Skip to main content
Top
Published in: Immunologic Research 5-6/2016

01-12-2016 | Review

HIV infection: focus on the innate immune cells

Authors: Milena S. Espíndola, Luana S. Soares, Leonardo J. Galvão-Lima, Fabiana A. Zambuzi, Maira C. Cacemiro, Verônica S. Brauer, Fabiani G. Frantz

Published in: Immunologic Research | Issue 5-6/2016

Login to get access

Abstract

Innate immune cells play a critical role during the onset of HIV infection and remain active until the final events that characterize AIDS. The viral impact on innate immune cell response may be a result of direct infection or indirect modulation, and each cell type responds in a specific manner to HIV. During HIV infection, the immune system works in a dynamic way, where innate and adaptive cells contribute with each other stimulating their function and modulating phenotypes and consequently infection resolution. Understanding the alterations in the cell populations induced by the virus is pivotal and can help to combat HIV at the time of infection and above all, to prevent the establishment of viral reservoirs. In this review, we will describe the frequency and the subtypes of infected cells such as of monocytes, DCs, neutrophils, eosinophils, mast cells/basophils, NK cells, NKT cells and γδ T cells, and we discuss the possibility of cell-targeting strategies. Our aim is to consolidate the existing knowledge of the interaction between HIV and cells that constitute the innate immune response.
Literature
1.
go back to reference Shattock RJ, Moore JP. Inhibiting sexual transmission of HIV-1 infection. Nat Rev Microbiol. 2003;1(1):25–34.PubMedCrossRef Shattock RJ, Moore JP. Inhibiting sexual transmission of HIV-1 infection. Nat Rev Microbiol. 2003;1(1):25–34.PubMedCrossRef
2.
go back to reference Zhang Z, Schuler T, Zupancic M, Wietgrefe S, Staskus KA, Reimann KA, et al. Sexual transmission and propagation of SIV and HIV in resting and activated CD4+ T cells. Science. 1999;286(5443):1353–7.PubMedCrossRef Zhang Z, Schuler T, Zupancic M, Wietgrefe S, Staskus KA, Reimann KA, et al. Sexual transmission and propagation of SIV and HIV in resting and activated CD4+ T cells. Science. 1999;286(5443):1353–7.PubMedCrossRef
5.
go back to reference Geijtenbeek TB, Kwon DS, Torensma R, van Vliet SJ, van Duijnhoven GC, Middel J, et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell. 2000;100(5):587–97.PubMedCrossRef Geijtenbeek TB, Kwon DS, Torensma R, van Vliet SJ, van Duijnhoven GC, Middel J, et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell. 2000;100(5):587–97.PubMedCrossRef
6.
go back to reference Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P, et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science. 2009;325(5940):612–6.PubMedPubMedCentralCrossRef Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P, et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science. 2009;325(5940):612–6.PubMedPubMedCentralCrossRef
7.
go back to reference van Furth R, Sluiter W. Distribution of blood monocytes between a marginating and a circulating pool. J Exp Med. 1986;163(2):474–9.PubMedCrossRef van Furth R, Sluiter W. Distribution of blood monocytes between a marginating and a circulating pool. J Exp Med. 1986;163(2):474–9.PubMedCrossRef
8.
go back to reference Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN, et al. Nomenclature of monocytes and dendritic cells in blood. Blood. 2010;116(16):e74–80.PubMedCrossRef Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN, et al. Nomenclature of monocytes and dendritic cells in blood. Blood. 2010;116(16):e74–80.PubMedCrossRef
9.
go back to reference Yang J, Zhang L, Yu C, Yang XF, Wang H. Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark Res. 2014;2(1):1.PubMedPubMedCentralCrossRef Yang J, Zhang L, Yu C, Yang XF, Wang H. Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark Res. 2014;2(1):1.PubMedPubMedCentralCrossRef
10.
go back to reference Ginhoux F, Jung S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol. 2014;14(6):392–404.PubMedCrossRef Ginhoux F, Jung S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol. 2014;14(6):392–404.PubMedCrossRef
12.
go back to reference Sonza S, Mutimer HP, Oelrichs R, Jardine D, Harvey K, Dunne A, et al. Monocytes harbour replication-competent, non-latent HIV-1 in patients on highly active antiretroviral therapy. AIDS. 2001;15(1):17–22.PubMedCrossRef Sonza S, Mutimer HP, Oelrichs R, Jardine D, Harvey K, Dunne A, et al. Monocytes harbour replication-competent, non-latent HIV-1 in patients on highly active antiretroviral therapy. AIDS. 2001;15(1):17–22.PubMedCrossRef
13.
go back to reference Hasegawa A, Liu H, Ling B, Borda JT, Alvarez X, Sugimoto C, et al. The level of monocyte turnover predicts disease progression in the macaque model of AIDS. Blood. 2009;114(14):2917–25.PubMedPubMedCentralCrossRef Hasegawa A, Liu H, Ling B, Borda JT, Alvarez X, Sugimoto C, et al. The level of monocyte turnover predicts disease progression in the macaque model of AIDS. Blood. 2009;114(14):2917–25.PubMedPubMedCentralCrossRef
14.
go back to reference Williams KC, Hickey WF. Central nervous system damage, monocytes and macrophages, and neurological disorders in AIDS. Ann Rev Neurosci. 2002;25:537–62.PubMedCrossRef Williams KC, Hickey WF. Central nervous system damage, monocytes and macrophages, and neurological disorders in AIDS. Ann Rev Neurosci. 2002;25:537–62.PubMedCrossRef
15.
go back to reference Burdo TH, Soulas C, Orzechowski K, Button J, Krishnan A, Sugimoto C, et al. Increased monocyte turnover from bone marrow correlates with severity of SIV encephalitis and CD163 levels in plasma. PLoS Pathog. 2010;6(4):e1000842.PubMedPubMedCentralCrossRef Burdo TH, Soulas C, Orzechowski K, Button J, Krishnan A, Sugimoto C, et al. Increased monocyte turnover from bone marrow correlates with severity of SIV encephalitis and CD163 levels in plasma. PLoS Pathog. 2010;6(4):e1000842.PubMedPubMedCentralCrossRef
16.
go back to reference Thieblemont N, Weiss L, Sadeghi HM, Estcourt C, Haeffner-Cavaillon N. CD14lowCD16high: a cytokine-producing monocyte subset which expands during human immunodeficiency virus infection. Eur J Immunol. 1995;25(12):3418–24.PubMedCrossRef Thieblemont N, Weiss L, Sadeghi HM, Estcourt C, Haeffner-Cavaillon N. CD14lowCD16high: a cytokine-producing monocyte subset which expands during human immunodeficiency virus infection. Eur J Immunol. 1995;25(12):3418–24.PubMedCrossRef
17.
go back to reference Ziegler-Heitbrock HW, Fingerle G, Strobel M, Schraut W, Stelter F, Schutt C, et al. The novel subset of CD14 +/CD16 + blood monocytes exhibits features of tissue macrophages. Eur J Immunol. 1993;23(9):2053–8.PubMedCrossRef Ziegler-Heitbrock HW, Fingerle G, Strobel M, Schraut W, Stelter F, Schutt C, et al. The novel subset of CD14 +/CD16 + blood monocytes exhibits features of tissue macrophages. Eur J Immunol. 1993;23(9):2053–8.PubMedCrossRef
18.
go back to reference Almeida J, Bueno C, Alguero MC, Sanchez ML, de Santiago M, Escribano L, et al. Comparative analysis of the morphological, cytochemical, immunophenotypical, and functional characteristics of normal human peripheral blood lineage(−)/CD16(+)/HLA-DR(+)/CD14(−/lo) cells, CD14(+) monocytes, and CD16(−) dendritic cells. Clin Immunol. 2001;100(3):325–38.PubMedCrossRef Almeida J, Bueno C, Alguero MC, Sanchez ML, de Santiago M, Escribano L, et al. Comparative analysis of the morphological, cytochemical, immunophenotypical, and functional characteristics of normal human peripheral blood lineage(−)/CD16(+)/HLA-DR(+)/CD14(−/lo) cells, CD14(+) monocytes, and CD16(−) dendritic cells. Clin Immunol. 2001;100(3):325–38.PubMedCrossRef
19.
go back to reference de Baey A, Mende I, Riethmueller G, Baeuerle PA. Phenotype and function of human dendritic cells derived from M-DC8(+) monocytes. Eur J Immunol. 2001;31(6):1646–55.PubMedCrossRef de Baey A, Mende I, Riethmueller G, Baeuerle PA. Phenotype and function of human dendritic cells derived from M-DC8(+) monocytes. Eur J Immunol. 2001;31(6):1646–55.PubMedCrossRef
20.
go back to reference Sanchez-Torres C, Garcia-Romo GS, Cornejo-Cortes MA, Rivas-Carvalho A, Sanchez-Schmitz G. CD16+ and CD16− human blood monocyte subsets differentiate in vitro to dendritic cells with different abilities to stimulate CD4+ T cells. Int Immunol. 2001;13(12):1571–81.PubMedCrossRef Sanchez-Torres C, Garcia-Romo GS, Cornejo-Cortes MA, Rivas-Carvalho A, Sanchez-Schmitz G. CD16+ and CD16 human blood monocyte subsets differentiate in vitro to dendritic cells with different abilities to stimulate CD4+ T cells. Int Immunol. 2001;13(12):1571–81.PubMedCrossRef
21.
go back to reference Siedlar M, Frankenberger M, Ziegler-Heitbrock LH, Belge KU. The M-DC8-positive leukocytes are a subpopulation of the CD14+ CD16+ monocytes. Immunobiology. 2000;202(1):11–7.PubMedCrossRef Siedlar M, Frankenberger M, Ziegler-Heitbrock LH, Belge KU. The M-DC8-positive leukocytes are a subpopulation of the CD14+ CD16+ monocytes. Immunobiology. 2000;202(1):11–7.PubMedCrossRef
22.
go back to reference Ellery PJ, Tippett E, Chiu YL, Paukovics G, Cameron PU, Solomon A, et al. The CD16 + monocyte subset is more permissive to infection and preferentially harbors HIV-1 in vivo. J Immunol. 2007;178(10):6581–9.PubMedCrossRef Ellery PJ, Tippett E, Chiu YL, Paukovics G, Cameron PU, Solomon A, et al. The CD16 + monocyte subset is more permissive to infection and preferentially harbors HIV-1 in vivo. J Immunol. 2007;178(10):6581–9.PubMedCrossRef
23.
go back to reference Ansari AW, Meyer-Olson D, Schmidt RE. Selective expansion of pro-inflammatory chemokine CCL2-loaded CD14+CD16+ monocytes subset in HIV-infected therapy naive individuals. J Clin Immunol. 2013;33(1):302–6.PubMedCrossRef Ansari AW, Meyer-Olson D, Schmidt RE. Selective expansion of pro-inflammatory chemokine CCL2-loaded CD14+CD16+ monocytes subset in HIV-infected therapy naive individuals. J Clin Immunol. 2013;33(1):302–6.PubMedCrossRef
24.
go back to reference Burdo TH, Lentz MR, Autissier P, Krishnan A, Halpern E, Letendre S, et al. Soluble CD163 made by monocyte/macrophages is a novel marker of HIV activity in early and chronic infection prior to and after anti-retroviral therapy. J Infect Dis. 2011;204(1):154–63.PubMedPubMedCentralCrossRef Burdo TH, Lentz MR, Autissier P, Krishnan A, Halpern E, Letendre S, et al. Soluble CD163 made by monocyte/macrophages is a novel marker of HIV activity in early and chronic infection prior to and after anti-retroviral therapy. J Infect Dis. 2011;204(1):154–63.PubMedPubMedCentralCrossRef
25.
go back to reference Wilson EM, Singh A, Hullsiek KH, Gibson D, Henry WK, Lichtenstein K, et al. Monocyte activation phenotypes are associated with biomarkers of inflammation and coagulation in chronic HIV infection. J Infect Dis. 2014;210(9):1396–406.PubMedPubMedCentralCrossRef Wilson EM, Singh A, Hullsiek KH, Gibson D, Henry WK, Lichtenstein K, et al. Monocyte activation phenotypes are associated with biomarkers of inflammation and coagulation in chronic HIV infection. J Infect Dis. 2014;210(9):1396–406.PubMedPubMedCentralCrossRef
26.
