Skip to main content
Top
Published in: Endocrine 3/2022

07-10-2022 | Insulins | Original Article

Sorafenib decreases glycemia by impairing hepatic glucose metabolism

Authors: Jingjing Ma, Fang Sui, Yan Liu, Mengmeng Yuan, Hui Dang, Rui Liu, Bingyin Shi, Peng Hou

Published in: Endocrine | Issue 3/2022

Login to get access

Abstract

Purpose

Sorafenib has been reported to reduce blood glucose levels in diabetic and non-diabetic patients in previous retrospective studies. However, the mechanism of which the hypoglycemic effects of sorafenib is not clearly explored. In this study, we investigated the effect of sorafenib on blood glucose levels in diabetic and normal mice and explored the possible mechanism.

Methods

We established a mouse model of type 2 diabetes by a high-fat diet combined with a low-dose of streptozotocin (STZ), to identify the hypoglycemic effect of sorafenib in different mice. Glucose tolerance, insulin tolerance and pyruvate tolerance tests were done after daily gavage with sorafenib to diabetic and control mice. To explore the molecular mechanism by which sorafenib regulates blood glucose levels, hepatic glucose metabolism signaling was studied by a series of in vivo and in vitro experiments.

Results

Sorafenib reduced blood glucose levels in both control and diabetic mice, particularly in the latter. The diabetic mice exhibited improved glucose and insulin tolerance after sorafenib treatment. Further studies showed that the expressions of gluconeogenesis-related enzymes, such as PCK1, G6PC and PCB, were significantly decreased upon sorafenib treatment. Mechanistically, sorafenib downregulates the expression of c-MYC downstream targets PCK1, G6PC and PCB through blocking the ERK/c-MYC signaling pathway, thereby playing its hypoglycemic effect by impairing hepatic glucose metabolism.

