Skip to main content
Top
Published in: Endocrine 3/2022

02-03-2022 | Hyperthyroidism | Original Article

Effect of thyroid function on pre-β1 high-density lipoprotein levels in patients with Graves’ disease undergoing radioiodine treatment

Authors: Zhenqin Cai, Lingxin Deng, Yunqin Chen, Yan Ling

Published in: Endocrine | Issue 3/2022

Login to get access

Abstract

Context

The metabolism of HDL is altered in thyroid dysfunctions. Preβ-1 HDL is a very small discoidal precursor HDL and promotes cholesterol efflux via ABCA1. The effects of thyroid dysfunctions on pre-β1 HDL are unknown. Thyroid hormone regulates ANGPTL3 expression, which may participate in HDL metabolism in thyroid dysfunctions.

Objective

To determine the variation of HDL subfractions, especially preβ-1 HDL in thyroid dysfunctions, and whether ANGPTL3 mediates the effect of thyroid function on HDL metabolism.

Methods

We recruited 26 patients with Graves’ disease undergoing radioiodine treatment. They were evaluated at three time points: at baseline, when they were hypothyroid after radioiodine treatment, and when they were on stable levothyroxine replacement and euthyroid.

Results

The concentrations of smaller HDL particles Preβ-1 HDL and HDL3 were highest at the hyperthyroid state, and lowest at the hypothyroid state. While the larger HDL particles HDL2 and HDL1 changed just the opposite. Preβ1-HDL and HDL3 were positively correlated to fT3 and fT4, while were negatively correlated to TSH. In contrast, HDL1 was negatively associated with fT3 and fT4, while was positively associated with TSH. The correlations between thyroid hormones and HDL subfractions remained significant after adjusting for ANGPTL3.