go back to reference Burdo TH, Lo J, Abbara S, Wei J, DeLelys ME, Preffer F, et al. Soluble CD163, a novel marker of activated macrophages, is elevated and associated with noncalcified coronary plaque in HIV-infected patients. J Infect Dis. 2011;204(8):1227–36.PubMedPubMedCentralCrossRef Burdo TH, Lo J, Abbara S, Wei J, DeLelys ME, Preffer F, et al. Soluble CD163, a novel marker of activated macrophages, is elevated and associated with noncalcified coronary plaque in HIV-infected patients. J Infect Dis. 2011;204(8):1227–36.PubMedPubMedCentralCrossRef
27.
go back to reference Kelesidis T, Kendall MA, Yang OO, Hodis HN, Currier JS. Biomarkers of microbial translocation and macrophage activation: association with progression of subclinical atherosclerosis in HIV-1 infection. J Infect Dis. 2012;206(10):1558–67.PubMedPubMedCentralCrossRef Kelesidis T, Kendall MA, Yang OO, Hodis HN, Currier JS. Biomarkers of microbial translocation and macrophage activation: association with progression of subclinical atherosclerosis in HIV-1 infection. J Infect Dis. 2012;206(10):1558–67.PubMedPubMedCentralCrossRef
28.
go back to reference Sandler NG, Wand H, Roque A, Law M, Nason MC, Nixon DE, et al. Plasma levels of soluble CD14 independently predict mortality in HIV infection. J Infect Dis. 2011;203(6):780–90.PubMedPubMedCentralCrossRef Sandler NG, Wand H, Roque A, Law M, Nason MC, Nixon DE, et al. Plasma levels of soluble CD14 independently predict mortality in HIV infection. J Infect Dis. 2011;203(6):780–90.PubMedPubMedCentralCrossRef
29.
go back to reference Tippett E, Cameron PU, Marsh M, Crowe SM. Characterization of tetraspanins CD9, CD53, CD63, and CD81 in monocytes and macrophages in HIV-1 infection. J Leukoc Biol. 2013;93(6):913–20.PubMedCrossRef Tippett E, Cameron PU, Marsh M, Crowe SM. Characterization of tetraspanins CD9, CD53, CD63, and CD81 in monocytes and macrophages in HIV-1 infection. J Leukoc Biol. 2013;93(6):913–20.PubMedCrossRef
30.
go back to reference Gekonge B, Giri MS, Kossenkov AV, Nebozyhn M, Yousef M, Mounzer K, et al. Constitutive gene expression in monocytes from chronic HIV-1 infection overlaps with acute Toll-like receptor induced monocyte activation profiles. PLoS ONE. 2012;7(7):e41153.PubMedPubMedCentralCrossRef Gekonge B, Giri MS, Kossenkov AV, Nebozyhn M, Yousef M, Mounzer K, et al. Constitutive gene expression in monocytes from chronic HIV-1 infection overlaps with acute Toll-like receptor induced monocyte activation profiles. PLoS ONE. 2012;7(7):e41153.PubMedPubMedCentralCrossRef
31.
go back to reference Lester RT, Yao XD, Ball TB, McKinnon LR, Kaul R, Wachihi C, et al. Toll-like receptor expression and responsiveness are increased in viraemic HIV-1 infection. AIDS. 2008;22(6):685–94.PubMedCrossRef Lester RT, Yao XD, Ball TB, McKinnon LR, Kaul R, Wachihi C, et al. Toll-like receptor expression and responsiveness are increased in viraemic HIV-1 infection. AIDS. 2008;22(6):685–94.PubMedCrossRef
32.
go back to reference Centlivre M, Legrand N, Steingrover R, van der Sluis R, Grijsen ML, Bakker M, et al. Altered dynamics and differential infection profiles of lymphoid and myeloid cell subsets during acute and chronic HIV-1 infection. J Leukoc Biol. 2011;89(5):785–95.PubMedCrossRef Centlivre M, Legrand N, Steingrover R, van der Sluis R, Grijsen ML, Bakker M, et al. Altered dynamics and differential infection profiles of lymphoid and myeloid cell subsets during acute and chronic HIV-1 infection. J Leukoc Biol. 2011;89(5):785–95.PubMedCrossRef
33.
go back to reference Pulliam L, Gascon R, Stubblebine M, McGuire D, McGrath MS. Unique monocyte subset in patients with AIDS dementia. Lancet. 1997;349(9053):692–5.PubMedCrossRef Pulliam L, Gascon R, Stubblebine M, McGuire D, McGrath MS. Unique monocyte subset in patients with AIDS dementia. Lancet. 1997;349(9053):692–5.PubMedCrossRef
34.
go back to reference Simmons RP, Scully EP, Groden EE, Arnold KB, Chang JJ, Lane K, et al. HIV-1 infection induces strong production of IP-10 through TLR7/9-dependent pathways. AIDS. 2013;27(16):2505–17.PubMedPubMedCentralCrossRef Simmons RP, Scully EP, Groden EE, Arnold KB, Chang JJ, Lane K, et al. HIV-1 infection induces strong production of IP-10 through TLR7/9-dependent pathways. AIDS. 2013;27(16):2505–17.PubMedPubMedCentralCrossRef
35.
go back to reference Dutertre CA, Amraoui S, DeRosa A, Jourdain JP, Vimeux L, Goguet M, et al. Pivotal role of M-DC8(+) monocytes from viremic HIV-infected patients in TNFalpha overproduction in response to microbial products. Blood. 2012;120(11):2259–68.PubMedCrossRef Dutertre CA, Amraoui S, DeRosa A, Jourdain JP, Vimeux L, Goguet M, et al. Pivotal role of M-DC8(+) monocytes from viremic HIV-infected patients in TNFalpha overproduction in response to microbial products. Blood. 2012;120(11):2259–68.PubMedCrossRef
36.
go back to reference Manuzak JA, Dillon SM, Lee EJ, Dong ZM, Hecht DK, Wilson CC. Increased Escherichia coli-induced interleukin-23 production by CD16+ monocytes correlates with systemic immune activation in untreated HIV-1-infected individuals. J Virol. 2013;87(24):13252–62.PubMedPubMedCentralCrossRef Manuzak JA, Dillon SM, Lee EJ, Dong ZM, Hecht DK, Wilson CC. Increased Escherichia coli-induced interleukin-23 production by CD16+ monocytes correlates with systemic immune activation in untreated HIV-1-infected individuals. J Virol. 2013;87(24):13252–62.PubMedPubMedCentralCrossRef
37.
go back to reference Jiang W, Lederman MM, Salkowitz JR, Rodriguez B, Harding CV, Sieg SF. Impaired monocyte maturation in response to CpG oligodeoxynucleotide is related to viral RNA levels in human immunodeficiency virus disease and is at least partially mediated by deficiencies in alpha/beta interferon responsiveness and production. J Virol. 2005;79(7):4109–19.PubMedPubMedCentralCrossRef Jiang W, Lederman MM, Salkowitz JR, Rodriguez B, Harding CV, Sieg SF. Impaired monocyte maturation in response to CpG oligodeoxynucleotide is related to viral RNA levels in human immunodeficiency virus disease and is at least partially mediated by deficiencies in alpha/beta interferon responsiveness and production. J Virol. 2005;79(7):4109–19.PubMedPubMedCentralCrossRef
38.
go back to reference Saez R, Echaniz P, de Juan MD, Iribarren JA, Cuadrado E. HIV-infected progressors and long-term non-progressors differ in their capacity to respond to an A-class CpG oligodeoxynucleotide. AIDS. 2005;19(16):1924–5.PubMedCrossRef Saez R, Echaniz P, de Juan MD, Iribarren JA, Cuadrado E. HIV-infected progressors and long-term non-progressors differ in their capacity to respond to an A-class CpG oligodeoxynucleotide. AIDS. 2005;19(16):1924–5.PubMedCrossRef
39.
go back to reference Baqui AA, Meiller TF, Zhang M, Falkler WA Jr. The effects of HIV viral load on the phagocytic activity of monocytes activated with lipopolysaccharide from oral microorganisms. Immunopharmacol Immunotoxicol. 1999;21(3):421–38.PubMedCrossRef Baqui AA, Meiller TF, Zhang M, Falkler WA Jr. The effects of HIV viral load on the phagocytic activity of monocytes activated with lipopolysaccharide from oral microorganisms. Immunopharmacol Immunotoxicol. 1999;21(3):421–38.PubMedCrossRef
40.
go back to reference Bravo-Cuellar A, Nowacki W, Vuillier F, de Saint-Martin J, Orbach-Arbouys S. The bactericidal capacity of peripheral blood monocytes from HIV positive patients may collapse very soon after the infection. Immunol Lett. 1992;31(3):297–9.PubMedCrossRef Bravo-Cuellar A, Nowacki W, Vuillier F, de Saint-Martin J, Orbach-Arbouys S. The bactericidal capacity of peripheral blood monocytes from HIV positive patients may collapse very soon after the infection. Immunol Lett. 1992;31(3):297–9.PubMedCrossRef
41.
go back to reference Cameron ML, Granger DL, Matthews TJ, Weinberg JB. Human immunodeficiency virus (HIV)-infected human blood monocytes and peritoneal macrophages have reduced anticryptococcal activity whereas HIV-infected alveolar macrophages retain normal activity. J Infect Dis. 1994;170(1):60–7.PubMedCrossRef Cameron ML, Granger DL, Matthews TJ, Weinberg JB. Human immunodeficiency virus (HIV)-infected human blood monocytes and peritoneal macrophages have reduced anticryptococcal activity whereas HIV-infected alveolar macrophages retain normal activity. J Infect Dis. 1994;170(1):60–7.PubMedCrossRef
42.
go back to reference Delemarre FG, Stevenhagen A, Kroon FP, van Eer MY, Meenhorst PL, van Furth R. Reduced toxoplasmastatic activity of monocytes and monocyte-derived macrophages from AIDS patients is mediated via prostaglandin E2. AIDS. 1995;9(5):441–5.PubMedCrossRef Delemarre FG, Stevenhagen A, Kroon FP, van Eer MY, Meenhorst PL, van Furth R. Reduced toxoplasmastatic activity of monocytes and monocyte-derived macrophages from AIDS patients is mediated via prostaglandin E2. AIDS. 1995;9(5):441–5.PubMedCrossRef
43.
go back to reference Dobmeyer TS, Raffel B, Dobmeyer JM, Findhammer S, Klein SA, Kabelitz D, et al. Decreased function of monocytes and granulocytes during HIV-1 infection correlates with CD4 cell counts. Eur J Med Res. 1995;1(1):9–15.PubMed Dobmeyer TS, Raffel B, Dobmeyer JM, Findhammer S, Klein SA, Kabelitz D, et al. Decreased function of monocytes and granulocytes during HIV-1 infection correlates with CD4 cell counts. Eur J Med Res. 1995;1(1):9–15.PubMed
44.
go back to reference Estevez ME, Ballart IJ, Diez RA, Planes N, Scaglione C, Sen L. Early defect of phagocytic cell function in subjects at risk for acquired immunodeficiency syndrome. Scand J Immunol. 1986;24(2):215–21.PubMedCrossRef Estevez ME, Ballart IJ, Diez RA, Planes N, Scaglione C, Sen L. Early defect of phagocytic cell function in subjects at risk for acquired immunodeficiency syndrome. Scand J Immunol. 1986;24(2):215–21.PubMedCrossRef
45.
go back to reference Kedzierska K, Azzam R, Ellery P, Mak J, Jaworowski A, Crowe SM. Defective phagocytosis by human monocyte/macrophages following HIV-1 infection: underlying mechanisms and modulation by adjunctive cytokine therapy. J Clin Virol. 2003;26(2):247–63.PubMedCrossRef Kedzierska K, Azzam R, Ellery P, Mak J, Jaworowski A, Crowe SM. Defective phagocytosis by human monocyte/macrophages following HIV-1 infection: underlying mechanisms and modulation by adjunctive cytokine therapy. J Clin Virol. 2003;26(2):247–63.PubMedCrossRef
46.
go back to reference Ludlow LE, Zhou J, Tippett E, Cheng WJ, Hasang W, Rogerson SJ, et al. HIV-1 inhibits phagocytosis and inflammatory cytokine responses of human monocyte-derived macrophages to P. falciparum infected erythrocytes. PLoS ONE. 2012;7(2):e32102.PubMedPubMedCentralCrossRef Ludlow LE, Zhou J, Tippett E, Cheng WJ, Hasang W, Rogerson SJ, et al. HIV-1 inhibits phagocytosis and inflammatory cytokine responses of human monocyte-derived macrophages to P. falciparum infected erythrocytes. PLoS ONE. 2012;7(2):e32102.PubMedPubMedCentralCrossRef
47.