Conclusion

Sorafenib reduces blood glucose levels through downregulating gluconeogenic genes, especially in diabetic mice, suggesting the patients with T2DM when treated with sorafenib need more emphasis in monitoring blood glucose to avoid unnecessary hypoglycemia.
Appendix
Available only for authorised users
Literature
1.
go back to reference B. Escudier, F. Worden, M. Kudo, Sorafenib: key lessons from over 10 years of experience. Expert Rev. Anticancer Ther. 19(2), 177–189 (2019)PubMedCrossRef B. Escudier, F. Worden, M. Kudo, Sorafenib: key lessons from over 10 years of experience. Expert Rev. Anticancer Ther. 19(2), 177–189 (2019)PubMedCrossRef
2.
go back to reference L. Liu, Y. Cao, C. Chen, X. Zhang, A. McNabola, D. Wilkie et al. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res. 66(24), 11851–11858 (2006)PubMedCrossRef L. Liu, Y. Cao, C. Chen, X. Zhang, A. McNabola, D. Wilkie et al. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res. 66(24), 11851–11858 (2006)PubMedCrossRef
3.
go back to reference B. Escudier, T. Eisen, W.M. Stadler, C. Szczylik, S. Oudard, M. Siebels et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med. 356(2), 125–134 (2007)PubMedCrossRef B. Escudier, T. Eisen, W.M. Stadler, C. Szczylik, S. Oudard, M. Siebels et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med. 356(2), 125–134 (2007)PubMedCrossRef
4.
go back to reference J.M. Llovet, S. Ricci, V. Mazzaferro, P. Hilgard, E. Gane, J.F. Blanc et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 359(4), 378–390 (2008)PubMedCrossRef J.M. Llovet, S. Ricci, V. Mazzaferro, P. Hilgard, E. Gane, J.F. Blanc et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 359(4), 378–390 (2008)PubMedCrossRef
5.
go back to reference P. Fallahi, S.M. Ferrari, F. Santini, A. Corrado, G. Materazzi, S. Ulisse et al. Sorafenib and thyroid cancer. BioDrugs 27(6), 615–628 (2013)PubMedCrossRef P. Fallahi, S.M. Ferrari, F. Santini, A. Corrado, G. Materazzi, S. Ulisse et al. Sorafenib and thyroid cancer. BioDrugs 27(6), 615–628 (2013)PubMedCrossRef
6.
go back to reference J.T. Hartmann, M. Haap, H.G. Kopp, H.P. Lipp, Tyrosine kinase inhibitors - a review on pharmacology, metabolism and side effects. Curr. Drug Metab. 10(5), 470–481 (2009)PubMedCrossRef J.T. Hartmann, M. Haap, H.G. Kopp, H.P. Lipp, Tyrosine kinase inhibitors - a review on pharmacology, metabolism and side effects. Curr. Drug Metab. 10(5), 470–481 (2009)PubMedCrossRef
7.
go back to reference K.I. Fujita, H. Ishida, Y. Kubota, Y. Sasaki, Toxicities of Receptor Tyrosine Kinase Inhibitors in Cancer Pharmacotherapy: Management with Clinical Pharmacology. Curr. Drug Metab. 18(3), 186–198 (2017)PubMedCrossRef K.I. Fujita, H. Ishida, Y. Kubota, Y. Sasaki, Toxicities of Receptor Tyrosine Kinase Inhibitors in Cancer Pharmacotherapy: Management with Clinical Pharmacology. Curr. Drug Metab. 18(3), 186–198 (2017)PubMedCrossRef
8.
go back to reference N.M. Agostino, V.M. Chinchilli, C.J. Lynch, A. Koszyk-Szewczyk, R. Gingrich, J. Sivik et al. Effect of the tyrosine kinase inhibitors (sunitinib, sorafenib, dasatinib, and imatinib) on blood glucose levels in diabetic and nondiabetic patients in general clinical practice. J. Oncol. Pharm. Pract. 17(3), 197–202 (2011)PubMedCrossRef N.M. Agostino, V.M. Chinchilli, C.J. Lynch, A. Koszyk-Szewczyk, R. Gingrich, J. Sivik et al. Effect of the tyrosine kinase inhibitors (sunitinib, sorafenib, dasatinib, and imatinib) on blood glucose levels in diabetic and nondiabetic patients in general clinical practice. J. Oncol. Pharm. Pract. 17(3), 197–202 (2011)PubMedCrossRef
9.
