a large family of intracellular pattern recognition receptors. Members of the NLR family assemble into large multiprotein complexes, termed inflammasomes, which induce downstream immune responses to specific pathogens, environmental stimuli, and host cell damage. Inflammasomes are composed of cytoplasmic sensor molecules such as NLRP3 or absent in melanoma 2 (AIM2), the adaptor protein ASC (apoptosis-associated speck-like protein containing caspase recruitment domain), and the effector protein procaspase-1. The inflammasome operates as a platform for caspase-1 activation, resulting in caspase-1-dependent proteolytic maturation and secretion of interleukin (IL)-1β and IL-18. This, in turn, activates the expression of other immune genes and facilitates lymphocyte recruitment to the site of primary infection, thereby controlling invading pathogens. Moreover, inflammasomes counter viral replication and remove infected immune cells through an inflammatory cell death, program termed as pyroptosis. As a countermeasure, viral pathogens have evolved virulence factors to antagonise inflammasome pathways. In this review, we discuss the role of inflammasomes in sensing viral infection as well as the evasion strategies that viruses have developed to evade inflammasome-dependent immune responses. This information summarises our understanding of host defence mechanisms against viruses and highlights research areas that can provide new approaches to interfere in the pathogenesis of viral diseases.
Literature
1.
go back to reference Medzhitov R, Janeway CA Jr. Innate immunity: impact on the adaptive immune response. Curr Opin Immunol. 1997;9(1):4–9.PubMedCrossRef Medzhitov R, Janeway CA Jr. Innate immunity: impact on the adaptive immune response. Curr Opin Immunol. 1997;9(1):4–9.PubMedCrossRef
10.
17.
go back to reference Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10(2):417–26.PubMedCrossRef Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10(2):417–26.PubMedCrossRef
30.
go back to reference Gross O, Thomas CJ, Guarda G, Tschopp J. The inflammasome: an integrated view. Immunol Rev. 2011;243(1):136–51.PubMedCrossRef Gross O, Thomas CJ, Guarda G, Tschopp J. The inflammasome: an integrated view. Immunol Rev. 2011;243(1):136–51.PubMedCrossRef
35.
go back to reference Cruz CM, Rinna A, Forman HJ, Ventura AL, Persechini PM, Ojcius DM. ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J Biol Chem. 2007;282(5):2871–9. doi:10.1074/jbc.M608083200.PubMedCrossRef Cruz CM, Rinna A, Forman HJ, Ventura AL, Persechini PM, Ojcius DM. ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J Biol Chem. 2007;282(5):2871–9. doi:10.​1074/​jbc.​M608083200.PubMedCrossRef
40.
go back to reference Triantafilou K, Hughes TR, Triantafilou M, Morgan BP. The complement membrane attack complex triggers intracellular Ca2+ fluxes leading to NLRP3 inflammasome activation. J Cell Sci. 2013;126(Pt 13):2903–13. doi:10.1242/jcs.124388.PubMedCrossRef Triantafilou K, Hughes TR, Triantafilou M, Morgan BP. The complement membrane attack complex triggers intracellular Ca2+ fluxes leading to NLRP3 inflammasome activation. J Cell Sci. 2013;126(Pt 13):2903–13. doi:10.​1242/​jcs.​124388.PubMedCrossRef
41.
go back to reference Rossol M, Pierer M, Raulien N, et al. Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors. Nat Commun. 2012;3:1329.PubMedPubMedCentralCrossRef Rossol M, Pierer M, Raulien N, et al. Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors. Nat Commun. 2012;3:1329.PubMedPubMedCentralCrossRef
45.
go back to reference Kanneganti TD, Body-Malapel M, Amer A, et al. Critical role for cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA. J Biol Chem. 2006;281(48):36560–8. doi:10.1074/jbc.M607594200.PubMedCrossRef Kanneganti TD, Body-Malapel M, Amer A, et al. Critical role for cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA. J Biol Chem. 2006;281(48):36560–8. doi:10.​1074/​jbc.​M607594200.PubMedCrossRef
59.
go back to reference McAuley JL, Tate MD, MacKenzie-Kludas CJ, et al. Activation of the NLRP3 inflammasome by IAV virulence protein PB1-F2 contributes to severe pathophysiology and disease. PLoS Pathog. 2013;. doi:10.1371/journal.ppat.1003392. McAuley JL, Tate MD, MacKenzie-Kludas CJ, et al. Activation of the NLRP3 inflammasome by IAV virulence protein PB1-F2 contributes to severe pathophysiology and disease. PLoS Pathog. 2013;. doi:10.​1371/​journal.​ppat.​1003392.