go back to reference Michailidis C, Giannopoulos G, Vigklis V, Armenis K, Tsakris A, Gargalianos P. Impaired phagocytosis among patients infected by the human immunodeficiency virus: implication for a role of highly active anti-retroviral therapy. Clin Exp Immunol. 2012;167(3):499–504.PubMedPubMedCentralCrossRef Michailidis C, Giannopoulos G, Vigklis V, Armenis K, Tsakris A, Gargalianos P. Impaired phagocytosis among patients infected by the human immunodeficiency virus: implication for a role of highly active anti-retroviral therapy. Clin Exp Immunol. 2012;167(3):499–504.PubMedPubMedCentralCrossRef
48.
go back to reference Pos O, Stevenhagen A, Meenhorst PL, Kroon FP, Van Furth R. Impaired phagocytosis of Staphylococcus aureus by granulocytes and monocytes of AIDS patients. Clin Exp Immunol. 1992;88(1):23–8.PubMedPubMedCentralCrossRef Pos O, Stevenhagen A, Meenhorst PL, Kroon FP, Van Furth R. Impaired phagocytosis of Staphylococcus aureus by granulocytes and monocytes of AIDS patients. Clin Exp Immunol. 1992;88(1):23–8.PubMedPubMedCentralCrossRef
49.
go back to reference Mellman I, Steinman RM. Dendritic cells: specialized and regulated antigen processing machines. Cell. 2001;106(3):255–8.PubMedCrossRef Mellman I, Steinman RM. Dendritic cells: specialized and regulated antigen processing machines. Cell. 2001;106(3):255–8.PubMedCrossRef
50.
go back to reference Klagge IM, Schneider-Schaulies S. Virus interactions with dendritic cells. J Gen Virol. 1999;80(Pt 4):823–33.PubMedCrossRef Klagge IM, Schneider-Schaulies S. Virus interactions with dendritic cells. J Gen Virol. 1999;80(Pt 4):823–33.PubMedCrossRef
51.
go back to reference Hu J, Pope M, Brown C, O’Doherty U, Miller CJ. Immunophenotypic characterization of simian immunodeficiency virus-infected dendritic cells in cervix, vagina, and draining lymph nodes of rhesus monkeys. Lab Investig J Tech Methods Pathol. 1998;78(4):435–51. Hu J, Pope M, Brown C, O’Doherty U, Miller CJ. Immunophenotypic characterization of simian immunodeficiency virus-infected dendritic cells in cervix, vagina, and draining lymph nodes of rhesus monkeys. Lab Investig J Tech Methods Pathol. 1998;78(4):435–51.
52.
go back to reference Haase AT, Henry K, Zupancic M, Sedgewick G, Faust RA, Melroe H, et al. Quantitative image analysis of HIV-1 infection in lymphoid tissue. Science. 1996;274(5289):985–9.PubMedCrossRef Haase AT, Henry K, Zupancic M, Sedgewick G, Faust RA, Melroe H, et al. Quantitative image analysis of HIV-1 infection in lymphoid tissue. Science. 1996;274(5289):985–9.PubMedCrossRef
53.
go back to reference Smith BA, Gartner S, Liu Y, Perelson AS, Stilianakis NI, Keele BF, et al. Persistence of infectious HIV on follicular dendritic cells. J Immunol. 2001;166(1):690–6.PubMedCrossRef Smith BA, Gartner S, Liu Y, Perelson AS, Stilianakis NI, Keele BF, et al. Persistence of infectious HIV on follicular dendritic cells. J Immunol. 2001;166(1):690–6.PubMedCrossRef
54.
go back to reference Spiegel H, Herbst H, Niedobitek G, Foss HD, Stein H. Follicular dendritic cells are a major reservoir for human immunodeficiency virus type 1 in lymphoid tissues facilitating infection of CD4+ T-helper cells. Am J Pathol. 1992;140(1):15–22.PubMedPubMedCentral Spiegel H, Herbst H, Niedobitek G, Foss HD, Stein H. Follicular dendritic cells are a major reservoir for human immunodeficiency virus type 1 in lymphoid tissues facilitating infection of CD4+ T-helper cells. Am J Pathol. 1992;140(1):15–22.PubMedPubMedCentral
55.
go back to reference van Nierop K, de Groot C. Human follicular dendritic cells: function, origin and development. Semin Immunol. 2002;14(4):251–7.PubMedCrossRef van Nierop K, de Groot C. Human follicular dendritic cells: function, origin and development. Semin Immunol. 2002;14(4):251–7.PubMedCrossRef
56.
go back to reference Cameron PU, Handley AJ, Baylis DC, Solomon AE, Bernard N, Purcell DF, et al. Preferential infection of dendritic cells during human immunodeficiency virus type 1 infection of blood leukocytes. J Virol. 2007;81(5):2297–306.PubMedCrossRef Cameron PU, Handley AJ, Baylis DC, Solomon AE, Bernard N, Purcell DF, et al. Preferential infection of dendritic cells during human immunodeficiency virus type 1 infection of blood leukocytes. J Virol. 2007;81(5):2297–306.PubMedCrossRef
57.
go back to reference Masurier C, Salomon B, Guettari N, Pioche C, Lachapelle F, Guigon M, et al. Dendritic cells route human immunodeficiency virus to lymph nodes after vaginal or intravenous administration to mice. J Virol. 1998;72(10):7822–9.PubMedPubMedCentral Masurier C, Salomon B, Guettari N, Pioche C, Lachapelle F, Guigon M, et al. Dendritic cells route human immunodeficiency virus to lymph nodes after vaginal or intravenous administration to mice. J Virol. 1998;72(10):7822–9.PubMedPubMedCentral
58.
go back to reference Barratt-Boyes SM, Zimmer MI, Harshyne L. Changes in dendritic cell migration and activation during SIV infection suggest a role in initial viral spread and eventual immunosuppression. J Med Primatol. 2002;31(4–5):186–93.PubMedCrossRef Barratt-Boyes SM, Zimmer MI, Harshyne L. Changes in dendritic cell migration and activation during SIV infection suggest a role in initial viral spread and eventual immunosuppression. J Med Primatol. 2002;31(4–5):186–93.PubMedCrossRef
59.
go back to reference Chen JJ, Huang JC, Shirtliff M, Briscoe E, Ali S, Cesani F, et al. CD4 lymphocytes in the blood of HIV(+) individuals migrate rapidly to lymph nodes and bone marrow: support for homing theory of CD4 cell depletion. J Leukoc Biol. 2002;72(2):271–8.PubMed Chen JJ, Huang JC, Shirtliff M, Briscoe E, Ali S, Cesani F, et al. CD4 lymphocytes in the blood of HIV(+) individuals migrate rapidly to lymph nodes and bone marrow: support for homing theory of CD4 cell depletion. J Leukoc Biol. 2002;72(2):271–8.PubMed
60.
go back to reference Murooka TT, Deruaz M, Marangoni F, Vrbanac VD, Seung E, von Andrian UH, et al. HIV-infected T cells are migratory vehicles for viral dissemination. Nature. 2012;490(7419):283–7.PubMedPubMedCentralCrossRef Murooka TT, Deruaz M, Marangoni F, Vrbanac VD, Seung E, von Andrian UH, et al. HIV-infected T cells are migratory vehicles for viral dissemination. Nature. 2012;490(7419):283–7.PubMedPubMedCentralCrossRef
61.
go back to reference Negre D, Mangeot PE, Duisit G, Blanchard S, Vidalain PO, Leissner P, et al. Characterization of novel safe lentiviral vectors derived from simian immunodeficiency virus (SIVmac251) that efficiently transduce mature human dendritic cells. Gene Ther. 2000;7(19):1613–23.PubMedCrossRef Negre D, Mangeot PE, Duisit G, Blanchard S, Vidalain PO, Leissner P, et al. Characterization of novel safe lentiviral vectors derived from simian immunodeficiency virus (SIVmac251) that efficiently transduce mature human dendritic cells. Gene Ther. 2000;7(19):1613–23.PubMedCrossRef
62.
go back to reference Manel N, Hogstad B, Wang Y, Levy DE, Unutmaz D, Littman DR. A cryptic sensor for HIV-1 activates antiviral innate immunity in dendritic cells. Nature. 2010;467(7312):214–7.PubMedPubMedCentralCrossRef Manel N, Hogstad B, Wang Y, Levy DE, Unutmaz D, Littman DR. A cryptic sensor for HIV-1 activates antiviral innate immunity in dendritic cells. Nature. 2010;467(7312):214–7.PubMedPubMedCentralCrossRef
64.
go back to reference Turville SG, Cameron PU, Handley A, Lin G, Pohlmann S, Doms RW, et al. Diversity of receptors binding HIV on dendritic cell subsets. Nat Immunol. 2002;3(10):975–83.PubMedCrossRef Turville SG, Cameron PU, Handley A, Lin G, Pohlmann S, Doms RW, et al. Diversity of receptors binding HIV on dendritic cell subsets. Nat Immunol. 2002;3(10):975–83.PubMedCrossRef
65.
go back to reference Fantuzzi L, Purificato C, Donato K, Belardelli F, Gessani S. Human immunodeficiency virus type 1 gp120 induces abnormal maturation and functional alterations of dendritic cells: a novel mechanism for AIDS pathogenesis. J Virol. 2004;78(18):9763–72.PubMedPubMedCentralCrossRef Fantuzzi L, Purificato C, Donato K, Belardelli F, Gessani S. Human immunodeficiency virus type 1 gp120 induces abnormal maturation and functional alterations of dendritic cells: a novel mechanism for AIDS pathogenesis. J Virol. 2004;78(18):9763–72.PubMedPubMedCentralCrossRef
66.
go back to reference Cameron PU, Forsum U, Teppler H, Granelli-Piperno A, Steinman RM. During HIV-1 infection most blood dendritic cells are not productively infected and can induce allogeneic CD4+ T cells clonal expansion. Clin Exp Immunol. 1992;88(2):226–36.PubMedPubMedCentralCrossRef Cameron PU, Forsum U, Teppler H, Granelli-Piperno A, Steinman RM. During HIV-1 infection most blood dendritic cells are not productively infected and can induce allogeneic CD4+ T cells clonal expansion. Clin Exp Immunol. 1992;88(2):226–36.PubMedPubMedCentralCrossRef
67.
go back to reference Donaghy H, Gazzard B, Gotch F, Patterson S. Dysfunction and infection of freshly isolated blood myeloid and plasmacytoid dendritic cells in patients infected with HIV-1. Blood. 2003;101(11):4505–11.PubMedCrossRef Donaghy H, Gazzard B, Gotch F, Patterson S. Dysfunction and infection of freshly isolated blood myeloid and plasmacytoid dendritic cells in patients infected with HIV-1. Blood. 2003;101(11):4505–11.PubMedCrossRef
68.
go back to reference Macatonia SE, Patterson S, Knight SC. Suppression of immune responses by dendritic cells infected with HIV. Immunology. 1989;67(3):285–9.PubMedPubMedCentral Macatonia SE, Patterson S, Knight SC. Suppression of immune responses by dendritic cells infected with HIV. Immunology. 1989;67(3):285–9.PubMedPubMedCentral
69.
go back to reference Manches O, Frleta D, Bhardwaj N. Dendritic cells in progression and pathology of HIV infection. Trends Immunol. 2014;35(3):114–22.PubMedCrossRef Manches O, Frleta D, Bhardwaj N. Dendritic cells in progression and pathology of HIV infection. Trends Immunol. 2014;35(3):114–22.PubMedCrossRef
70.
go back to reference Roberts M, Gompels M, Pinching AJ, Knight SC. Dendritic cells from HIV-1 infected individuals show reduced capacity to stimulate autologous T-cell proliferation. Immunol Lett. 1994;43(1–2):39–43.PubMedCrossRef Roberts M, Gompels M, Pinching AJ, Knight SC. Dendritic cells from HIV-1 infected individuals show reduced capacity to stimulate autologous T-cell proliferation. Immunol Lett. 1994;43(1–2):39–43.PubMedCrossRef
71.
go back to reference Macatonia SE, Lau R, Patterson S, Pinching AJ, Knight SC. Dendritic cell infection, depletion and dysfunction in HIV-infected individuals. Immunology. 1990;71(1):38–45.PubMedPubMedCentral Macatonia SE, Lau R, Patterson S, Pinching AJ, Knight SC. Dendritic cell infection, depletion and dysfunction in HIV-infected individuals. Immunology. 1990;71(1):38–45.PubMedPubMedCentral
72.
go back to reference Pacanowski J, Kahi S, Baillet M, Lebon P, Deveau C, Goujard C, et al. Reduced blood CD123+ (lymphoid) and CD11c+ (myeloid) dendritic cell numbers in primary HIV-1 infection. Blood. 2001;98(10):3016–21.PubMedCrossRef Pacanowski J, Kahi S, Baillet M, Lebon P, Deveau C, Goujard C, et al. Reduced blood CD123+ (lymphoid) and CD11c+ (myeloid) dendritic cell numbers in primary HIV-1 infection. Blood. 2001;98(10):3016–21.PubMedCrossRef
73.