go back to reference D. Veneri, M. Franchini, E. Bonora, Imatinib and regression of type 2 diabetes. N. Engl. J. Med. 352(10), 1049–1050 (2005)PubMedCrossRef D. Veneri, M. Franchini, E. Bonora, Imatinib and regression of type 2 diabetes. N. Engl. J. Med. 352(10), 1049–1050 (2005)PubMedCrossRef
10.
go back to reference M. Breccia, M. Muscaritoli, Z. Aversa, F. Mandelli, G. Alimena, Imatinib mesylate may improve fasting blood glucose in diabetic Ph+ chronic myelogenous leukemia patients responsive to treatment. J. Clin. Oncol. 22(22), 4653–4655 (2004)PubMedCrossRef M. Breccia, M. Muscaritoli, Z. Aversa, F. Mandelli, G. Alimena, Imatinib mesylate may improve fasting blood glucose in diabetic Ph+ chronic myelogenous leukemia patients responsive to treatment. J. Clin. Oncol. 22(22), 4653–4655 (2004)PubMedCrossRef
11.
go back to reference B. Billemont, J. Medioni, L. Taillade, D. Helley, J.B. Meric, O. Rixe et al. Blood glucose levels in patients with metastatic renal cell carcinoma treated with sunitinib. Br. J. Cancer 99(9), 1380–1382 (2008)PubMedPubMedCentralCrossRef B. Billemont, J. Medioni, L. Taillade, D. Helley, J.B. Meric, O. Rixe et al. Blood glucose levels in patients with metastatic renal cell carcinoma treated with sunitinib. Br. J. Cancer 99(9), 1380–1382 (2008)PubMedPubMedCentralCrossRef
12.
go back to reference A. Templeton, M. Brändle, T. Cerny, S. Gillessen, Remission of diabetes while on sunitinib treatment for renal cell carcinoma. Ann. Oncol. 19(4), 824–825 (2008)PubMedCrossRef A. Templeton, M. Brändle, T. Cerny, S. Gillessen, Remission of diabetes while on sunitinib treatment for renal cell carcinoma. Ann. Oncol. 19(4), 824–825 (2008)PubMedCrossRef
13.
go back to reference M. Breccia, M. Muscaritoli, L. Cannella, C. Stefanizzi, A. Frustaci, G. Alimena, Fasting glucose improvement under dasatinib treatment in an accelerated phase chronic myeloid leukemia patient unresponsive to imatinib and nilotinib. Leuk. Res. 32(10), 1626–1628 (2008)PubMedCrossRef M. Breccia, M. Muscaritoli, L. Cannella, C. Stefanizzi, A. Frustaci, G. Alimena, Fasting glucose improvement under dasatinib treatment in an accelerated phase chronic myeloid leukemia patient unresponsive to imatinib and nilotinib. Leuk. Res. 32(10), 1626–1628 (2008)PubMedCrossRef
14.
go back to reference R. Malek, S.N. Davis, Tyrosine kinase inhibitors under investigation for the treatment of type II diabetes. Expert Opin. Investig. Drugs 25(3), 287–296 (2016)PubMedCrossRef R. Malek, S.N. Davis, Tyrosine kinase inhibitors under investigation for the treatment of type II diabetes. Expert Opin. Investig. Drugs 25(3), 287–296 (2016)PubMedCrossRef
15.
go back to reference M.S. Han, K.W. Chung, H.G. Cheon, S.D. Rhee, C.H. Yoon, M.K. Lee et al. Imatinib mesylate reduces endoplasmic reticulum stress and induces remission of diabetes in db/db mice. Diabetes 58(2), 329–336 (2009)PubMedPubMedCentralCrossRef M.S. Han, K.W. Chung, H.G. Cheon, S.D. Rhee, C.H. Yoon, M.K. Lee et al. Imatinib mesylate reduces endoplasmic reticulum stress and induces remission of diabetes in db/db mice. Diabetes 58(2), 329–336 (2009)PubMedPubMedCentralCrossRef
16.
go back to reference R. Hägerkvist, S. Sandler, D. Mokhtari, N. Welsh, Amelioration of diabetes by imatinib mesylate (Gleevec): role of beta-cell NF-kappaB activation and anti-apoptotic preconditioning. FASEB J. 21(2), 618–628 (2007)PubMedCrossRef R. Hägerkvist, S. Sandler, D. Mokhtari, N. Welsh, Amelioration of diabetes by imatinib mesylate (Gleevec): role of beta-cell NF-kappaB activation and anti-apoptotic preconditioning. FASEB J. 21(2), 618–628 (2007)PubMedCrossRef
17.
go back to reference D. Mokhtari, N. Welsh, Potential utility of small tyrosine kinase inhibitors in the treatment of diabetes. Clin. Sci. (Lond. Engl.: 1979) 118(4), 241–247 (2009)CrossRef D. Mokhtari, N. Welsh, Potential utility of small tyrosine kinase inhibitors in the treatment of diabetes. Clin. Sci. (Lond. Engl.: 1979) 118(4), 241–247 (2009)CrossRef
