Skip to main content
Top
Published in: Endocrine 3/2018

01-09-2018 | Review

Microbiota and metabolic diseases

Authors: Alessia Pascale, Nicoletta Marchesi, Cristina Marelli, Adriana Coppola, Livio Luzi, Stefano Govoni, Andrea Giustina, Carmine Gazzaruso

Published in: Endocrine | Issue 3/2018

Login to get access

Abstract

The microbiota is a complex ecosystem of microorganisms consisting of bacteria, viruses, protozoa, and fungi, living in different districts of the human body, such as the gastro-enteric tube, skin, mouth, respiratory system, and the vagina. Over 70% of the microbiota lives in the gastrointestinal tract in a mutually beneficial relationship with its host. The microbiota plays a major role in many metabolic functions, including modulation of glucose and lipid homeostasis, regulation of satiety, production of energy and vitamins. It exerts a role in the regulation of several biochemical and physiological mechanisms through the production of metabolites and substances. In addition, the microbiota has important anti-carcinogenetic and anti-inflammatory actions. There is growing evidence that any modification in the microbiota composition can lead to several diseases, including metabolic diseases, such as obesity and diabetes, and cardiovascular diseases. This is because alterations in the microbiota composition can cause insulin resistance, inflammation, vascular, and metabolic disorders. The causes of the microbiota alterations and the mechanisms by which microbiota modifications can act on the development of metabolic and cardiovascular diseases have been reported. Current and future preventive and therapeutic strategies to prevent these diseases by an adequate modulation of the microbiota have been also discussed.
Literature
3.
go back to reference A. Pingitore, E.S. Chambers, T. Hill, I.R. Maldonado, B. Liu, G. Bewick, D.J. Morrison, T. Preston, G.A. Wallis, C. Tedford, R. Castañera González, G.C. Huang, P. Choudhary, G. Frost, S.J. Persaud, The diet-derived short chain fatty acid propionate improves beta-cell function in humans and stimulates insulin secretion from human islets in vitro. Diabetes Obes. Metab. 19, 257–265 (2017). https://doi.org/10.1111/dom.12811 PubMedCrossRef A. Pingitore, E.S. Chambers, T. Hill, I.R. Maldonado, B. Liu, G. Bewick, D.J. Morrison, T. Preston, G.A. Wallis, C. Tedford, R. Castañera González, G.C. Huang, P. Choudhary, G. Frost, S.J. Persaud, The diet-derived short chain fatty acid propionate improves beta-cell function in humans and stimulates insulin secretion from human islets in vitro. Diabetes Obes. Metab. 19, 257–265 (2017). https://​doi.​org/​10.​1111/​dom.​12811 PubMedCrossRef
4.
go back to reference F. Bäckhed, J. Roswall, Y. Peng, Q. Feng, H. Jia, P. Kovatcheva-Datchary, Y. Li, Y. Xia, H. Xie, H. Zhong, M.T. Khan, J. Zhang, J. Li, L. Xiao, J. Al-Aama, D. Zhang, Y.S. Lee, D. Kotowska, C. Colding, V. Tremaroli, Y. Yin, S. Bergman, X. Xu, L. Madsen, K. Kristiansen, J. Dahlgren, J. Wang, W. Jun, Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 690–703 (2015). https://doi.org/10.1016/j.chom.2015.04.004 PubMedCrossRef F. Bäckhed, J. Roswall, Y. Peng, Q. Feng, H. Jia, P. Kovatcheva-Datchary, Y. Li, Y. Xia, H. Xie, H. Zhong, M.T. Khan, J. Zhang, J. Li, L. Xiao, J. Al-Aama, D. Zhang, Y.S. Lee, D. Kotowska, C. Colding, V. Tremaroli, Y. Yin, S. Bergman, X. Xu, L. Madsen, K. Kristiansen, J. Dahlgren, J. Wang, W. Jun, Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 690–703 (2015). https://​doi.​org/​10.​1016/​j.​chom.​2015.​04.​004 PubMedCrossRef
5.
go back to reference B.S. Ramakrishna, The normal bacterial flora of the human intestine and its regulation. J. Clin. Gastroenterol. 41, S2–S6 (2007)CrossRef B.S. Ramakrishna, The normal bacterial flora of the human intestine and its regulation. J. Clin. Gastroenterol. 41, S2–S6 (2007)CrossRef
13.