go back to reference Sabado RL, O’Brien M, Subedi A, Qin L, Hu N, Taylor E, et al. Evidence of dysregulation of dendritic cells in primary HIV infection. Blood. 2010;116(19):3839–52.PubMedPubMedCentralCrossRef Sabado RL, O’Brien M, Subedi A, Qin L, Hu N, Taylor E, et al. Evidence of dysregulation of dendritic cells in primary HIV infection. Blood. 2010;116(19):3839–52.PubMedPubMedCentralCrossRef
74.
go back to reference Behbahani H, Landay A, Patterson BK, Jones P, Pottage J, Agnoli M, et al. Normalization of immune activation in lymphoid tissue following highly active antiretroviral therapy. J Acquir Immune Defic Syndr. 2000;25(2):150–6.PubMedCrossRef Behbahani H, Landay A, Patterson BK, Jones P, Pottage J, Agnoli M, et al. Normalization of immune activation in lymphoid tissue following highly active antiretroviral therapy. J Acquir Immune Defic Syndr. 2000;25(2):150–6.PubMedCrossRef
75.
go back to reference Martin-Gayo E, Buzon MJ, Ouyang Z, Hickman T, Cronin J, Pimenova D, et al. Potent cell-intrinsic immune responses in dendritic cells facilitate HIV-1-specific T cell immunity in HIV-1 elite controllers. PLoS Pathog. 2015;11(6):e1004930.PubMedPubMedCentralCrossRef Martin-Gayo E, Buzon MJ, Ouyang Z, Hickman T, Cronin J, Pimenova D, et al. Potent cell-intrinsic immune responses in dendritic cells facilitate HIV-1-specific T cell immunity in HIV-1 elite controllers. PLoS Pathog. 2015;11(6):e1004930.PubMedPubMedCentralCrossRef
76.
go back to reference Loffredo JT, Friedrich TC, Leon EJ, Stephany JJ, Rodrigues DS, Spencer SP, et al. CD8+ T cells from SIV elite controller macaques recognize Mamu-B*08-bound epitopes and select for widespread viral variation. PLoS ONE. 2007;2(11):e1152.PubMedPubMedCentralCrossRef Loffredo JT, Friedrich TC, Leon EJ, Stephany JJ, Rodrigues DS, Spencer SP, et al. CD8+ T cells from SIV elite controller macaques recognize Mamu-B*08-bound epitopes and select for widespread viral variation. PLoS ONE. 2007;2(11):e1152.PubMedPubMedCentralCrossRef
77.
go back to reference Walker BD, Yu XG. Unravelling the mechanisms of durable control of HIV-1. Nat Rev Immunol. 2013;13(7):487–98.PubMedCrossRef Walker BD, Yu XG. Unravelling the mechanisms of durable control of HIV-1. Nat Rev Immunol. 2013;13(7):487–98.PubMedCrossRef
78.
go back to reference Martinson JA, Roman-Gonzalez A, Tenorio AR, Montoya CJ, Gichinga CN, Rugeles MT, et al. Dendritic cells from HIV-1 infected individuals are less responsive to toll-like receptor (TLR) ligands. Cell Immunol. 2007;250(1–2):75–84.PubMedCrossRef Martinson JA, Roman-Gonzalez A, Tenorio AR, Montoya CJ, Gichinga CN, Rugeles MT, et al. Dendritic cells from HIV-1 infected individuals are less responsive to toll-like receptor (TLR) ligands. Cell Immunol. 2007;250(1–2):75–84.PubMedCrossRef
79.
go back to reference Miller EA, Spadaccia MR, O’Brien MP, Rolnitzky L, Sabado R, Manches O, et al. Plasma factors during chronic HIV-1 infection impair IL-12 secretion by myeloid dendritic cells via a virus-independent pathway. J Acquir Immune Defic Syndr. 2012;61(5):535–44.PubMedPubMedCentralCrossRef Miller EA, Spadaccia MR, O’Brien MP, Rolnitzky L, Sabado R, Manches O, et al. Plasma factors during chronic HIV-1 infection impair IL-12 secretion by myeloid dendritic cells via a virus-independent pathway. J Acquir Immune Defic Syndr. 2012;61(5):535–44.PubMedPubMedCentralCrossRef
80.
go back to reference Miller E, Bhardwaj N. Dendritic cell dysregulation during HIV-1 infection. Immunol Rev. 2013;254(1):170–89.PubMedCrossRef Miller E, Bhardwaj N. Dendritic cell dysregulation during HIV-1 infection. Immunol Rev. 2013;254(1):170–89.PubMedCrossRef
81.
go back to reference Ito T, Kanzler H, Duramad O, Cao W, Liu YJ. Specialization, kinetics, and repertoire of type 1 interferon responses by human plasmacytoid predendritic cells. Blood. 2006;107(6):2423–31.PubMedCrossRef Ito T, Kanzler H, Duramad O, Cao W, Liu YJ. Specialization, kinetics, and repertoire of type 1 interferon responses by human plasmacytoid predendritic cells. Blood. 2006;107(6):2423–31.PubMedCrossRef
82.
go back to reference O’Brien M, Manches O, Sabado RL, Baranda SJ, Wang Y, Marie I, et al. Spatiotemporal trafficking of HIV in human plasmacytoid dendritic cells defines a persistently IFN-alpha-producing and partially matured phenotype. J Clin Investig. 2011;121(3):1088–101.PubMedPubMedCentralCrossRef O’Brien M, Manches O, Sabado RL, Baranda SJ, Wang Y, Marie I, et al. Spatiotemporal trafficking of HIV in human plasmacytoid dendritic cells defines a persistently IFN-alpha-producing and partially matured phenotype. J Clin Investig. 2011;121(3):1088–101.PubMedPubMedCentralCrossRef
83.
go back to reference Williams MA, Trout R, Spector SA. HIV-1 gp120 modulates the immunological function and expression of accessory and co-stimulatory molecules of monocyte-derived dendritic cells. J Hematother Stem Cell Res. 2002;11(5):829–47.PubMedCrossRef Williams MA, Trout R, Spector SA. HIV-1 gp120 modulates the immunological function and expression of accessory and co-stimulatory molecules of monocyte-derived dendritic cells. J Hematother Stem Cell Res. 2002;11(5):829–47.PubMedCrossRef
84.
go back to reference Kawamura T, Gatanaga H, Borris DL, Connors M, Mitsuya H, Blauvelt A. Decreased stimulation of CD4+ T cell proliferation and IL-2 production by highly enriched populations of HIV-infected dendritic cells. J Immunol. 2003;170(8):4260–6.PubMedCrossRef Kawamura T, Gatanaga H, Borris DL, Connors M, Mitsuya H, Blauvelt A. Decreased stimulation of CD4+ T cell proliferation and IL-2 production by highly enriched populations of HIV-infected dendritic cells. J Immunol. 2003;170(8):4260–6.PubMedCrossRef
85.
go back to reference Smed-Sorensen A, Lore K, Walther-Jallow L, Andersson J, Spetz AL. HIV-1-infected dendritic cells up-regulate cell surface markers but fail to produce IL-12 p70 in response to CD40 ligand stimulation. Blood. 2004;104(9):2810–7.PubMedCrossRef Smed-Sorensen A, Lore K, Walther-Jallow L, Andersson J, Spetz AL. HIV-1-infected dendritic cells up-regulate cell surface markers but fail to produce IL-12 p70 in response to CD40 ligand stimulation. Blood. 2004;104(9):2810–7.PubMedCrossRef
86.
go back to reference Garcia F, Routy JP. Challenges in dendritic cells-based therapeutic vaccination in HIV-1 infection Workshop in dendritic cell-based vaccine clinical trials in HIV-1. Vaccine. 2011;29(38):6454–63.PubMedCrossRef Garcia F, Routy JP. Challenges in dendritic cells-based therapeutic vaccination in HIV-1 infection Workshop in dendritic cell-based vaccine clinical trials in HIV-1. Vaccine. 2011;29(38):6454–63.PubMedCrossRef
87.
go back to reference Lakschevitz FS, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342(2):200–9.PubMedCrossRef Lakschevitz FS, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342(2):200–9.PubMedCrossRef
88.
go back to reference Sagiv JY, Michaeli J, Assi S, Mishalian I, Kisos H, Levy L, et al. Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Rep. 2015;10(4):562–73.PubMedCrossRef Sagiv JY, Michaeli J, Assi S, Mishalian I, Kisos H, Levy L, et al. Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Rep. 2015;10(4):562–73.PubMedCrossRef
89.
go back to reference Mayadas TN, Cullere X, Lowell CA. The multifaceted functions of neutrophils. Ann Rev Pathol. 2014;9:181–218.CrossRef Mayadas TN, Cullere X, Lowell CA. The multifaceted functions of neutrophils. Ann Rev Pathol. 2014;9:181–218.CrossRef
90.
go back to reference Donahue RE, Johnson MM, Zon LI, Clark SC, Groopman JE. Suppression of in vitro haematopoiesis following human immunodeficiency virus infection. Nature. 1987;326(6109):200–3.PubMedCrossRef Donahue RE, Johnson MM, Zon LI, Clark SC, Groopman JE. Suppression of in vitro haematopoiesis following human immunodeficiency virus infection. Nature. 1987;326(6109):200–3.PubMedCrossRef
91.
go back to reference Pitrak DL, Tsai HC, Mullane KM, Sutton SH, Stevens P. Accelerated neutrophil apoptosis in the acquired immunodeficiency syndrome. J Clin Investig. 1996;98(12):2714–9.PubMedPubMedCentralCrossRef Pitrak DL, Tsai HC, Mullane KM, Sutton SH, Stevens P. Accelerated neutrophil apoptosis in the acquired immunodeficiency syndrome. J Clin Investig. 1996;98(12):2714–9.PubMedPubMedCentralCrossRef
92.
go back to reference Kuritzkes DR. Neutropenia, neutrophil dysfunction, and bacterial infection in patients with human immunodeficiency virus disease: the role of granulocyte colony-stimulating factor. Clin Infect Dis. 2000;30(2):256–60.PubMedCrossRef Kuritzkes DR. Neutropenia, neutrophil dysfunction, and bacterial infection in patients with human immunodeficiency virus disease: the role of granulocyte colony-stimulating factor. Clin Infect Dis. 2000;30(2):256–60.PubMedCrossRef
93.
go back to reference Olinger GG, Saifuddin M, Spear GT. CD4-Negative cells bind human immunodeficiency virus type 1 and efficiently transfer virus to T cells. J Virol. 2000;74(18):8550–7.PubMedPubMedCentralCrossRef Olinger GG, Saifuddin M, Spear GT. CD4-Negative cells bind human immunodeficiency virus type 1 and efficiently transfer virus to T cells. J Virol. 2000;74(18):8550–7.PubMedPubMedCentralCrossRef
94.
go back to reference Biswas P, Mantelli B, Sica A, Malnati M, Panzeri C, Saccani A, et al. Expression of CD4 on human peripheral blood neutrophils. Blood. 2003;101(11):4452–6.PubMedCrossRef Biswas P, Mantelli B, Sica A, Malnati M, Panzeri C, Saccani A, et al. Expression of CD4 on human peripheral blood neutrophils. Blood. 2003;101(11):4452–6.PubMedCrossRef
95.
go back to reference Gabali AM, Anzinger JJ, Spear GT, Thomas LL. Activation by inflammatory stimuli increases neutrophil binding of human immunodeficiency virus type 1 and subsequent infection of lymphocytes. J Virol. 2004;78(19):10833–6.PubMedPubMedCentralCrossRef Gabali AM, Anzinger JJ, Spear GT, Thomas LL. Activation by inflammatory stimuli increases neutrophil binding of human immunodeficiency virus type 1 and subsequent infection of lymphocytes. J Virol. 2004;78(19):10833–6.PubMedPubMedCentralCrossRef
96.
go back to reference Elbim C, Prevot MH, Bouscarat F, Franzini E, Chollet-Martin S, Hakim J, et al. Polymorphonuclear neutrophils from human immunodeficiency virus-infected patients show enhanced activation, diminished fMLP-induced L-selectin shedding, and an impaired oxidative burst after cytokine priming. Blood. 1994;84(8):2759–66.PubMed Elbim C, Prevot MH, Bouscarat F, Franzini E, Chollet-Martin S, Hakim J, et al. Polymorphonuclear neutrophils from human immunodeficiency virus-infected patients show enhanced activation, diminished fMLP-induced L-selectin shedding, and an impaired oxidative burst after cytokine priming. Blood. 1994;84(8):2759–66.PubMed
97.