18.
go back to reference C. Louvet, G.L. Szot, J. Lang, M.R. Lee, N. Martinier, G. Bollag et al. Tyrosine kinase inhibitors reverse type 1 diabetes in nonobese diabetic mice. Proc. Natl Acad. Sci. USA 105(48), 18895–18900 (2008)PubMedPubMedCentralCrossRef C. Louvet, G.L. Szot, J. Lang, M.R. Lee, N. Martinier, G. Bollag et al. Tyrosine kinase inhibitors reverse type 1 diabetes in nonobese diabetic mice. Proc. Natl Acad. Sci. USA 105(48), 18895–18900 (2008)PubMedPubMedCentralCrossRef
19.
go back to reference B.M. Duggan, J.F. Cavallari, K.P. Foley, N.G. Barra, J.D. Schertzer, RIPK2 Dictates Insulin Responses to Tyrosine Kinase Inhibitors in Obese Male Mice. Endocrinology 161(8), bqaa086 (2020). B.M. Duggan, J.F. Cavallari, K.P. Foley, N.G. Barra, J.D. Schertzer, RIPK2 Dictates Insulin Responses to Tyrosine Kinase Inhibitors in Obese Male Mice. Endocrinology 161(8), bqaa086 (2020).
20.
21.
go back to reference M. Roden, G.I. Shulman, The integrative biology of type 2 diabetes. Nature 576(7785), 51–60 (2019)PubMedCrossRef M. Roden, G.I. Shulman, The integrative biology of type 2 diabetes. Nature 576(7785), 51–60 (2019)PubMedCrossRef
23.
go back to reference F.C. Schuit, P. Huypens, H. Heimberg, D.G. Pipeleers, Glucose sensing in pancreatic beta-cells: a model for the study of other glucose-regulated cells in gut, pancreas, and hypothalamus. Diabetes 50(1), 1–11 (2001)PubMedCrossRef F.C. Schuit, P. Huypens, H. Heimberg, D.G. Pipeleers, Glucose sensing in pancreatic beta-cells: a model for the study of other glucose-regulated cells in gut, pancreas, and hypothalamus. Diabetes 50(1), 1–11 (2001)PubMedCrossRef
24.
go back to reference M. Alsahli, J.E. Gerich, Renal glucose metabolism in normal physiological conditions and in diabetes. Diabetes Res. Clin. Pract. 133, 1–9 (2017)PubMedCrossRef M. Alsahli, J.E. Gerich, Renal glucose metabolism in normal physiological conditions and in diabetes. Diabetes Res. Clin. Pract. 133, 1–9 (2017)PubMedCrossRef
25.
go back to reference J.E. Gerich, C. Meyer, H.J. Woerle, M. Stumvoll, Renal gluconeogenesis: its importance in human glucose homeostasis. Diabetes Care 24(2), 382–391 (2001)PubMedCrossRef J.E. Gerich, C. Meyer, H.J. Woerle, M. Stumvoll, Renal gluconeogenesis: its importance in human glucose homeostasis. Diabetes Care 24(2), 382–391 (2001)PubMedCrossRef
26.
29.
go back to reference H. Ruan, H.F. Lodish, Regulation of insulin sensitivity by adipose tissue-derived hormones and inflammatory cytokines. Curr. Opin. Lipidol. 15(3), 297–302 (2004)PubMedCrossRef H. Ruan, H.F. Lodish, Regulation of insulin sensitivity by adipose tissue-derived hormones and inflammatory cytokines. Curr. Opin. Lipidol. 15(3), 297–302 (2004)PubMedCrossRef
30.
go back to reference M.M. Adeva-Andany, N. Pérez-Felpete, C. Fernández-Fernández, C. Donapetry-García, C. Pazos-García, Liver glucose metabolism in humans. Biosci. Rep. 36(6), e00416 (2016). M.M. Adeva-Andany, N. Pérez-Felpete, C. Fernández-Fernández, C. Donapetry-García, C. Pazos-García, Liver glucose metabolism in humans. Biosci. Rep. 36(6), e00416 (2016).
31.
go back to reference P.M. Titchenell, M.A. Lazar, M.J. Birnbaum, Unraveling the Regulation of Hepatic Metabolism by Insulin. Trends Endocrinol. Metab. 28(7), 497–505 (2017)PubMedPubMedCentralCrossRef P.M. Titchenell, M.A. Lazar, M.J. Birnbaum, Unraveling the Regulation of Hepatic Metabolism by Insulin. Trends Endocrinol. Metab. 28(7), 497–505 (2017)PubMedPubMedCentralCrossRef
33.