go back to reference L. Capurso, Il Microbiota intestinale. Recent. Prog. Med. 107, 257–266 (2016) L. Capurso, Il Microbiota intestinale. Recent. Prog. Med. 107, 257–266 (2016)
14.
go back to reference E.F. Enright, C.G.M. Gahan, S.A. Joyce, B.T. Griffin, The impact of the gut microbiota on drug metabolism and clinical outcome. Yale J. Biol. Med. 89, 375–382 (2016)PubMedPubMedCentral E.F. Enright, C.G.M. Gahan, S.A. Joyce, B.T. Griffin, The impact of the gut microbiota on drug metabolism and clinical outcome. Yale J. Biol. Med. 89, 375–382 (2016)PubMedPubMedCentral
26.
27.
go back to reference G. Frost, M.L. Sleeth, M. Sahuri-Arisoylu, B. Lizarbe, S. Cerdan, L. Brody, J. Anastasovska, S. Ghourab, M. Hankir, S. Zhang, D. Carling, J.R. Swann, G. Gibson, A. Viardot, D. Morrison, E.L. Thomas, J.D. Bell, The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun. 5, 3611 (2014). https://doi.org/10.1038/ncomms4611 PubMedPubMedCentralCrossRef G. Frost, M.L. Sleeth, M. Sahuri-Arisoylu, B. Lizarbe, S. Cerdan, L. Brody, J. Anastasovska, S. Ghourab, M. Hankir, S. Zhang, D. Carling, J.R. Swann, G. Gibson, A. Viardot, D. Morrison, E.L. Thomas, J.D. Bell, The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun. 5, 3611 (2014). https://​doi.​org/​10.​1038/​ncomms4611 PubMedPubMedCentralCrossRef
28.
go back to reference L.E.M. Willemsen, M.A. Koetsier, S.J.H. van Deventer, E.A.F. van Tol, Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E(1) and E(2) production by intestinal myofibroblasts. Gut 52, 1442–1447 (2003)PubMedPubMedCentralCrossRef L.E.M. Willemsen, M.A. Koetsier, S.J.H. van Deventer, E.A.F. van Tol, Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E(1) and E(2) production by intestinal myofibroblasts. Gut 52, 1442–1447 (2003)PubMedPubMedCentralCrossRef
30.
go back to reference J. Ni, G.D. Wu, L. Albenberg, V.T. Tomov, Gut microbiota and IBD: Causation or correlation? Nat. Rev. Gastroenterol. Hepatol. 14, 573–584 (2017)PubMedPubMedCentral J. Ni, G.D. Wu, L. Albenberg, V.T. Tomov, Gut microbiota and IBD: Causation or correlation? Nat. Rev. Gastroenterol. Hepatol. 14, 573–584 (2017)PubMedPubMedCentral
31.
go back to reference H.J. Flint, E.A. Bayer, Plant cell wall breakdown by anaerobic microorganisms from the mammalian digestive tract. Ann. New Y. Acad. Sci. 1125, 280–288 (2008)CrossRef H.J. Flint, E.A. Bayer, Plant cell wall breakdown by anaerobic microorganisms from the mammalian digestive tract. Ann. New Y. Acad. Sci. 1125, 280–288 (2008)CrossRef
32.
36.
go back to reference WHO | Obesity and overweight. (WHO, Geneva, Switzerland, 2018) WHO | Obesity and overweight. (WHO, Geneva, Switzerland, 2018)
50.
54.
go back to reference H. Ghanim, S. Abuaysheh, C.L. Sia, K. Korzeniewski, A. Chaudhuri, J.M. Fernandez-Real, P. Dandona, Increase in plasma endotoxin concentrations and the expression of toll-like receptors and suppressor of cytokine signaling-3 in mononuclear cells after a high-fat, high-carbohydrate meal: Implications for insulin resistance. Diabetes Care 32, 2281–2287 (2009). https://doi.org/10.2337/dc09-0979 PubMedPubMedCentralCrossRef H. Ghanim, S. Abuaysheh, C.L. Sia, K. Korzeniewski, A. Chaudhuri, J.M. Fernandez-Real, P. Dandona, Increase in plasma endotoxin concentrations and the expression of toll-like receptors and suppressor of cytokine signaling-3 in mononuclear cells after a high-fat, high-carbohydrate meal: Implications for insulin resistance. Diabetes Care 32, 2281–2287 (2009). https://​doi.​org/​10.​2337/​dc09-0979 PubMedPubMedCentralCrossRef
55.