go back to reference Gasperini S, Zambello R, Agostini C, Trentin L, Tassinari C, Cadrobbi P, et al. Impaired cytokine production by neutrophils isolated from patients with AIDS. Aids. 1998;12(4):373–9.PubMedCrossRef Gasperini S, Zambello R, Agostini C, Trentin L, Tassinari C, Cadrobbi P, et al. Impaired cytokine production by neutrophils isolated from patients with AIDS. Aids. 1998;12(4):373–9.PubMedCrossRef
98.
go back to reference Heit B, Jones G, Knight D, Antony JM, Gill MJ, Brown C, et al. HIV and other lentiviral infections cause defects in neutrophil chemotaxis, recruitment, and cell structure: immunorestorative effects of granulocyte-macrophage colony-stimulating factor. J Immunol. 2006;177(9):6405–14.PubMedCrossRef Heit B, Jones G, Knight D, Antony JM, Gill MJ, Brown C, et al. HIV and other lentiviral infections cause defects in neutrophil chemotaxis, recruitment, and cell structure: immunorestorative effects of granulocyte-macrophage colony-stimulating factor. J Immunol. 2006;177(9):6405–14.PubMedCrossRef
99.
go back to reference Kubes P, Heit B, van Marle G, Johnston JB, Knight D, Khan A, et al. In vivo impairment of neutrophil recruitment during lentivirus infection. J Immunol. 2003;171(9):4801–8.PubMedCrossRef Kubes P, Heit B, van Marle G, Johnston JB, Knight D, Khan A, et al. In vivo impairment of neutrophil recruitment during lentivirus infection. J Immunol. 2003;171(9):4801–8.PubMedCrossRef
100.
go back to reference Roilides E, Mertins S, Eddy J, Walsh TJ, Pizzo PA, Rubin M. Impairment of neutrophil chemotactic and bactericidal function in children infected with human immunodeficiency virus type 1 and partial reversal after in vitro exposure to granulocyte-macrophage colony-stimulating factor. J Pediatr. 1990;117(4):531–40.PubMedCrossRef Roilides E, Mertins S, Eddy J, Walsh TJ, Pizzo PA, Rubin M. Impairment of neutrophil chemotactic and bactericidal function in children infected with human immunodeficiency virus type 1 and partial reversal after in vitro exposure to granulocyte-macrophage colony-stimulating factor. J Pediatr. 1990;117(4):531–40.PubMedCrossRef
101.
go back to reference Coffey MJ, Phare SM, George S, Peters-Golden M, Kazanjian PH. Granulocyte colony-stimulating factor administration to HIV-infected subjects augments reduced leukotriene synthesis and anticryptococcal activity in neutrophils. J Clin Investig. 1998;102(4):663–70.PubMedPubMedCentralCrossRef Coffey MJ, Phare SM, George S, Peters-Golden M, Kazanjian PH. Granulocyte colony-stimulating factor administration to HIV-infected subjects augments reduced leukotriene synthesis and anticryptococcal activity in neutrophils. J Clin Investig. 1998;102(4):663–70.PubMedPubMedCentralCrossRef
102.
go back to reference Pugliese A, Vidotto V, Beltramo T, Torre D. Phagocytic activity in human immunodeficiency virus type 1 infection. Clin Diagn Lab Immunol. 2005;12(8):889–95.PubMedPubMedCentral Pugliese A, Vidotto V, Beltramo T, Torre D. Phagocytic activity in human immunodeficiency virus type 1 infection. Clin Diagn Lab Immunol. 2005;12(8):889–95.PubMedPubMedCentral
103.
go back to reference Engelich G, Wright DG, Hartshorn KL. Acquired disorders of phagocyte function complicating medical and surgical illnesses. Clin Infect Dis. 2001;33(12):2040–8.PubMedCrossRef Engelich G, Wright DG, Hartshorn KL. Acquired disorders of phagocyte function complicating medical and surgical illnesses. Clin Infect Dis. 2001;33(12):2040–8.PubMedCrossRef
104.
go back to reference Pitrak DL. Neutrophil deficiency and dysfunction in HIV-infected patients. Am J Health Syst Pharm. 1999;56(Suppl 5):S9–16.PubMed Pitrak DL. Neutrophil deficiency and dysfunction in HIV-infected patients. Am J Health Syst Pharm. 1999;56(Suppl 5):S9–16.PubMed
105.
go back to reference Elbim C, Pillet S, Prevost MH, Preira A, Girard PM, Rogine N, et al. The role of phagocytes in HIV-related oxidative stress. J Clin Virol. 2001;20(3):99–109.PubMedCrossRef Elbim C, Pillet S, Prevost MH, Preira A, Girard PM, Rogine N, et al. The role of phagocytes in HIV-related oxidative stress. J Clin Virol. 2001;20(3):99–109.PubMedCrossRef
106.
go back to reference Salmen S, Montilla D, London M, Velazquez D, Berrueta L. Analysis of p22-phox and p47-phox subcellular localization and distribution in neutrophils from human immunodeficiency virus (HIV) infected patients. Revista de investigacion clinica; organo del Hospital de Enfermedades de la Nutricion. 2012;64(1):40–51.PubMed Salmen S, Montilla D, London M, Velazquez D, Berrueta L. Analysis of p22-phox and p47-phox subcellular localization and distribution in neutrophils from human immunodeficiency virus (HIV) infected patients. Revista de investigacion clinica; organo del Hospital de Enfermedades de la Nutricion. 2012;64(1):40–51.PubMed
107.
go back to reference Saitoh T, Komano J, Saitoh Y, Misawa T, Takahama M, Kozaki T, et al. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe. 2012;12(1):109–16.PubMedCrossRef Saitoh T, Komano J, Saitoh Y, Misawa T, Takahama M, Kozaki T, et al. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe. 2012;12(1):109–16.PubMedCrossRef
108.
go back to reference Cloke T, Munder M, Bergin P, Herath S, Modolell M, Taylor G, et al. Phenotypic alteration of neutrophils in the blood of HIV seropositive patients. PLoS ONE. 2013;8(9):e72034.PubMedPubMedCentralCrossRef Cloke T, Munder M, Bergin P, Herath S, Modolell M, Taylor G, et al. Phenotypic alteration of neutrophils in the blood of HIV seropositive patients. PLoS ONE. 2013;8(9):e72034.PubMedPubMedCentralCrossRef
109.
go back to reference Bowers NL, Helton ES, Huijbregts RP, Goepfert PA, Heath SL, Hel Z. Immune suppression by neutrophils in HIV-1 infection: role of PD-L1/PD-1 pathway. PLoS Pathog. 2014;10(3):e1003993.PubMedPubMedCentralCrossRef Bowers NL, Helton ES, Huijbregts RP, Goepfert PA, Heath SL, Hel Z. Immune suppression by neutrophils in HIV-1 infection: role of PD-L1/PD-1 pathway. PLoS Pathog. 2014;10(3):e1003993.PubMedPubMedCentralCrossRef
110.
go back to reference Rothenberg ME, Pomerantz JL, Owen WF Jr, Avraham S, Soberman RJ, Austen KF, et al. Characterization of a human eosinophil proteoglycan, and augmentation of its biosynthesis and size by interleukin 3, interleukin 5, and granulocyte/macrophage colony stimulating factor. J Biol Chem. 1988;263(27):13901–8.PubMed Rothenberg ME, Pomerantz JL, Owen WF Jr, Avraham S, Soberman RJ, Austen KF, et al. Characterization of a human eosinophil proteoglycan, and augmentation of its biosynthesis and size by interleukin 3, interleukin 5, and granulocyte/macrophage colony stimulating factor. J Biol Chem. 1988;263(27):13901–8.PubMed
111.
go back to reference Greer JP. In: Greer JP, Arber DA, Glader B, List AF, Means Jr RT, Paraskevas F, et al., editors. Wintrobe's clinical hematology. 13th ed. Philadelphia: Wolters Kluwer Lippincott Williams & Wilkins Health; 2014. p. 2278. Greer JP. In: Greer JP, Arber DA, Glader B, List AF, Means Jr RT, Paraskevas F, et al., editors. Wintrobe's clinical hematology. 13th ed. Philadelphia: Wolters Kluwer Lippincott Williams & Wilkins Health; 2014. p. 2278.
112.
go back to reference Cohen AJ, Steigbigel RT. Eosinophilia in patients infected with human immunodeficiency virus. J Infect Dis. 1996;174(3):615–8.PubMedCrossRef Cohen AJ, Steigbigel RT. Eosinophilia in patients infected with human immunodeficiency virus. J Infect Dis. 1996;174(3):615–8.PubMedCrossRef
113.
go back to reference Sivaram M, White A, Radcliffe KW. Eosinophilia: clinical significance in HIV-infected individuals. Int J STD AIDS. 2012;23(9):635–8.PubMedCrossRef Sivaram M, White A, Radcliffe KW. Eosinophilia: clinical significance in HIV-infected individuals. Int J STD AIDS. 2012;23(9):635–8.PubMedCrossRef
114.
go back to reference Paboriboune P, Phoumindr N, Borel E, Sourinphoumy K, Phaxayaseng S, Luangkhot E, et al. Intestinal parasitic infections in HIV-infected patients, Lao People’s Democratic Republic. PLoS ONE. 2014;9(3):e91452.PubMedPubMedCentralCrossRef Paboriboune P, Phoumindr N, Borel E, Sourinphoumy K, Phaxayaseng S, Luangkhot E, et al. Intestinal parasitic infections in HIV-infected patients, Lao People’s Democratic Republic. PLoS ONE. 2014;9(3):e91452.PubMedPubMedCentralCrossRef
115.
go back to reference Skiest DJ, Keiser P. Clinical significance of eosinophilia in HIV-infected individuals. Am J Med. 1997;102(5):449–53.PubMedCrossRef Skiest DJ, Keiser P. Clinical significance of eosinophilia in HIV-infected individuals. Am J Med. 1997;102(5):449–53.PubMedCrossRef
116.
go back to reference Pavie J, Menotti J, Porcher R, Donay JL, Gallien S, Sarfati C, et al. Prevalence of opportunistic intestinal parasitic infections among HIV-infected patients with low CD4 cells counts in France in the combination antiretroviral therapy era. Int J Infect Dis. 2012;16(9):e677–9.PubMedCrossRef Pavie J, Menotti J, Porcher R, Donay JL, Gallien S, Sarfati C, et al. Prevalence of opportunistic intestinal parasitic infections among HIV-infected patients with low CD4 cells counts in France in the combination antiretroviral therapy era. Int J Infect Dis. 2012;16(9):e677–9.PubMedCrossRef
117.
go back to reference Lucey DR, Dorsky DI, Nicholson-Weller A, Weller PF. Human eosinophils express CD4 protein and bind human immunodeficiency virus 1 gp120. J Exp Med. 1989;169(1):327–32.PubMedCrossRef Lucey DR, Dorsky DI, Nicholson-Weller A, Weller PF. Human eosinophils express CD4 protein and bind human immunodeficiency virus 1 gp120. J Exp Med. 1989;169(1):327–32.PubMedCrossRef
118.
go back to reference Nagase H, Miyamasu M, Yamaguchi M, Fujisawa T, Ohta K, Yamamoto K, et al. Expression of CXCR4 in eosinophils: functional analyses and cytokine-mediated regulation. J Immunol. 2000;164(11):5935–43.PubMedCrossRef Nagase H, Miyamasu M, Yamaguchi M, Fujisawa T, Ohta K, Yamamoto K, et al. Expression of CXCR4 in eosinophils: functional analyses and cytokine-mediated regulation. J Immunol. 2000;164(11):5935–43.PubMedCrossRef
119.
go back to reference Colebunders R, Van Den Eynde C, Tolo A, Fleerackers Y, Vanham G, Kestens L, et al. Eosinophilia in patients infected with human immunodeficiency virus. J Infect Dis. 1997;175(5):1283.PubMedCrossRef Colebunders R, Van Den Eynde C, Tolo A, Fleerackers Y, Vanham G, Kestens L, et al. Eosinophilia in patients infected with human immunodeficiency virus. J Infect Dis. 1997;175(5):1283.PubMedCrossRef
121.
go back to reference Kawakami T, Galli SJ. Regulation of mast-cell and basophil function and survival by IgE. Nat Rev Immunol. 2002;2(10):773–86.PubMedCrossRef Kawakami T, Galli SJ. Regulation of mast-cell and basophil function and survival by IgE. Nat Rev Immunol. 2002;2(10):773–86.PubMedCrossRef
123.