go back to reference S.H. Koo, L. Flechner, L. Qi, X. Zhang, R.A. Screaton, S. Jeffries et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437(7062), 1109–1111 (2005)PubMedCrossRef S.H. Koo, L. Flechner, L. Qi, X. Zhang, R.A. Screaton, S. Jeffries et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437(7062), 1109–1111 (2005)PubMedCrossRef
34.
go back to reference P. Puigserver, J. Rhee, J. Donovan, C.J. Walkey, J.C. Yoon, F. Oriente et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature 423(6939), 550–555 (2003)PubMedCrossRef P. Puigserver, J. Rhee, J. Donovan, C.J. Walkey, J.C. Yoon, F. Oriente et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature 423(6939), 550–555 (2003)PubMedCrossRef
35.
go back to reference P. Workman, V.G. Brunton, D.J. Robins, Tyrosine kinase inhibitors. Semin. Cancer Biol. 3(6), 369–381 (1992)PubMed P. Workman, V.G. Brunton, D.J. Robins, Tyrosine kinase inhibitors. Semin. Cancer Biol. 3(6), 369–381 (1992)PubMed
36.
go back to reference Y. Wu, L. Shi, Y. Zhao, P. Chen, R. Cui, M. Ji et al. Synergistic activation of mutant TERT promoter by Sp1 and GABPA in BRAF(V600E)-driven human cancers. NPJ Precis. Oncol. 5(1), 3 (2021)PubMedPubMedCentralCrossRef Y. Wu, L. Shi, Y. Zhao, P. Chen, R. Cui, M. Ji et al. Synergistic activation of mutant TERT promoter by Sp1 and GABPA in BRAF(V600E)-driven human cancers. NPJ Precis. Oncol. 5(1), 3 (2021)PubMedPubMedCentralCrossRef
37.
go back to reference I. Magnusson, D.L. Rothman, L.D. Katz, R.G. Shulman, G.I. Shulman, Increased rate of gluconeogenesis in type II diabetes mellitus. A 13C nuclear magnetic resonance study. J. Clin. Investig. 90(4), 1323–1327 (1992)PubMedPubMedCentralCrossRef I. Magnusson, D.L. Rothman, L.D. Katz, R.G. Shulman, G.I. Shulman, Increased rate of gluconeogenesis in type II diabetes mellitus. A 13C nuclear magnetic resonance study. J. Clin. Investig. 90(4), 1323–1327 (1992)PubMedPubMedCentralCrossRef
38.
go back to reference M.C. Petersen, D.F. Vatner, G.I. Shulman, Regulation of hepatic glucose metabolism in health and disease. Nat. Rev. Endocrinol. 13(10), 572–587 (2017)PubMedPubMedCentralCrossRef M.C. Petersen, D.F. Vatner, G.I. Shulman, Regulation of hepatic glucose metabolism in health and disease. Nat. Rev. Endocrinol. 13(10), 572–587 (2017)PubMedPubMedCentralCrossRef
39.
go back to reference R.C. Sears, The life cycle of C-myc: from synthesis to degradation. Cell cycle (Georgetown. Tex.) 3(9), 1133–1137 (2004). R.C. Sears, The life cycle of C-myc: from synthesis to degradation. Cell cycle (Georgetown. Tex.) 3(9), 1133–1137 (2004).
41.
go back to reference C.V. Dang, K.A. O’Donnell, K.I. Zeller, T. Nguyen, R.C. Osthus, F. Li, The c-Myc target gene network. Semin. Cancer Biol. 16(4), 253–264 (2006)PubMedCrossRef C.V. Dang, K.A. O’Donnell, K.I. Zeller, T. Nguyen, R.C. Osthus, F. Li, The c-Myc target gene network. Semin. Cancer Biol. 16(4), 253–264 (2006)PubMedCrossRef
42.
go back to reference A. Karbownik, A. Stachowiak, H. Urjasz, K. Sobańska, A. Szczecińska, T. Grabowski et al. The oxidation and hypoglycaemic effect of sorafenib in streptozotocin-induced diabetic rats. Pharmacol. Rep. 72(1), 254–259 (2020)PubMedPubMedCentralCrossRef A. Karbownik, A. Stachowiak, H. Urjasz, K. Sobańska, A. Szczecińska, T. Grabowski et al. The oxidation and hypoglycaemic effect of sorafenib in streptozotocin-induced diabetic rats. Pharmacol. Rep. 72(1), 254–259 (2020)PubMedPubMedCentralCrossRef
43.
go back to reference T. Wang, K. Shankar, M.J. Ronis, H.M. Mehendale, Mechanisms and outcomes of drug- and toxicant-induced liver toxicity in diabetes. Crit. Rev. Toxicol. 37(5), 413–459 (2007)PubMedCrossRef T. Wang, K. Shankar, M.J. Ronis, H.M. Mehendale, Mechanisms and outcomes of drug- and toxicant-induced liver toxicity in diabetes. Crit. Rev. Toxicol. 37(5), 413–459 (2007)PubMedCrossRef