Conclusions

There is a shift form smaller HDL particles pre-β1 HDL and HDL3 to larger HDL particles HDL2 and HDL1 in hypothyroidism, while the change is just the opposite in hyperthyroidism. In future, cholesterol efflux capacity should be measured to determine if the function of HDL particles also changes with the shifting of HDL subfractions.
Literature
1.
go back to reference R.A. Sinha, B.K. Singh, P.M. Yen, Direct effects of thyroid hormones on hepatic lipid metabolism. Nat. Rev. Endocrinol. 14(5), 259–269 (2018)CrossRef R.A. Sinha, B.K. Singh, P.M. Yen, Direct effects of thyroid hormones on hepatic lipid metabolism. Nat. Rev. Endocrinol. 14(5), 259–269 (2018)CrossRef
2.
3.
go back to reference R.S. Rosenson, H.B. Brewer Jr., M.J. Chapman, S. Fazio, M.M. Hussain, A. Kontush et al. HDL measures, particle heterogeneity, proposed nomenclature, and relation to atherosclerotic cardiovascular events. Clin. Chem. 57(3), 392–410 (2011)CrossRef R.S. Rosenson, H.B. Brewer Jr., M.J. Chapman, S. Fazio, M.M. Hussain, A. Kontush et al. HDL measures, particle heterogeneity, proposed nomenclature, and relation to atherosclerotic cardiovascular events. Clin. Chem. 57(3), 392–410 (2011)CrossRef
4.
go back to reference K.C. Tan, S.W. Shiu, A.W. Kung, Effect of thyroid dysfunction on high-density lipoprotein subfraction metabolism: roles of hepatic lipase and cholesteryl ester transfer protein. J. Clin. Endocrinol. Metab. 83(8), 2921–2924 (1998)PubMed K.C. Tan, S.W. Shiu, A.W. Kung, Effect of thyroid dysfunction on high-density lipoprotein subfraction metabolism: roles of hepatic lipase and cholesteryl ester transfer protein. J. Clin. Endocrinol. Metab. 83(8), 2921–2924 (1998)PubMed
5.
go back to reference F. Pazos, J.J. Alvarez, J. Rubies-Prat, C. Varela, M.A. Lasuncion, Long-term thyroid replacement therapy and levels of lipoprotein(a) and other lipoproteins. J. Clin. Endocrinol. Metab. 80(2), 562–566 (1995)PubMed F. Pazos, J.J. Alvarez, J. Rubies-Prat, C. Varela, M.A. Lasuncion, Long-term thyroid replacement therapy and levels of lipoprotein(a) and other lipoproteins. J. Clin. Endocrinol. Metab. 80(2), 562–566 (1995)PubMed
6.
go back to reference E.N. Pearce, P.W. Wilson, Q. Yang, R.S. Vasan, L.E. Braverman, Thyroid function and lipid subparticle sizes in patients with short-term hypothyroidism and a population-based cohort. J. Clin. Endocrinol. Metab. 93(3), 888–894 (2008)CrossRef E.N. Pearce, P.W. Wilson, Q. Yang, R.S. Vasan, L.E. Braverman, Thyroid function and lipid subparticle sizes in patients with short-term hypothyroidism and a population-based cohort. J. Clin. Endocrinol. Metab. 93(3), 888–894 (2008)CrossRef
7.
go back to reference J.E. Feig, B. Hewing, J.D. Smith, S.L. Hazen, E.A. Fisher, High-density lipoprotein and atherosclerosis regression: evidence from preclinical and clinical studies. Circ. Res. 114(1), 205–213 (2014)CrossRef J.E. Feig, B. Hewing, J.D. Smith, S.L. Hazen, E.A. Fisher, High-density lipoprotein and atherosclerosis regression: evidence from preclinical and clinical studies. Circ. Res. 114(1), 205–213 (2014)CrossRef
8.
go back to reference A. Rohatgi, S.M. Grundy, Cholesterol efflux capacity as a therapeutic target: rationale and clinical implications. J. Am. Coll. Cardiol. 66(20), 2211–2213 (2015)CrossRef A. Rohatgi, S.M. Grundy, Cholesterol efflux capacity as a therapeutic target: rationale and clinical implications. J. Am. Coll. Cardiol. 66(20), 2211–2213 (2015)CrossRef
9.
go back to reference M. de la Llera-Moya, D. Drazul-Schrader, B.F. Asztalos, M. Cuchel, D.J. Rader, G.H. Rothblat, The ability to promote efflux via ABCA1 determines the capacity of serum specimens with similar high-density lipoprotein cholesterol to remove cholesterol from macrophages. Arterioscler. Thromb. Vasc. Biol. 30(4), 796–801 (2010)CrossRef M. de la Llera-Moya, D. Drazul-Schrader, B.F. Asztalos, M. Cuchel, D.J. Rader, G.H. Rothblat, The ability to promote efflux via ABCA1 determines the capacity of serum specimens with similar high-density lipoprotein cholesterol to remove cholesterol from macrophages. Arterioscler. Thromb. Vasc. Biol. 30(4), 796–801 (2010)CrossRef