go back to reference Israel-Biet D, Labrousse F, Tourani JM, Sors H, Andrieu JM, Even P. Elevation of IgE in HIV-infected subjects: a marker of poor prognosis. J Allergy Clin Immunol. 1992;89(1 Pt 1):68–75.PubMedCrossRef Israel-Biet D, Labrousse F, Tourani JM, Sors H, Andrieu JM, Even P. Elevation of IgE in HIV-infected subjects: a marker of poor prognosis. J Allergy Clin Immunol. 1992;89(1 Pt 1):68–75.PubMedCrossRef
124.
go back to reference Lucey DR, Zajac RA, Melcher GP, Butzin CA, Boswell RN. Serum IgE levels in 622 persons with human immunodeficiency virus infection: IgE elevation with marked depletion of CD4+ T-cells. AIDS Res Hum Retrovir. 1990;6(4):427–9.PubMedCrossRef Lucey DR, Zajac RA, Melcher GP, Butzin CA, Boswell RN. Serum IgE levels in 622 persons with human immunodeficiency virus infection: IgE elevation with marked depletion of CD4+ T-cells. AIDS Res Hum Retrovir. 1990;6(4):427–9.PubMedCrossRef
125.
go back to reference Florio G, Petraroli A, Patella V, Triggiani M, Marone G. The immunoglobulin superantigen-binding site of HIV-1 gp120 activates human basophils. Aids. 2000;14(8):931–8.PubMedCrossRef Florio G, Petraroli A, Patella V, Triggiani M, Marone G. The immunoglobulin superantigen-binding site of HIV-1 gp120 activates human basophils. Aids. 2000;14(8):931–8.PubMedCrossRef
126.
go back to reference Miadonna A, Leggieri E, Tedeschi A, Lazzarin A, Chianura L, Froldi M, et al. Enhanced basophil releasability in subjects infected with human immunodeficiency virus. Clin Immunol Immunopathol. 1990;54(2):237–46.PubMedCrossRef Miadonna A, Leggieri E, Tedeschi A, Lazzarin A, Chianura L, Froldi M, et al. Enhanced basophil releasability in subjects infected with human immunodeficiency virus. Clin Immunol Immunopathol. 1990;54(2):237–46.PubMedCrossRef
127.
go back to reference Patella V, Florio G, Petraroli A, Marone G. HIV-1 gp120 induces IL-4 and IL-13 release from human Fc epsilon RI + cells through interaction with the VH3 region of IgE. J Immunol. 2000;164(2):589–95.PubMedCrossRef Patella V, Florio G, Petraroli A, Marone G. HIV-1 gp120 induces IL-4 and IL-13 release from human Fc epsilon RI + cells through interaction with the VH3 region of IgE. J Immunol. 2000;164(2):589–95.PubMedCrossRef
128.
go back to reference Pedersen M, Nielsen CM, Permin H. HIV antigen-induced release of histamine from basophils from HIV infected patients. Mechanism and relation to disease progression and immunodeficiency. Allergy. 1991;46(3):206–12.PubMedCrossRef Pedersen M, Nielsen CM, Permin H. HIV antigen-induced release of histamine from basophils from HIV infected patients. Mechanism and relation to disease progression and immunodeficiency. Allergy. 1991;46(3):206–12.PubMedCrossRef
129.
go back to reference Albini A, Ferrini S, Benelli R, Sforzini S, Giunciuglio D, Aluigi MG, et al. HIV-1 Tat protein mimicry of chemokines. Proc Nat Acad Sci USA. 1998;95(22):13153–8.PubMedPubMedCentralCrossRef Albini A, Ferrini S, Benelli R, Sforzini S, Giunciuglio D, Aluigi MG, et al. HIV-1 Tat protein mimicry of chemokines. Proc Nat Acad Sci USA. 1998;95(22):13153–8.PubMedPubMedCentralCrossRef
130.
go back to reference de Paulis A, De Palma R, Di Gioia L, Carfora M, Prevete N, Tosi G, et al. Tat protein is an HIV-1-encoded beta-chemokine homolog that promotes migration and up-regulates CCR3 expression on human Fc epsilon RI+ cells. J Immunol. 2000;165(12):7171–9.PubMedCrossRef de Paulis A, De Palma R, Di Gioia L, Carfora M, Prevete N, Tosi G, et al. Tat protein is an HIV-1-encoded beta-chemokine homolog that promotes migration and up-regulates CCR3 expression on human Fc epsilon RI+ cells. J Immunol. 2000;165(12):7171–9.PubMedCrossRef
131.
go back to reference Coopman SA, Johnson RA, Platt R, Stern RS. Cutaneous disease and drug reactions in HIV infection. N Engl J Med. 1993;328(23):1670–4.PubMedCrossRef Coopman SA, Johnson RA, Platt R, Stern RS. Cutaneous disease and drug reactions in HIV infection. N Engl J Med. 1993;328(23):1670–4.PubMedCrossRef
132.
go back to reference Kaplan MH, Sadick N, McNutt NS, Meltzer M, Sarngadharan MG, Pahwa S. Dermatologic findings and manifestations of acquired immunodeficiency syndrome (AIDS). J Am Acad Dermatol. 1987;16(3 Pt 1):485–506.PubMedCrossRef Kaplan MH, Sadick N, McNutt NS, Meltzer M, Sarngadharan MG, Pahwa S. Dermatologic findings and manifestations of acquired immunodeficiency syndrome (AIDS). J Am Acad Dermatol. 1987;16(3 Pt 1):485–506.PubMedCrossRef
133.
go back to reference Klein SA, Dobmeyer JM, Dobmeyer TS, Pape M, Ottmann OG, Helm EB, et al. Demonstration of the Th1 to Th2 cytokine shift during the course of HIV-1 infection using cytoplasmic cytokine detection on single cell level by flow cytometry. AIDS. 1997;11(9):1111–8.PubMedCrossRef Klein SA, Dobmeyer JM, Dobmeyer TS, Pape M, Ottmann OG, Helm EB, et al. Demonstration of the Th1 to Th2 cytokine shift during the course of HIV-1 infection using cytoplasmic cytokine detection on single cell level by flow cytometry. AIDS. 1997;11(9):1111–8.PubMedCrossRef
134.
go back to reference Maggi E, Mazzetti M, Ravina A, Annunziato F, de Carli M, Piccinni MP, et al. Ability of HIV to promote a TH1 to TH0 shift and to replicate preferentially in TH2 and TH0 cells. Science. 1994;265(5169):244–8.PubMedCrossRef Maggi E, Mazzetti M, Ravina A, Annunziato F, de Carli M, Piccinni MP, et al. Ability of HIV to promote a TH1 to TH0 shift and to replicate preferentially in TH2 and TH0 cells. Science. 1994;265(5169):244–8.PubMedCrossRef
135.
go back to reference Bannert N, Farzan M, Friend DS, Ochi H, Price KS, Sodroski J, et al. Human Mast cell progenitors can be infected by macrophagetropic human immunodeficiency virus type 1 and retain virus with maturation in vitro. J Virol. 2001;75(22):10808–14.PubMedPubMedCentralCrossRef Bannert N, Farzan M, Friend DS, Ochi H, Price KS, Sodroski J, et al. Human Mast cell progenitors can be infected by macrophagetropic human immunodeficiency virus type 1 and retain virus with maturation in vitro. J Virol. 2001;75(22):10808–14.PubMedPubMedCentralCrossRef
136.
go back to reference Li Y, Li L, Wadley R, Reddel SW, Qi JC, Archis C, et al. Mast cells/basophils in the peripheral blood of allergic individuals who are HIV-1 susceptible due to their surface expression of CD4 and the chemokine receptors CCR3, CCR5, and CXCR4. Blood. 2001;97(11):3484–90.PubMedCrossRef Li Y, Li L, Wadley R, Reddel SW, Qi JC, Archis C, et al. Mast cells/basophils in the peripheral blood of allergic individuals who are HIV-1 susceptible due to their surface expression of CD4 and the chemokine receptors CCR3, CCR5, and CXCR4. Blood. 2001;97(11):3484–90.PubMedCrossRef
137.
go back to reference Sundstrom JB, Ellis JE, Hair GA, Kirshenbaum AS, Metcalfe DD, Yi H, et al. Human tissue mast cells are an inducible reservoir of persistent HIV infection. Blood. 2007;109(12):5293–300.PubMedCrossRef Sundstrom JB, Ellis JE, Hair GA, Kirshenbaum AS, Metcalfe DD, Yi H, et al. Human tissue mast cells are an inducible reservoir of persistent HIV infection. Blood. 2007;109(12):5293–300.PubMedCrossRef
138.
go back to reference Sundstrom JB, Hair GA, Ansari AA, Secor WE, Gilfillan AM, Metcalfe DD, et al. IgE-FcepsilonRI interactions determine HIV coreceptor usage and susceptibility to infection during ontogeny of mast cells. J Immunol. 2009;182(10):6401–9.PubMedPubMedCentralCrossRef Sundstrom JB, Hair GA, Ansari AA, Secor WE, Gilfillan AM, Metcalfe DD, et al. IgE-FcepsilonRI interactions determine HIV coreceptor usage and susceptibility to infection during ontogeny of mast cells. J Immunol. 2009;182(10):6401–9.PubMedPubMedCentralCrossRef
140.
go back to reference Nelson AM, Auerbach A, Man YG. Failure to detect active virus replication in mast cells at various tissue sites of HIV patients by immunohistochemistry. Int J Biol Sci. 2009;5(6):603–10.PubMedPubMedCentralCrossRef Nelson AM, Auerbach A, Man YG. Failure to detect active virus replication in mast cells at various tissue sites of HIV patients by immunohistochemistry. Int J Biol Sci. 2009;5(6):603–10.PubMedPubMedCentralCrossRef
141.
go back to reference Jiang AP, Jiang JF, Wei JF, Guo MG, Qin Y, Guo QQ, et al. Human mucosal mast cells capture HIV-1 and mediate viral trans-infection of CD4+ T cells. J Virol. 2015;90(6):2928–37.PubMedCrossRef Jiang AP, Jiang JF, Wei JF, Guo MG, Qin Y, Guo QQ, et al. Human mucosal mast cells capture HIV-1 and mediate viral trans-infection of CD4+ T cells. J Virol. 2015;90(6):2928–37.PubMedCrossRef
142.
go back to reference Jiang AP, Jiang JF, Guo MG, Jin YM, Li YY, Wang JH. Human blood-circulating basophils capture HIV-1 and mediate viral trans-infection of CD4 + T cells. J Virol. 2015;89(15):8050–62.PubMedPubMedCentralCrossRef Jiang AP, Jiang JF, Guo MG, Jin YM, Li YY, Wang JH. Human blood-circulating basophils capture HIV-1 and mediate viral trans-infection of CD4 + T cells. J Virol. 2015;89(15):8050–62.PubMedPubMedCentralCrossRef
143.
go back to reference Iwasaki H, Akashi K. Hematopoietic developmental pathways: on cellular basis. Oncogene. 2007;26(47):6687–96.PubMedCrossRef Iwasaki H, Akashi K. Hematopoietic developmental pathways: on cellular basis. Oncogene. 2007;26(47):6687–96.PubMedCrossRef
144.
go back to reference Lazarevic V, Glimcher LH, Lord GM. T-bet: a bridge between innate and adaptive immunity. Nat Rev Immunol. 2013;13(11):777–89.PubMedCrossRef Lazarevic V, Glimcher LH, Lord GM. T-bet: a bridge between innate and adaptive immunity. Nat Rev Immunol. 2013;13(11):777–89.PubMedCrossRef
145.
go back to reference Eberl G, Di Santo JP, Vivier E. The brave new world of innate lymphoid cells. Nat Immunol. 2015;16(1):1–5.PubMedCrossRef Eberl G, Di Santo JP, Vivier E. The brave new world of innate lymphoid cells. Nat Immunol. 2015;16(1):1–5.PubMedCrossRef
146.
go back to reference Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, et al. Innate lymphoid cells—a proposal for uniform nomenclature. Nat Rev Immunol. 2013;13(2):145–9.PubMedCrossRef Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, et al. Innate lymphoid cells—a proposal for uniform nomenclature. Nat Rev Immunol. 2013;13(2):145–9.PubMedCrossRef
147.
go back to reference Vivier E, van de Pavert SA, Cooper MD, Belz GT. The evolution of innate lymphoid cells. Nat Immunol. 2016;17(7):790–4.PubMedCrossRef Vivier E, van de Pavert SA, Cooper MD, Belz GT. The evolution of innate lymphoid cells. Nat Immunol. 2016;17(7):790–4.PubMedCrossRef
148.
go back to reference Kloverpris HN, Kazer SW, Mjosberg J, Mabuka JM, Wellmann A, Ndhlovu Z, et al. Innate lymphoid cells are depleted irreversibly during acute HIV-1 infection in the absence of viral suppression. Immunity. 2016;44(2):391–405.PubMedCrossRef Kloverpris HN, Kazer SW, Mjosberg J, Mabuka JM, Wellmann A, Ndhlovu Z, et al. Innate lymphoid cells are depleted irreversibly during acute HIV-1 infection in the absence of viral suppression. Immunity. 2016;44(2):391–405.PubMedCrossRef
149.