44.
go back to reference A.F. AlAsmari, N. Ali, F. AlAsmari, W.A. AlAnazi, F. Alqahtani, M. Alharbi, et al. Elucidation of the Molecular Mechanisms Underlying Sorafenib-Induced Hepatotoxicity. Oxidative Med. Cell. Long. 2020, 7453406 (2020). A.F. AlAsmari, N. Ali, F. AlAsmari, W.A. AlAnazi, F. Alqahtani, M. Alharbi, et al. Elucidation of the Molecular Mechanisms Underlying Sorafenib-Induced Hepatotoxicity. Oxidative Med. Cell. Long. 2020, 7453406 (2020).
45.
go back to reference R.C. Osthus, H. Shim, S. Kim, Q. Li, R. Reddy, M. Mukherjee et al. Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J. Biol. Chem. 275(29), 21797–21800 (2000)PubMedCrossRef R.C. Osthus, H. Shim, S. Kim, Q. Li, R. Reddy, M. Mukherjee et al. Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J. Biol. Chem. 275(29), 21797–21800 (2000)PubMedCrossRef
46.
go back to reference E.S. Goetzman, E.V. Prochownik, The Role for Myc in Coordinating Glycolysis, Oxidative Phosphorylation, Glutaminolysis, and Fatty Acid Metabolism in Normal and Neoplastic Tissues. Front. Endocrinol. 9, 129 (2018)CrossRef E.S. Goetzman, E.V. Prochownik, The Role for Myc in Coordinating Glycolysis, Oxidative Phosphorylation, Glutaminolysis, and Fatty Acid Metabolism in Normal and Neoplastic Tissues. Front. Endocrinol. 9, 129 (2018)CrossRef
47.
go back to reference J.J. Collier, T.T. Doan, M.C. Daniels, J.R. Schurr, J.K. Kolls, D.K. Scott, c-Myc is required for the glucose-mediated induction of metabolic enzyme genes. J. Biol. Chem. 278(8), 6588–6595 (2003)PubMedCrossRef J.J. Collier, T.T. Doan, M.C. Daniels, J.R. Schurr, J.K. Kolls, D.K. Scott, c-Myc is required for the glucose-mediated induction of metabolic enzyme genes. J. Biol. Chem. 278(8), 6588–6595 (2003)PubMedCrossRef
48.
go back to reference E. Riu, T. Ferre, A. Hidalgo, A. Mas, S. Franckhauser, P. Otaegui et al. Overexpression of c-myc in the liver prevents obesity and insulin resistance. FASEB J. 17(12), 1715–1717 (2003)PubMedCrossRef E. Riu, T. Ferre, A. Hidalgo, A. Mas, S. Franckhauser, P. Otaegui et al. Overexpression of c-myc in the liver prevents obesity and insulin resistance. FASEB J. 17(12), 1715–1717 (2003)PubMedCrossRef
49.
go back to reference E. Riu, T. Ferre, A. Mas, A. Hidalgo, S. Franckhauser, F. Bosch, Overexpression of c-myc in diabetic mice restores altered expression of the transcription factor genes that regulate liver metabolism. Biochem. J. 368(Pt 3), 931–937 (2002)PubMedPubMedCentralCrossRef E. Riu, T. Ferre, A. Mas, A. Hidalgo, S. Franckhauser, F. Bosch, Overexpression of c-myc in diabetic mice restores altered expression of the transcription factor genes that regulate liver metabolism. Biochem. J. 368(Pt 3), 931–937 (2002)PubMedPubMedCentralCrossRef
50.
go back to reference K.I. Ozaki, M. Awazu, M. Tamiya, Y. Iwasaki, A. Harada, S. Kugisaki et al. Targeting the ERK signaling pathway as a potential treatment for insulin resistance and type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 310(8), E643–e651 (2016)PubMedCrossRef K.I. Ozaki, M. Awazu, M. Tamiya, Y. Iwasaki, A. Harada, S. Kugisaki et al. Targeting the ERK signaling pathway as a potential treatment for insulin resistance and type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 310(8), E643–e651 (2016)PubMedCrossRef
51.
go back to reference L. Wu, S. Zhang, Q. Zhang, S. Wei, G. Wang, P. Luo, The Molecular Mechanism of Hepatic Lipid Metabolism Disorder Caused by NaAsO(2) through Regulating the ERK/PPAR Signaling Pathway. Oxid. Med. Cell. Longev. 2022, 6405911 (2022)PubMedPubMedCentralCrossRef L. Wu, S. Zhang, Q. Zhang, S. Wei, G. Wang, P. Luo, The Molecular Mechanism of Hepatic Lipid Metabolism Disorder Caused by NaAsO(2) through Regulating the ERK/PPAR Signaling Pathway. Oxid. Med. Cell. Longev. 2022, 6405911 (2022)PubMedPubMedCentralCrossRef