10.
go back to reference W. Jin, D. Marchadier, D.J. Rader, Lipases and HDL metabolism. Trends Endocrinol. Metab. 13(4), 174–178 (2002)CrossRef W. Jin, D. Marchadier, D.J. Rader, Lipases and HDL metabolism. Trends Endocrinol. Metab. 13(4), 174–178 (2002)CrossRef
11.
go back to reference E.A. Nikkila, M. Kekki, Plasma triglyceride metabolism in thyroid disease. J. Clin. Invest. 51(8), 2103–2114 (1972)CrossRef E.A. Nikkila, M. Kekki, Plasma triglyceride metabolism in thyroid disease. J. Clin. Invest. 51(8), 2103–2114 (1972)CrossRef
12.
go back to reference C.J. Packard, J. Shepherd, G.M. Lindsay, A. Gaw, M.R. Taskinen, Thyroid replacement therapy and its influence on postheparin plasma lipases and apolipoprotein-B metabolism in hypothyroidism. J. Clin. Endocrinol. Metab. 76(5), 1209–1216 (1993)PubMed C.J. Packard, J. Shepherd, G.M. Lindsay, A. Gaw, M.R. Taskinen, Thyroid replacement therapy and its influence on postheparin plasma lipases and apolipoprotein-B metabolism in hypothyroidism. J. Clin. Endocrinol. Metab. 76(5), 1209–1216 (1993)PubMed
13.
go back to reference S. Kersten, Angiopoietin-like 3 in lipoprotein metabolism. Nat. Rev. Endocrinol. 13(12), 731–739 (2017)CrossRef S. Kersten, Angiopoietin-like 3 in lipoprotein metabolism. Nat. Rev. Endocrinol. 13(12), 731–739 (2017)CrossRef
14.
go back to reference I. Minicocci, A. Montali, M.R. Robciuc, F. Quagliarini, V. Censi, G. Labbadia et al. Mutations in the ANGPTL3 gene and familial combined hypolipidemia: a clinical and biochemical characterization. J. Clin. Endocrinol. Metab. 97(7), E1266–E1275 (2012)CrossRef I. Minicocci, A. Montali, M.R. Robciuc, F. Quagliarini, V. Censi, G. Labbadia et al. Mutations in the ANGPTL3 gene and familial combined hypolipidemia: a clinical and biochemical characterization. J. Clin. Endocrinol. Metab. 97(7), E1266–E1275 (2012)CrossRef
15.
go back to reference K. Musunuru, J.P. Pirruccello, R. Do, G.M. Peloso, C. Guiducci, C. Sougnez et al. Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. N. Engl. J. Med. 363(23), 2220–2227 (2010)CrossRef K. Musunuru, J.P. Pirruccello, R. Do, G.M. Peloso, C. Guiducci, C. Sougnez et al. Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. N. Engl. J. Med. 363(23), 2220–2227 (2010)CrossRef
16.
go back to reference F.J. Raal, R.S. Rosenson, L.F. Reeskamp, G.K. Hovingh, J.J.P. Kastelein, P. Rubba et al. Evinacumab for homozygous familial hypercholesterolemia. N. Engl. J. Med 383(8), 711–720 (2020)CrossRef F.J. Raal, R.S. Rosenson, L.F. Reeskamp, G.K. Hovingh, J.J.P. Kastelein, P. Rubba et al. Evinacumab for homozygous familial hypercholesterolemia. N. Engl. J. Med 383(8), 711–720 (2020)CrossRef
17.
go back to reference C. Fugier, J.J. Tousaint, X. Prieur, M. Plateroti, J. Samarut, P. Delerive, The lipoprotein lipase inhibitor ANGPTL3 is negatively regulated by thyroid hormone. J. Biol. Chem. 281(17), 11553–11559 (2006)CrossRef C. Fugier, J.J. Tousaint, X. Prieur, M. Plateroti, J. Samarut, P. Delerive, The lipoprotein lipase inhibitor ANGPTL3 is negatively regulated by thyroid hormone. J. Biol. Chem. 281(17), 11553–11559 (2006)CrossRef
18.
go back to reference L. Yang, R. Yin, Z. Wang, X. Wang, Y. Zhang, D. Zhao, Circulating Angptl3 and Angptl8 Are increased in patients with hypothyroidism. Biomed. Res. Int. 2019, 3814687 (2019)PubMedPubMedCentral L. Yang, R. Yin, Z. Wang, X. Wang, Y. Zhang, D. Zhao, Circulating Angptl3 and Angptl8 Are increased in patients with hypothyroidism. Biomed. Res. Int. 2019, 3814687 (2019)PubMedPubMedCentral
19.