60.
61.
go back to reference Pontillo A, Silva LT, Oshiro TM, Finazzo C, Crovella S, Duarte AJS. HIV-1 induces NALP3-inflammasome expression and interleukin-1β secretion in dendritic cells from healthy individuals but not from HIV-positive patients. AIDS. 2012;26(1):11–8. doi:10.1097/QAD.0b013e32834d697f.PubMedCrossRef Pontillo A, Silva LT, Oshiro TM, Finazzo C, Crovella S, Duarte AJS. HIV-1 induces NALP3-inflammasome expression and interleukin-1β secretion in dendritic cells from healthy individuals but not from HIV-positive patients. AIDS. 2012;26(1):11–8. doi:10.​1097/​QAD.​0b013e32834d697f​.PubMedCrossRef
63.
69.
76.
go back to reference Burckstummer T, Baumann C, Bluml S, et al. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol. 2009;10(3):266–72. doi:10.1038/ni.1702.PubMedCrossRef Burckstummer T, Baumann C, Bluml S, et al. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol. 2009;10(3):266–72. doi:10.​1038/​ni.​1702.PubMedCrossRef
80.
82.
go back to reference Yoneyama M, Kikuchi M, Natsukawa T, et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol. 2004;5(7):730–7. doi:10.1038/ni1087.PubMedCrossRef Yoneyama M, Kikuchi M, Natsukawa T, et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol. 2004;5(7):730–7. doi:10.​1038/​ni1087.PubMedCrossRef
86.
go back to reference Liu P, Jamaluddin M, Li K, Garofalo RP, Casola A, Brasier AR. Retinoic acid-inducible gene I mediates early antiviral response and Toll-like receptor 3 expression in respiratory syncytial virus-infected airway epithelial cells. J Virol. 2007;81(3):1401–11. doi:10.1128/JVI.01740-06.PubMedCrossRef Liu P, Jamaluddin M, Li K, Garofalo RP, Casola A, Brasier AR. Retinoic acid-inducible gene I mediates early antiviral response and Toll-like receptor 3 expression in respiratory syncytial virus-infected airway epithelial cells. J Virol. 2007;81(3):1401–11. doi:10.​1128/​JVI.​01740-06.PubMedCrossRef
92.
go back to reference Fredericksen BL, Keller BC, Fornek J, Katze MG, Gale M. Establishment and maintenance of the innate antiviral response to West Nile Virus involves both RIG-I and MDA5 signaling through IPS-1. J Virol. 2008;82(2):609–16. doi:10.1128/JVI.01305-07.PubMedCrossRef Fredericksen BL, Keller BC, Fornek J, Katze MG, Gale M. Establishment and maintenance of the innate antiviral response to West Nile Virus involves both RIG-I and MDA5 signaling through IPS-1. J Virol. 2008;82(2):609–16. doi:10.​1128/​JVI.​01305-07.PubMedCrossRef
95.
go back to reference Poeck H, Bscheider M, Gross O, et al. Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1 beta production. Nat Immunol. 2010;11(1):63–9. doi:10.1038/ni.1824.PubMedCrossRef Poeck H, Bscheider M, Gross O, et al. Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1 beta production. Nat Immunol. 2010;11(1):63–9. doi:10.​1038/​ni.​1824.PubMedCrossRef
98.
102.
go back to reference Moore CB, Bergstralh DT, Duncan JA, et al. NLRX1 is a regulator of mitochondrial antiviral immunity. Nature. 2008;451(7178):573–7.PubMedCrossRef Moore CB, Bergstralh DT, Duncan JA, et al. NLRX1 is a regulator of mitochondrial antiviral immunity. Nature. 2008;451(7178):573–7.PubMedCrossRef
104.
go back to reference Arnoult D, Soares F, Tattoli I, Castanier C, Philpott DJ, Girardin SE. An N-terminal addressing sequence targets NLRX1 to the mitochondrial matrix. J Cell Sci. 2009;122(Pt 17):3161–8.PubMedPubMedCentralCrossRef Arnoult D, Soares F, Tattoli I, Castanier C, Philpott DJ, Girardin SE. An N-terminal addressing sequence targets NLRX1 to the mitochondrial matrix. J Cell Sci. 2009;122(Pt 17):3161–8.PubMedPubMedCentralCrossRef
105.
go back to reference Lei Y, Wen H, Yu Y, et al. The mitochondrial proteins NLRX1 and TUFM form a complex that regulates type I interferon and autophagy. Immunity. 2012;36(6):933–46.PubMedPubMedCentralCrossRef Lei Y, Wen H, Yu Y, et al. The mitochondrial proteins NLRX1 and TUFM form a complex that regulates type I interferon and autophagy. Immunity. 2012;36(6):933–46.PubMedPubMedCentralCrossRef
106.