go back to reference P.D. Cani, J. Amar, M.A. Iglesias, M. Poggi, C. Knauf, D. Bastelica, A.M. Neyrinck, F. Fava, K.M. Tuohy, C. Chabo, A. Waget, E. Delmée, B. Cousin, T. Sulpice, B. Chamontin, J. Ferrières, J.F. Tanti, G.R. Gibson, L. Casteilla, N.M. Delzenne, M.C. Alessi, R. Burcelin, Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772 (2007). https://doi.org/10.2337/db06-1491 PubMedCrossRef P.D. Cani, J. Amar, M.A. Iglesias, M. Poggi, C. Knauf, D. Bastelica, A.M. Neyrinck, F. Fava, K.M. Tuohy, C. Chabo, A. Waget, E. Delmée, B. Cousin, T. Sulpice, B. Chamontin, J. Ferrières, J.F. Tanti, G.R. Gibson, L. Casteilla, N.M. Delzenne, M.C. Alessi, R. Burcelin, Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772 (2007). https://​doi.​org/​10.​2337/​db06-1491 PubMedCrossRef
57.
go back to reference E. Le Poul, C. Loison, S. Struyf, J.-Y. Springael, V. Lannoy, M.-E. Decobecq, S. Brezillon, V. Dupriez, G. Vassart, J. Van Damme, M. Parmentier, M. Detheux, Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J. Biol. Chem. 278, 25481–25489 (2003). https://doi.org/10.1074/jbc.M301403200 PubMedCrossRef E. Le Poul, C. Loison, S. Struyf, J.-Y. Springael, V. Lannoy, M.-E. Decobecq, S. Brezillon, V. Dupriez, G. Vassart, J. Van Damme, M. Parmentier, M. Detheux, Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J. Biol. Chem. 278, 25481–25489 (2003). https://​doi.​org/​10.​1074/​jbc.​M301403200 PubMedCrossRef
58.
go back to reference A.J. Brown, S.M. Goldsworthy, A.A. Barnes, M.M. Eilert, L. Tcheang, D. Daniels, A.I. Muir, M.J. Wigglesworth, I. Kinghorn, N.J. Fraser, N.B. Pike, J.C. Strum, K.M. Steplewski, P.R. Murdock, J.C. Holder, F.H. Marshall, P.G. Szekeres, S. Wilson, D.M. Ignar, S.M. Foord, A. Wise, S.J. Dowell, The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 278, 11312–11319 (2003). https://doi.org/10.1074/jbc.M211609200 PubMedCrossRef A.J. Brown, S.M. Goldsworthy, A.A. Barnes, M.M. Eilert, L. Tcheang, D. Daniels, A.I. Muir, M.J. Wigglesworth, I. Kinghorn, N.J. Fraser, N.B. Pike, J.C. Strum, K.M. Steplewski, P.R. Murdock, J.C. Holder, F.H. Marshall, P.G. Szekeres, S. Wilson, D.M. Ignar, S.M. Foord, A. Wise, S.J. Dowell, The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 278, 11312–11319 (2003). https://​doi.​org/​10.​1074/​jbc.​M211609200 PubMedCrossRef
59.
go back to reference B.S. Samuel, A. Shaito, T. Motoike, F.E. Rey, F. Backhed, J.K. Manchester, R.E. Hammer, S.C. Williams, J. Crowley, M. Yanagisawa, J.I. Gordon, Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc. Natl Acad. Sci. 105, 16767–16772 (2008)PubMedCrossRef B.S. Samuel, A. Shaito, T. Motoike, F.E. Rey, F. Backhed, J.K. Manchester, R.E. Hammer, S.C. Williams, J. Crowley, M. Yanagisawa, J.I. Gordon, Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc. Natl Acad. Sci. 105, 16767–16772 (2008)PubMedCrossRef
61.