go back to reference W.T. Friedewald, R.I. Levy, D.S. Fredrickson, Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18(6), 499–502 (1972)CrossRef W.T. Friedewald, R.I. Levy, D.S. Fredrickson, Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18(6), 499–502 (1972)CrossRef
20.
go back to reference Y. Chen, J. Dong, X. Chen, H. Jiang, A. Bakillah, X. Zhang et al. Human serum prebeta1-high density lipoprotein levels are independently and negatively associated with coronary artery diseases. Nutr. Metab. 13, 36 (2016)CrossRef Y. Chen, J. Dong, X. Chen, H. Jiang, A. Bakillah, X. Zhang et al. Human serum prebeta1-high density lipoprotein levels are independently and negatively associated with coronary artery diseases. Nutr. Metab. 13, 36 (2016)CrossRef
21.
go back to reference B.F. Voight, G.M. Peloso, M. Orho-Melander, R. Frikke-Schmidt, M. Barbalic, M.K. Jensen et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet 380(9841), 572–580 (2012)CrossRef B.F. Voight, G.M. Peloso, M. Orho-Melander, R. Frikke-Schmidt, M. Barbalic, M.K. Jensen et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet 380(9841), 572–580 (2012)CrossRef
22.
go back to reference A.-H. Investigators, W.E. Boden, J.L. Probstfield, T. Anderson, B.R. Chaitman, P. Desvignes-Nickens et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N. Engl. J. Med. 365(24), 2255–2267 (2011)CrossRef A.-H. Investigators, W.E. Boden, J.L. Probstfield, T. Anderson, B.R. Chaitman, P. Desvignes-Nickens et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N. Engl. J. Med. 365(24), 2255–2267 (2011)CrossRef
23.
go back to reference P. Zanoni, S.A. Khetarpal, D.B. Larach, W.F. Hancock-Cerutti, J.S. Millar, M. Cuchel et al. Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease. Science 351(6278), 1166–1171 (2016)CrossRef P. Zanoni, S.A. Khetarpal, D.B. Larach, W.F. Hancock-Cerutti, J.S. Millar, M. Cuchel et al. Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease. Science 351(6278), 1166–1171 (2016)CrossRef
24.
go back to reference A.V. Khera, M. Cuchel, M. de la Llera-Moya, A. Rodrigues, M.F. Burke, K. Jafri et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N. Engl. J. Med. 364(2), 127–135 (2011)CrossRef A.V. Khera, M. Cuchel, M. de la Llera-Moya, A. Rodrigues, M.F. Burke, K. Jafri et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N. Engl. J. Med. 364(2), 127–135 (2011)CrossRef
25.
go back to reference A. Rohatgi, J.A. de Lemos, P.W. Shaul, HDL cholesterol efflux capacity and cardiovascular events. N. Engl. J. Med. 372(19), 1871–1872 (2015)PubMed A. Rohatgi, J.A. de Lemos, P.W. Shaul, HDL cholesterol efflux capacity and cardiovascular events. N. Engl. J. Med. 372(19), 1871–1872 (2015)PubMed
26.
go back to reference A. Rohatgi, High-density lipoprotein function measurement in human studies: focus on cholesterol efflux capacity. Prog. Cardiovasc Dis. 58(1), 32–40 (2015)CrossRef A. Rohatgi, High-density lipoprotein function measurement in human studies: focus on cholesterol efflux capacity. Prog. Cardiovasc Dis. 58(1), 32–40 (2015)CrossRef
27.
go back to reference G.A. Sigal, T.M. Tavoni, B.M.O. Silva, R. Kalil Filho, L.G. Brandao, R.C. Maranhao, Effects of short-term hypothyroidism on the lipid transfer to high-density lipoprotein and other parameters related to lipoprotein metabolism in patients submitted to thyroidectomy for thyroid cancer. Thyroid 29(1), 53–58 (2019)CrossRef G.A. Sigal, T.M. Tavoni, B.M.O. Silva, R. Kalil Filho, L.G. Brandao, R.C. Maranhao, Effects of short-term hypothyroidism on the lipid transfer to high-density lipoprotein and other parameters related to lipoprotein metabolism in patients submitted to thyroidectomy for thyroid cancer. Thyroid 29(1), 53–58 (2019)CrossRef
28.