151.
go back to reference Alter G, Teigen N, Davis BT, Addo MM, Suscovich TJ, Waring MT, et al. Sequential deregulation of NK cell subset distribution and function starting in acute HIV-1 infection. Blood. 2005;106(10):3366–9.PubMedCrossRef Alter G, Teigen N, Davis BT, Addo MM, Suscovich TJ, Waring MT, et al. Sequential deregulation of NK cell subset distribution and function starting in acute HIV-1 infection. Blood. 2005;106(10):3366–9.PubMedCrossRef
152.
go back to reference Kuri-Cervantes L, de Oca GS, Avila-Rios S, Hernandez-Juan R, Reyes-Teran G. Activation of NK cells is associated with HIV-1 disease progression. J Leukoc Biol. 2014;96(1):7–16.PubMedCrossRef Kuri-Cervantes L, de Oca GS, Avila-Rios S, Hernandez-Juan R, Reyes-Teran G. Activation of NK cells is associated with HIV-1 disease progression. J Leukoc Biol. 2014;96(1):7–16.PubMedCrossRef
153.
go back to reference Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol. 2001;22(11):633–40.PubMedCrossRef Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol. 2001;22(11):633–40.PubMedCrossRef
154.
go back to reference Hu PF, Hultin LE, Hultin P, Hausner MA, Hirji K, Jewett A, et al. Natural killer cell immunodeficiency in HIV disease is manifest by profoundly decreased numbers of CD16+CD56+ cells and expansion of a population of CD16dimCD56- cells with low lytic activity. J Acquir Immune Defic Syndr Hum Retrovirol. 1995;10(3):331–40.PubMed Hu PF, Hultin LE, Hultin P, Hausner MA, Hirji K, Jewett A, et al. Natural killer cell immunodeficiency in HIV disease is manifest by profoundly decreased numbers of CD16+CD56+ cells and expansion of a population of CD16dimCD56- cells with low lytic activity. J Acquir Immune Defic Syndr Hum Retrovirol. 1995;10(3):331–40.PubMed
155.
go back to reference Mavilio D, Lombardo G, Benjamin J, Kim D, Follman D, Marcenaro E, et al. Characterization of CD56−/CD16+ natural killer (NK) cells: a highly dysfunctional NK subset expanded in HIV-infected viremic individuals. Proc Natl Acad Sci USA. 2005;102(8):2886–91.PubMedPubMedCentralCrossRef Mavilio D, Lombardo G, Benjamin J, Kim D, Follman D, Marcenaro E, et al. Characterization of CD56/CD16+ natural killer (NK) cells: a highly dysfunctional NK subset expanded in HIV-infected viremic individuals. Proc Natl Acad Sci USA. 2005;102(8):2886–91.PubMedPubMedCentralCrossRef
156.
go back to reference Vieillard V, Fausther-Bovendo H, Samri A, Debre P. French asymptomatiques a long terme A-COSG. Specific phenotypic and functional features of natural killer cells from HIV-infected long-term nonprogressors and HIV controllers. J Acquir Immune Defic Syndr. 2010;53(5):564–73.PubMed Vieillard V, Fausther-Bovendo H, Samri A, Debre P. French asymptomatiques a long terme A-COSG. Specific phenotypic and functional features of natural killer cells from HIV-infected long-term nonprogressors and HIV controllers. J Acquir Immune Defic Syndr. 2010;53(5):564–73.PubMed
157.
go back to reference Bernstein HB, Wang G, Plasterer MC, Zack JA, Ramasastry P, Mumenthaler SM, et al. CD4 + NK cells can be productively infected with HIV, leading to downregulation of CD4 expression and changes in function. Virology. 2009;387(1):59–66.PubMedPubMedCentralCrossRef Bernstein HB, Wang G, Plasterer MC, Zack JA, Ramasastry P, Mumenthaler SM, et al. CD4 + NK cells can be productively infected with HIV, leading to downregulation of CD4 expression and changes in function. Virology. 2009;387(1):59–66.PubMedPubMedCentralCrossRef
158.
go back to reference Mavilio D, Benjamin J, Daucher M, Lombardo G, Kottilil S, Planta MA, et al. Natural killer cells in HIV-1 infection: dichotomous effects of viremia on inhibitory and activating receptors and their functional correlates. Proc Nat Acad Sci USA. 2003;100(25):15011–6.PubMedPubMedCentralCrossRef Mavilio D, Benjamin J, Daucher M, Lombardo G, Kottilil S, Planta MA, et al. Natural killer cells in HIV-1 infection: dichotomous effects of viremia on inhibitory and activating receptors and their functional correlates. Proc Nat Acad Sci USA. 2003;100(25):15011–6.PubMedPubMedCentralCrossRef
159.
go back to reference Lichtfuss GF, Cheng WJ, Farsakoglu Y, Paukovics G, Rajasuriar R, Velayudham P, et al. Virologically suppressed HIV patients show activation of NK cells and persistent innate immune activation. J Immunol. 2012;189(3):1491–9.PubMedCrossRef Lichtfuss GF, Cheng WJ, Farsakoglu Y, Paukovics G, Rajasuriar R, Velayudham P, et al. Virologically suppressed HIV patients show activation of NK cells and persistent innate immune activation. J Immunol. 2012;189(3):1491–9.PubMedCrossRef
160.
go back to reference Brockman MA, Kwon DS, Tighe DP, Pavlik DF, Rosato PC, Sela J, et al. IL-10 is up-regulated in multiple cell types during viremic HIV infection and reversibly inhibits virus-specific T cells. Blood. 2009;114(2):346–56.PubMedPubMedCentralCrossRef Brockman MA, Kwon DS, Tighe DP, Pavlik DF, Rosato PC, Sela J, et al. IL-10 is up-regulated in multiple cell types during viremic HIV infection and reversibly inhibits virus-specific T cells. Blood. 2009;114(2):346–56.PubMedPubMedCentralCrossRef
161.
go back to reference Parato KG, Kumar A, Badley AD, Sanchez-Dardon JL, Chambers KA, Young CD, et al. Normalization of natural killer cell function and phenotype with effective anti-HIV therapy and the role of IL-10. AIDS. 2002;16(9):1251–6.PubMedCrossRef Parato KG, Kumar A, Badley AD, Sanchez-Dardon JL, Chambers KA, Young CD, et al. Normalization of natural killer cell function and phenotype with effective anti-HIV therapy and the role of IL-10. AIDS. 2002;16(9):1251–6.PubMedCrossRef
162.
go back to reference Scott-Algara D, Truong LX, Versmisse P, David A, Luong TT, Nguyen NV, et al. Cutting edge: increased NK cell activity in HIV-1-exposed but uninfected Vietnamese intravascular drug users. J Immunol. 2003;171(11):5663–7.PubMedCrossRef Scott-Algara D, Truong LX, Versmisse P, David A, Luong TT, Nguyen NV, et al. Cutting edge: increased NK cell activity in HIV-1-exposed but uninfected Vietnamese intravascular drug users. J Immunol. 2003;171(11):5663–7.PubMedCrossRef
163.
go back to reference Vieillard V, Strominger JL, Debre P. NK cytotoxicity against CD4 + T cells during HIV-1 infection: a gp41 peptide induces the expression of an NKp44 ligand. Proc Nat Acad Sci USA. 2005;102(31):10981–6.PubMedPubMedCentralCrossRef Vieillard V, Strominger JL, Debre P. NK cytotoxicity against CD4 + T cells during HIV-1 infection: a gp41 peptide induces the expression of an NKp44 ligand. Proc Nat Acad Sci USA. 2005;102(31):10981–6.PubMedPubMedCentralCrossRef
164.
go back to reference Ward J, Bonaparte M, Sacks J, Guterman J, Fogli M, Mavilio D, et al. HIV modulates the expression of ligands important in triggering natural killer cell cytotoxic responses on infected primary T-cell blasts. Blood. 2007;110(4):1207–14.PubMedPubMedCentralCrossRef Ward J, Bonaparte M, Sacks J, Guterman J, Fogli M, Mavilio D, et al. HIV modulates the expression of ligands important in triggering natural killer cell cytotoxic responses on infected primary T-cell blasts. Blood. 2007;110(4):1207–14.PubMedPubMedCentralCrossRef
165.
go back to reference Martin MP, Gao X, Lee JH, Nelson GW, Detels R, Goedert JJ, et al. Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nat Genet. 2002;31(4):429–34.PubMed Martin MP, Gao X, Lee JH, Nelson GW, Detels R, Goedert JJ, et al. Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nat Genet. 2002;31(4):429–34.PubMed
166.
go back to reference Kramski M, Stratov I, Kent SJ. The role of HIV-specific antibody-dependent cellular cytotoxicity in HIV prevention and the influence of the HIV-1 Vpu protein. AIDS. 2015;29(2):137–44.PubMedCrossRef Kramski M, Stratov I, Kent SJ. The role of HIV-specific antibody-dependent cellular cytotoxicity in HIV prevention and the influence of the HIV-1 Vpu protein. AIDS. 2015;29(2):137–44.PubMedCrossRef
167.
go back to reference Lambotte O, Ferrari G, Moog C, Yates NL, Liao HX, Parks RJ, et al. Heterogeneous neutralizing antibody and antibody-dependent cell cytotoxicity responses in HIV-1 elite controllers. AIDS. 2009;23(8):897–906.PubMedPubMedCentralCrossRef Lambotte O, Ferrari G, Moog C, Yates NL, Liao HX, Parks RJ, et al. Heterogeneous neutralizing antibody and antibody-dependent cell cytotoxicity responses in HIV-1 elite controllers. AIDS. 2009;23(8):897–906.PubMedPubMedCentralCrossRef
168.
169.
go back to reference Bendelac A, Savage PB, Teyton L. The biology of NKT cells. Ann Rev Immunol. 2007;25:297–336.CrossRef Bendelac A, Savage PB, Teyton L. The biology of NKT cells. Ann Rev Immunol. 2007;25:297–336.CrossRef
170.
go back to reference Gao B, Radaeva S, Park O. Liver natural killer and natural killer T cells: immunobiology and emerging roles in liver diseases. J Leukoc Biol. 2009;86(3):513–28.PubMedPubMedCentralCrossRef Gao B, Radaeva S, Park O. Liver natural killer and natural killer T cells: immunobiology and emerging roles in liver diseases. J Leukoc Biol. 2009;86(3):513–28.PubMedPubMedCentralCrossRef
171.
go back to reference Motsinger A, Haas DW, Stanic AK, Van Kaer L, Joyce S, Unutmaz D. CD1d-restricted human natural killer T cells are highly susceptible to human immunodeficiency virus 1 infection. J Exp Med. 2002;195(7):869–79.PubMedPubMedCentralCrossRef Motsinger A, Haas DW, Stanic AK, Van Kaer L, Joyce S, Unutmaz D. CD1d-restricted human natural killer T cells are highly susceptible to human immunodeficiency virus 1 infection. J Exp Med. 2002;195(7):869–79.PubMedPubMedCentralCrossRef
172.
go back to reference Fernandez CS, Kelleher AD, Finlayson R, Godfrey DI, Kent SJ. NKT cell depletion in humans during early HIV infection. Immunol Cell Biol. 2014;92(7):578–90.PubMedCrossRef Fernandez CS, Kelleher AD, Finlayson R, Godfrey DI, Kent SJ. NKT cell depletion in humans during early HIV infection. Immunol Cell Biol. 2014;92(7):578–90.PubMedCrossRef
173.
go back to reference Sandberg JK, Fast NM, Palacios EH, Fennelly G, Dobroszycki J, Palumbo P, et al. Selective loss of innate CD4(+) V alpha 24 natural killer T cells in human immunodeficiency virus infection. J Virol. 2002;76(15):7528–34.PubMedPubMedCentralCrossRef Sandberg JK, Fast NM, Palacios EH, Fennelly G, Dobroszycki J, Palumbo P, et al. Selective loss of innate CD4(+) V alpha 24 natural killer T cells in human immunodeficiency virus infection. J Virol. 2002;76(15):7528–34.PubMedPubMedCentralCrossRef
175.
go back to reference Yang OO, Wilson SB, Hultin LE, Detels R, Hultin PM, Ibarrondo FJ, et al. Delayed reconstitution of CD4 + iNKT cells after effective HIV type 1 therapy. AIDS Res Hum Retrovir. 2007;23(7):913–22.PubMedCrossRef Yang OO, Wilson SB, Hultin LE, Detels R, Hultin PM, Ibarrondo FJ, et al. Delayed reconstitution of CD4 + iNKT cells after effective HIV type 1 therapy. AIDS Res Hum Retrovir. 2007;23(7):913–22.PubMedCrossRef
176.
go back to reference Unutmaz D. NKT cells and HIV infection. Microbes and infection/Institut Pasteur. 2003;5(11):1041–7.CrossRef Unutmaz D. NKT cells and HIV infection. Microbes and infection/Institut Pasteur. 2003;5(11):1041–7.CrossRef
177.