go back to reference V.K. Ridaura, J.J. Faith, F.E. Rey, J. Cheng, A.E. Duncan, A.L. Kau, N.W. Griffin, V. Lombard, B. Henrissat, J.R. Bain, M.J. Muehlbauer, O. Ilkayeva, C.F. Semenkovich, K. Funai, D.K. Hayashi, B.J. Lyle, M.C. Martini, L.K. Ursell, J.C. Clemente, W. Van Treuren, W.A. Walters, R. Knight, C.B. Newgard, A.C. Heath, J.I. Gordon, Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214 (2013). https://doi.org/10.1126/science.1241214 PubMedCrossRef V.K. Ridaura, J.J. Faith, F.E. Rey, J. Cheng, A.E. Duncan, A.L. Kau, N.W. Griffin, V. Lombard, B. Henrissat, J.R. Bain, M.J. Muehlbauer, O. Ilkayeva, C.F. Semenkovich, K. Funai, D.K. Hayashi, B.J. Lyle, M.C. Martini, L.K. Ursell, J.C. Clemente, W. Van Treuren, W.A. Walters, R. Knight, C.B. Newgard, A.C. Heath, J.I. Gordon, Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214 (2013). https://​doi.​org/​10.​1126/​science.​1241214 PubMedCrossRef
64.
go back to reference WHO Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia. (WHO, Geneva, Switzerland, 2013) WHO Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia. (WHO, Geneva, Switzerland, 2013)
66.
go back to reference H. Wu, E. Esteve, V. Tremaroli, M.T. Khan, R. Caesar, L. Mannerås-Holm, M. Ståhlman, L.M. Olsson, M. Serino, M. Planas-Fèlix, G. Xifra, J.M. Mercader, D. Torrents, R. Burcelin, W. Ricart, R. Perkins, J.M. Fernàndez-Real, F. Bäckhed, Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat. Med. 23, 850–858 (2017). https://doi.org/10.1038/nm.4345 PubMedCrossRef H. Wu, E. Esteve, V. Tremaroli, M.T. Khan, R. Caesar, L. Mannerås-Holm, M. Ståhlman, L.M. Olsson, M. Serino, M. Planas-Fèlix, G. Xifra, J.M. Mercader, D. Torrents, R. Burcelin, W. Ricart, R. Perkins, J.M. Fernàndez-Real, F. Bäckhed, Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat. Med. 23, 850–858 (2017). https://​doi.​org/​10.​1038/​nm.​4345 PubMedCrossRef
74.
go back to reference S. Devaraj, P. Hemarajata, J. Versalovic, The human gut microbiome and body metabolism: Implications for obesity and diabetes. Clin. Chem. 59, 617–628 (2013)PubMedPubMedCentralCrossRef S. Devaraj, P. Hemarajata, J. Versalovic, The human gut microbiome and body metabolism: Implications for obesity and diabetes. Clin. Chem. 59, 617–628 (2013)PubMedPubMedCentralCrossRef
76.
go back to reference A. Vrieze, E. Van Nood, F. Holleman, J. Salojärvi, R.S. Kootte, J.F.W.M. Bartelsman, G.M. Dallinga-Thie, M.T. Ackermans, M.J. Serlie, R. Oozeer, M. Derrien, A. Druesne, J.E.T. Van Hylckama Vlieg, V.W. Bloks, A.K. Groen, H.G.H.J. Heilig, E.G. Zoetendal, E.S. Stroes, W.M. De Vos, J.B.L. Hoekstra, M. Nieuwdorp, Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143, 913–6.e7 (2012). https://doi.org/10.1053/j.gastro.2012.06.031 PubMedCrossRef A. Vrieze, E. Van Nood, F. Holleman, J. Salojärvi, R.S. Kootte, J.F.W.M. Bartelsman, G.M. Dallinga-Thie, M.T. Ackermans, M.J. Serlie, R. Oozeer, M. Derrien, A. Druesne, J.E.T. Van Hylckama Vlieg, V.W. Bloks, A.K. Groen, H.G.H.J. Heilig, E.G. Zoetendal, E.S. Stroes, W.M. De Vos, J.B.L. Hoekstra, M. Nieuwdorp, Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143, 913–6.e7 (2012). https://​doi.​org/​10.​1053/​j.​gastro.​2012.​06.​031 PubMedCrossRef
83.