go back to reference Y. Chen, J. Dong, X. Zhang, X. Chen, L. Wang, H. Chen et al. Evacetrapib reduces prebeta-1 HDL in patients with atherosclerotic cardiovascular disease or diabetes. Atherosclerosis 285, 147–152 (2019)CrossRef Y. Chen, J. Dong, X. Zhang, X. Chen, L. Wang, H. Chen et al. Evacetrapib reduces prebeta-1 HDL in patients with atherosclerotic cardiovascular disease or diabetes. Atherosclerosis 285, 147–152 (2019)CrossRef
29.
go back to reference L.J. van Tienhoven-Wind, F.G. Perton, R.P. Dullaart, Pre-beta-HDL formation relates to high-normal free thyroxine in type 2 diabetes mellitus. Clin. Biochem. 49(1-2), 41–46 (2016)CrossRef L.J. van Tienhoven-Wind, F.G. Perton, R.P. Dullaart, Pre-beta-HDL formation relates to high-normal free thyroxine in type 2 diabetes mellitus. Clin. Biochem. 49(1-2), 41–46 (2016)CrossRef
30.
go back to reference K.C. Tan, S.W. Shiu, A.W. Kung, Plasma cholesteryl ester transfer protein activity in hyper- and hypothyroidism. J. Clin. Endocrinol. Metab. 83(1), 140–143 (1998)PubMed K.C. Tan, S.W. Shiu, A.W. Kung, Plasma cholesteryl ester transfer protein activity in hyper- and hypothyroidism. J. Clin. Endocrinol. Metab. 83(1), 140–143 (1998)PubMed
31.
go back to reference M. Jaye, J. Krawiec, Endothelial lipase and HDL metabolism. Curr. Opin. Lipido. 15(2), 183–189 (2004)CrossRef M. Jaye, J. Krawiec, Endothelial lipase and HDL metabolism. Curr. Opin. Lipido. 15(2), 183–189 (2004)CrossRef
32.
go back to reference T. Jakobsson, L.L. Vedin, P. Parini, Potential role of thyroid receptor beta agonists in the treatment of hyperlipidemia. Drugs 77(15), 1613–1621 (2017)CrossRef T. Jakobsson, L.L. Vedin, P. Parini, Potential role of thyroid receptor beta agonists in the treatment of hyperlipidemia. Drugs 77(15), 1613–1621 (2017)CrossRef
33.
go back to reference R. Zucchi, Thyroid hormone analogues: an update. Thyroid 30(8), 1099–1105 (2020)CrossRef R. Zucchi, Thyroid hormone analogues: an update. Thyroid 30(8), 1099–1105 (2020)CrossRef
34.
go back to reference B. Sjouke, G. Langslet, R. Ceska, S.J. Nicholls, S.E. Nissen, M. Ohlander et al. Eprotirome in patients with familial hypercholesterolaemia (the AKKA trial): a randomised, double-blind, placebo-controlled phase 3 study. Lancet Diabetes Endocrinol. 2(6), 455–463 (2014)CrossRef B. Sjouke, G. Langslet, R. Ceska, S.J. Nicholls, S.E. Nissen, M. Ohlander et al. Eprotirome in patients with familial hypercholesterolaemia (the AKKA trial): a randomised, double-blind, placebo-controlled phase 3 study. Lancet Diabetes Endocrinol. 2(6), 455–463 (2014)CrossRef
35.
go back to reference R.A. Sinha, E. Bruinstroop, B.K. Singh, P.M. Yen, Nonalcoholic fatty liver disease and hypercholesterolemia: roles of thyroid hormones, metabolites, and agonists. Thyroid 29(9), 1173–1191 (2019)CrossRef R.A. Sinha, E. Bruinstroop, B.K. Singh, P.M. Yen, Nonalcoholic fatty liver disease and hypercholesterolemia: roles of thyroid hormones, metabolites, and agonists. Thyroid 29(9), 1173–1191 (2019)CrossRef
36.
go back to reference F. Saponaro, S. Sestito, M. Runfola, S. Rapposelli, G. Chiellini, Selective thyroid hormone receptor-beta (TRbeta) agonists: new perspectives for the treatment of metabolic and neurodegenerative disorders. Front. Med. 7, 331 (2020)CrossRef F. Saponaro, S. Sestito, M. Runfola, S. Rapposelli, G. Chiellini, Selective thyroid hormone receptor-beta (TRbeta) agonists: new perspectives for the treatment of metabolic and neurodegenerative disorders. Front. Med. 7, 331 (2020)CrossRef
Metadata
Title
Effect of thyroid function on pre-β1 high-density lipoprotein levels in patients with Graves’ disease undergoing radioiodine treatment
Authors
Zhenqin Cai
Lingxin Deng
Yunqin Chen
Yan Ling
Publication date
02-03-2022
Publisher
Springer US
Published in
Endocrine / Issue 3/2022
Print ISSN: 1355-008X
Electronic ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-022-03024-9

Other articles of this Issue 3/2022

Endocrine 3/2022 Go to the issue