178.
go back to reference Poccia F, Gougeon ML, Bonneville M, Lopez-Botet M, Moretta A, Battistini L, et al. Innate T-cell immunity to nonpeptidic antigens. Immunol Today. 1998;19(6):253–6.PubMedCrossRef Poccia F, Gougeon ML, Bonneville M, Lopez-Botet M, Moretta A, Battistini L, et al. Innate T-cell immunity to nonpeptidic antigens. Immunol Today. 1998;19(6):253–6.PubMedCrossRef
179.
go back to reference Poccia F, Wallace M, Colizzi V, Malkovsky M. Possible protective and pathogenic roles of gamma delta T lymphocytes in HIV-infections (Review). Int J Mol Med. 1998;1(2):409–13.PubMed Poccia F, Wallace M, Colizzi V, Malkovsky M. Possible protective and pathogenic roles of gamma delta T lymphocytes in HIV-infections (Review). Int J Mol Med. 1998;1(2):409–13.PubMed
180.
go back to reference Gober HJ, Kistowska M, Angman L, Jeno P, Mori L, De Libero G. Human T cell receptor gammadelta cells recognize endogenous mevalonate metabolites in tumor cells. J Exp Med. 2003;197(2):163–8.PubMedPubMedCentralCrossRef Gober HJ, Kistowska M, Angman L, Jeno P, Mori L, De Libero G. Human T cell receptor gammadelta cells recognize endogenous mevalonate metabolites in tumor cells. J Exp Med. 2003;197(2):163–8.PubMedPubMedCentralCrossRef
181.
go back to reference Hayday AC. Gammadelta T cells and the lymphoid stress-surveillance response. Immunity. 2009;31(2):184–96.PubMedCrossRef Hayday AC. Gammadelta T cells and the lymphoid stress-surveillance response. Immunity. 2009;31(2):184–96.PubMedCrossRef
182.
go back to reference Poccia F, Boullier S, Lecoeur H, Cochet M, Poquet Y, Colizzi V, et al. Peripheral V gamma 9/V delta 2 T cell deletion and anergy to nonpeptidic mycobacterial antigens in asymptomatic HIV-1-infected persons. J Immunol. 1996;157(1):449–61.PubMed Poccia F, Boullier S, Lecoeur H, Cochet M, Poquet Y, Colizzi V, et al. Peripheral V gamma 9/V delta 2 T cell deletion and anergy to nonpeptidic mycobacterial antigens in asymptomatic HIV-1-infected persons. J Immunol. 1996;157(1):449–61.PubMed
183.
go back to reference Autran B, Triebel F, Katlama C, Rozenbaum W, Hercend T, Debre P. T cell receptor gamma/delta + lymphocyte subsets during HIV infection. Clin Exp Immunol. 1989;75(2):206–10.PubMedPubMedCentral Autran B, Triebel F, Katlama C, Rozenbaum W, Hercend T, Debre P. T cell receptor gamma/delta + lymphocyte subsets during HIV infection. Clin Exp Immunol. 1989;75(2):206–10.PubMedPubMedCentral
184.
go back to reference Chia WK, Freedman J, Li X, Salit I, Kardish M, Read SE. Programmed cell death induced by HIV type 1 antigen stimulation is associated with a decrease in cytotoxic T lymphocyte activity in advanced HIV type 1 infection. AIDS Res Hum Retrovir. 1995;11(2):249–56.PubMedCrossRef Chia WK, Freedman J, Li X, Salit I, Kardish M, Read SE. Programmed cell death induced by HIV type 1 antigen stimulation is associated with a decrease in cytotoxic T lymphocyte activity in advanced HIV type 1 infection. AIDS Res Hum Retrovir. 1995;11(2):249–56.PubMedCrossRef
185.
go back to reference Li H, Pauza CD. HIV envelope-mediated, CCR5/alpha4beta7-dependent killing of CD4-negative gammadelta T cells which are lost during progression to AIDS. Blood. 2011;118(22):5824–31.PubMedPubMedCentralCrossRef Li H, Pauza CD. HIV envelope-mediated, CCR5/alpha4beta7-dependent killing of CD4-negative gammadelta T cells which are lost during progression to AIDS. Blood. 2011;118(22):5824–31.PubMedPubMedCentralCrossRef
186.
go back to reference Li H, Peng H, Ma P, Ruan Y, Su B, Ding X, et al. Association between Vgamma2Vdelta2 T cells and disease progression after infection with closely related strains of HIV in China. Clin Infect Dis. 2008;46(9):1466–72.PubMedPubMedCentralCrossRef Li H, Peng H, Ma P, Ruan Y, Su B, Ding X, et al. Association between Vgamma2Vdelta2 T cells and disease progression after infection with closely related strains of HIV in China. Clin Infect Dis. 2008;46(9):1466–72.PubMedPubMedCentralCrossRef
187.
go back to reference Wallace M, Scharko AM, Pauza CD, Fisch P, Imaoka K, Kawabata S, et al. Functional gamma delta T-lymphocyte defect associated with human immunodeficiency virus infections. Mol Med. 1997;3(1):60–71.PubMedPubMedCentral Wallace M, Scharko AM, Pauza CD, Fisch P, Imaoka K, Kawabata S, et al. Functional gamma delta T-lymphocyte defect associated with human immunodeficiency virus infections. Mol Med. 1997;3(1):60–71.PubMedPubMedCentral
188.
go back to reference Sacchi A, Tempestilli M, Turchi F, Agrati C, Casetti R, Cimini E, et al. CD3zeta down-modulation may explain Vgamma9Vdelta2 T lymphocyte anergy in HIV-infected patients. J Infect Dis. 2009;199(3):432–6.PubMedCrossRef Sacchi A, Tempestilli M, Turchi F, Agrati C, Casetti R, Cimini E, et al. CD3zeta down-modulation may explain Vgamma9Vdelta2 T lymphocyte anergy in HIV-infected patients. J Infect Dis. 2009;199(3):432–6.PubMedCrossRef
189.
go back to reference Maniar A, Zhang X, Lin W, Gastman BR, Pauza CD, Strome SE, et al. Human gammadelta T lymphocytes induce robust NK cell-mediated antitumor cytotoxicity through CD137 engagement. Blood. 2010;116(10):1726–33.PubMedPubMedCentralCrossRef Maniar A, Zhang X, Lin W, Gastman BR, Pauza CD, Strome SE, et al. Human gammadelta T lymphocytes induce robust NK cell-mediated antitumor cytotoxicity through CD137 engagement. Blood. 2010;116(10):1726–33.PubMedPubMedCentralCrossRef
190.
go back to reference Brunetta E, Hudspeth KL, Mavilio D. Pathologic natural killer cell subset redistribution in HIV-1 infection: new insights in pathophysiology and clinical outcomes. J Leukoc Biol. 2010;88(6):1119–30.PubMedCrossRef Brunetta E, Hudspeth KL, Mavilio D. Pathologic natural killer cell subset redistribution in HIV-1 infection: new insights in pathophysiology and clinical outcomes. J Leukoc Biol. 2010;88(6):1119–30.PubMedCrossRef
191.
go back to reference Li H, Chaudhry S, Poonia B, Shao Y, Pauza CD. Depletion and dysfunction of Vgamma2Vdelta2 T cells in HIV disease: mechanisms, impacts and therapeutic implications. Cell Mol Immunol. 2013;10(1):42–9.PubMedCrossRef Li H, Chaudhry S, Poonia B, Shao Y, Pauza CD. Depletion and dysfunction of Vgamma2Vdelta2 T cells in HIV disease: mechanisms, impacts and therapeutic implications. Cell Mol Immunol. 2013;10(1):42–9.PubMedCrossRef
192.
go back to reference Martini F, Poccia F, Goletti D, Carrara S, Vincenti D, D’Offizi G, et al. Acute human immunodeficiency virus replication causes a rapid and persistent impairment of Vgamma9Vdelta2 T cells in chronically infected patients undergoing structured treatment interruption. J Infect Dis. 2002;186(6):847–50.PubMedCrossRef Martini F, Poccia F, Goletti D, Carrara S, Vincenti D, D’Offizi G, et al. Acute human immunodeficiency virus replication causes a rapid and persistent impairment of Vgamma9Vdelta2 T cells in chronically infected patients undergoing structured treatment interruption. J Infect Dis. 2002;186(6):847–50.PubMedCrossRef
193.
go back to reference Nilssen DE, Muller F, Oktedalen O, Froland SS, Fausa O, Halstensen TS, et al. Intraepithelial gamma/delta T cells in duodenal mucosa are related to the immune state and survival time in AIDS. J Virol. 1996;70(6):3545–50.PubMedPubMedCentral Nilssen DE, Muller F, Oktedalen O, Froland SS, Fausa O, Halstensen TS, et al. Intraepithelial gamma/delta T cells in duodenal mucosa are related to the immune state and survival time in AIDS. J Virol. 1996;70(6):3545–50.PubMedPubMedCentral
194.
go back to reference Espindola MS, Frantz FG, Soares LS, Masson AP, Tefe-Silva C, Bitencourt CS, et al. Combined immunization using DNA-Sm14 and DNA-Hsp65 increases CD8+ memory T cells, reduces chronic pathology and decreases egg viability during Schistosoma mansoni infection. BMC Infect Dis. 2014;14:263.PubMedPubMedCentralCrossRef Espindola MS, Frantz FG, Soares LS, Masson AP, Tefe-Silva C, Bitencourt CS, et al. Combined immunization using DNA-Sm14 and DNA-Hsp65 increases CD8+ memory T cells, reduces chronic pathology and decreases egg viability during Schistosoma mansoni infection. BMC Infect Dis. 2014;14:263.PubMedPubMedCentralCrossRef
195.
go back to reference CobosJimenez V, Wit FW, Joerink M, Maurer I, Harskamp AM, Schouten J, et al. T-cell activation independently associates with immune senescence in HIV-infected recipients of long-term antiretroviral treatment. J Infect Dis. 2016;214(2):216–25.CrossRef CobosJimenez V, Wit FW, Joerink M, Maurer I, Harskamp AM, Schouten J, et al. T-cell activation independently associates with immune senescence in HIV-infected recipients of long-term antiretroviral treatment. J Infect Dis. 2016;214(2):216–25.CrossRef
196.
go back to reference Wada NI, Jacobson LP, Margolick JB, Breen EC, Macatangay B, Penugonda S, et al. The effect of HAART-induced HIV suppression on circulating markers of inflammation and immune activation. AIDS. 2015;29(4):463–71.PubMedPubMedCentralCrossRef Wada NI, Jacobson LP, Margolick JB, Breen EC, Macatangay B, Penugonda S, et al. The effect of HAART-induced HIV suppression on circulating markers of inflammation and immune activation. AIDS. 2015;29(4):463–71.PubMedPubMedCentralCrossRef
199.
go back to reference Zapata HJ, Shaw AC. Aging of the human innate immune system in HIV infection. Curr Opin Immunol. 2014;29:127–36.PubMedCrossRef Zapata HJ, Shaw AC. Aging of the human innate immune system in HIV infection. Curr Opin Immunol. 2014;29:127–36.PubMedCrossRef
Metadata
Title
HIV infection: focus on the innate immune cells
Authors
Milena S. Espíndola
Luana S. Soares
Leonardo J. Galvão-Lima
Fabiana A. Zambuzi
Maira C. Cacemiro
Verônica S. Brauer
Fabiani G. Frantz
Publication date
01-12-2016
Publisher
Springer US
Published in
Immunologic Research / Issue 5-6/2016
Print ISSN: 0257-277X
Electronic ISSN: 1559-0755
DOI
https://doi.org/10.1007/s12026-016-8862-2

Other articles of this Issue 5-6/2016

Immunologic Research 5-6/2016 Go to the issue