107.
109.
go back to reference Guo H, König R, Deng M, et al. NLRX1 sequesters STING to negatively regulate the interferon response, thereby facilitating the replication of HIV-1 and DNA viruses. Cell Host Microbe. 2016;19(4):515–28.PubMedCrossRef Guo H, König R, Deng M, et al. NLRX1 sequesters STING to negatively regulate the interferon response, thereby facilitating the replication of HIV-1 and DNA viruses. Cell Host Microbe. 2016;19(4):515–28.PubMedCrossRef
111.
go back to reference Fink SL, Cookson BT. Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell Microbiol. 2006;8(11):1812–25.PubMedCrossRef Fink SL, Cookson BT. Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell Microbiol. 2006;8(11):1812–25.PubMedCrossRef
115.
go back to reference de Gassart A, Martinon F. Pyroptosis: caspase-11 unlocks the gates of death. Immunity. 2015;43(5):835–7.PubMedCrossRef de Gassart A, Martinon F. Pyroptosis: caspase-11 unlocks the gates of death. Immunity. 2015;43(5):835–7.PubMedCrossRef
116.
124.
go back to reference Zamoshnikova A, Groß CJ, Schuster S, et al. NLRP12 is a neutrophil-specific, negative regulator of in vitro cell migration but does not modulate LPS- or infection-induced NF-κB or ERK signalling. Immunobiology. 2016;221(2):341–6. doi:10.1016/j.imbio.2015.10.001. Zamoshnikova A, Groß CJ, Schuster S, et al. NLRP12 is a neutrophil-specific, negative regulator of in vitro cell migration but does not modulate LPS- or infection-induced NF-κB or ERK signalling. Immunobiology. 2016;221(2):341–6. doi:10.​1016/​j.​imbio.​2015.​10.​001.
129.
go back to reference Yang Q, Fu S, Wang J. Hepatitis C virus infection decreases the expression of Toll-like receptors 3 and 7 via upregulation of miR-758. Arch Virol. 2014. doi:10.1007/s00705-014-2167-3. Yang Q, Fu S, Wang J. Hepatitis C virus infection decreases the expression of Toll-like receptors 3 and 7 via upregulation of miR-758. Arch Virol. 2014. doi:10.​1007/​s00705-014-2167-3.
146.
go back to reference Kettle S, Alcamí A, Khanna A, Ehret R, Jassoy C, Smith GL. Vaccinia virus serpin B13R (SPI-2) inhibits interleukin-1beta-converting enzyme and protects virus-infected cells from TNF- and Fas-mediated apoptosis, but does not prevent IL-1beta-induced fever. J Gen Virol. 1997;78(Pt 3):677–85.PubMedCrossRef Kettle S, Alcamí A, Khanna A, Ehret R, Jassoy C, Smith GL. Vaccinia virus serpin B13R (SPI-2) inhibits interleukin-1beta-converting enzyme and protects virus-infected cells from TNF- and Fas-mediated apoptosis, but does not prevent IL-1beta-induced fever. J Gen Virol. 1997;78(Pt 3):677–85.PubMedCrossRef
147.
go back to reference Stasakova J. Influenza A mutant viruses with altered NS1 protein function provoke caspase-1 activation in primary human macrophages, resulting in fast apoptosis and release of high levels of interleukins 1 and 18. J Gen Virol. 2005;86(1):185–95. doi:10.1099/vir.0.80422-0.PubMedCrossRef Stasakova J. Influenza A mutant viruses with altered NS1 protein function provoke caspase-1 activation in primary human macrophages, resulting in fast apoptosis and release of high levels of interleukins 1 and 18. J Gen Virol. 2005;86(1):185–95. doi:10.​1099/​vir.​0.​80422-0.PubMedCrossRef
Metadata
Title
Inflammasomes and its importance in viral infections
Authors
Gaurav Shrivastava
Moisés León-Juárez
Julio García-Cordero
David Eduardo Meza-Sánchez
Leticia Cedillo-Barrón
Publication date
01-12-2016
Publisher
Springer US
Published in
Immunologic Research / Issue 5-6/2016
Print ISSN: 0257-277X
Electronic ISSN: 1559-0755
DOI
https://doi.org/10.1007/s12026-016-8873-z

Other articles of this Issue 5-6/2016

Immunologic Research 5-6/2016 Go to the issue