52.
go back to reference S. Bini, V. Pecce, A. Di Costanzo, L. Polito, A. Ghadiri, I. Minicocci, et al. The Fibrinogen-like Domain of ANGPTL3 Facilitates Lipolysis in 3T3-L1 Cells by Activating the Intracellular Erk Pathway. Biomolecules 12(4), 585 (2022). S. Bini, V. Pecce, A. Di Costanzo, L. Polito, A. Ghadiri, I. Minicocci, et al. The Fibrinogen-like Domain of ANGPTL3 Facilitates Lipolysis in 3T3-L1 Cells by Activating the Intracellular Erk Pathway. Biomolecules 12(4), 585 (2022).
53.
go back to reference H. Sun, P. Saeedi, S. Karuranga, M. Pinkepank, K. Ogurtsova, B.B. Duncan et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 183, 109119 (2022)PubMedCrossRef H. Sun, P. Saeedi, S. Karuranga, M. Pinkepank, K. Ogurtsova, B.B. Duncan et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 183, 109119 (2022)PubMedCrossRef
54.
go back to reference R.L. Siegel, K.D. Miller, H.E. Fuchs, A. Jemal, Cancer statistics, 2022. CA: Cancer J. Clin. 72(1), 7–33 (2022) R.L. Siegel, K.D. Miller, H.E. Fuchs, A. Jemal, Cancer statistics, 2022. CA: Cancer J. Clin. 72(1), 7–33 (2022)
55.
go back to reference W. Chen, R. Zheng, P.D. Baade, S. Zhang, H. Zeng, F. Bray et al. Cancer statistics in China. 2015. CA: Cancer J. Clin. 66(2), 115–132 (2016) W. Chen, R. Zheng, P.D. Baade, S. Zhang, H. Zeng, F. Bray et al. Cancer statistics in China. 2015. CA: Cancer J. Clin. 66(2), 115–132 (2016)
56.
go back to reference C. Rey-Reñones, J.M. Baena-Díez, I. Aguilar-Palacio, C. Miquel, M. Grau, Type 2 Diabetes Mellitus and Cancer: Epidemiology, Physiopathology and Prevention. Biomedicines 9(10), 1429 (2021). C. Rey-Reñones, J.M. Baena-Díez, I. Aguilar-Palacio, C. Miquel, M. Grau, Type 2 Diabetes Mellitus and Cancer: Epidemiology, Physiopathology and Prevention. Biomedicines 9(10), 1429 (2021).
57.
go back to reference E.E. Vincent, H. Yaghootkar, Using genetics to decipher the link between type 2 diabetes and cancer: shared aetiology or downstream consequence? Diabetologia 63(9), 1706–1717 (2020)PubMedPubMedCentralCrossRef E.E. Vincent, H. Yaghootkar, Using genetics to decipher the link between type 2 diabetes and cancer: shared aetiology or downstream consequence? Diabetologia 63(9), 1706–1717 (2020)PubMedPubMedCentralCrossRef
58.
go back to reference O. Salaami, C.L. Kuo, M.T. Drake, G.A. Kuchel, J.L. Kirkland, R.J. Pignolo, Antidiabetic Effects of the Senolytic Agent Dasatinib. Mayo Clin. Proc. 96(12), 3021–3029 (2021)PubMedCrossRef O. Salaami, C.L. Kuo, M.T. Drake, G.A. Kuchel, J.L. Kirkland, R.J. Pignolo, Antidiabetic Effects of the Senolytic Agent Dasatinib. Mayo Clin. Proc. 96(12), 3021–3029 (2021)PubMedCrossRef
59.
go back to reference L. Yu, J. Liu, X. Huang, Q. Jiang, Adverse effects of dasatinib on glucose-lipid metabolism in patients with chronic myeloid leukaemia in the chronic phase. Sci. Rep. 9(1), 17601 (2019)PubMedPubMedCentralCrossRef L. Yu, J. Liu, X. Huang, Q. Jiang, Adverse effects of dasatinib on glucose-lipid metabolism in patients with chronic myeloid leukaemia in the chronic phase. Sci. Rep. 9(1), 17601 (2019)PubMedPubMedCentralCrossRef
Metadata
Title
Sorafenib decreases glycemia by impairing hepatic glucose metabolism
Authors
Jingjing Ma
Fang Sui
Yan Liu
Mengmeng Yuan
Hui Dang
Rui Liu
Bingyin Shi
Peng Hou
Publication date
07-10-2022
Publisher
Springer US
Published in
Endocrine / Issue 3/2022
Print ISSN: 1355-008X
Electronic ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-022-03202-9

Other articles of this Issue 3/2022

Endocrine 3/2022 Go to the issue