go back to reference K. Forslund, F. Hildebrand, T. Nielsen, G. Falony, E. Le Chatelier, S. Sunagawa, E. Prifti, S. Vieira-Silva, V. Gudmundsdottir, H. Krogh Pedersen, M. Arumugam, K. Kristiansen, A. Yvonne Voigt, H. Vestergaard, R. Hercog, P. Igor Costea, J. Roat Kultima, J. Li, T. Jørgensen, F. Levenez, J. Dore, H. Bjørn Nielsen, S. Brunak, J. Raes, T. Hansen, J. Wang, S. Dusko Ehrlich, P. Bork, O. Pedersen, Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262–266 (2015). https://doi.org/10.1038/nature15766 PubMedPubMedCentralCrossRef K. Forslund, F. Hildebrand, T. Nielsen, G. Falony, E. Le Chatelier, S. Sunagawa, E. Prifti, S. Vieira-Silva, V. Gudmundsdottir, H. Krogh Pedersen, M. Arumugam, K. Kristiansen, A. Yvonne Voigt, H. Vestergaard, R. Hercog, P. Igor Costea, J. Roat Kultima, J. Li, T. Jørgensen, F. Levenez, J. Dore, H. Bjørn Nielsen, S. Brunak, J. Raes, T. Hansen, J. Wang, S. Dusko Ehrlich, P. Bork, O. Pedersen, Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262–266 (2015). https://​doi.​org/​10.​1038/​nature15766 PubMedPubMedCentralCrossRef
84.
go back to reference N.M. Maruthur, E. Tseng, S. Hutfless, L.M. Wilson, C. Suarez-Cuervo, Z. Berger, Y. Chu, E. Iyoha, J.B. Segal, S. Bolen, Diabetes medications as monotherapy or metformin-based combination therapy for type 2 diabetes: A systematic review and meta-analysis. Ann. Intern. Med. 164, 740–751 (2016)PubMedCrossRef N.M. Maruthur, E. Tseng, S. Hutfless, L.M. Wilson, C. Suarez-Cuervo, Z. Berger, Y. Chu, E. Iyoha, J.B. Segal, S. Bolen, Diabetes medications as monotherapy or metformin-based combination therapy for type 2 diabetes: A systematic review and meta-analysis. Ann. Intern. Med. 164, 740–751 (2016)PubMedCrossRef
85.
go back to reference D. Kopelman, I. Caterson, J. Michael, W. HD, Clinical obesity in adults and children. (2009) D. Kopelman, I. Caterson, J. Michael, W. HD, Clinical obesity in adults and children. (2009)
86.
go back to reference K.M. Levri, E. Slaymaker, A. Last, J. Yeh, J. Ference, F. D’Amico, S.A. Wilson, Metformin as treatment for overweight and obese adults: A systematic review. Ann. Fam. Med. 3, 457–461 (2005)PubMedPubMedCentralCrossRef K.M. Levri, E. Slaymaker, A. Last, J. Yeh, J. Ference, F. D’Amico, S.A. Wilson, Metformin as treatment for overweight and obese adults: A systematic review. Ann. Fam. Med. 3, 457–461 (2005)PubMedPubMedCentralCrossRef
88.
go back to reference U. Uusitalo, X. Liu, J. Yang, C.A. Aronsson, S. Hummel, M. Butterworth, Å. Lernmark, M. Rewers, W. Hagopian, J.-X. She, O. Simell, J. Toppari, A.G. Ziegler, B. Akolkar, J. Krischer, J.M. Norris, S.M. Virtanen; TEDDY Study Group, Association of early exposure of probiotics and islet autoimmunity in the TEDDY study. JAMA Pediatr. 33612, 1–9 (2015). https://doi.org/10.1001/jamapediatrics.2015.2757 CrossRef U. Uusitalo, X. Liu, J. Yang, C.A. Aronsson, S. Hummel, M. Butterworth, Å. Lernmark, M. Rewers, W. Hagopian, J.-X. She, O. Simell, J. Toppari, A.G. Ziegler, B. Akolkar, J. Krischer, J.M. Norris, S.M. Virtanen; TEDDY Study Group, Association of early exposure of probiotics and islet autoimmunity in the TEDDY study. JAMA Pediatr. 33612, 1–9 (2015). https://​doi.​org/​10.​1001/​jamapediatrics.​2015.​2757 CrossRef
94.
go back to reference R.A. Koeth, Z. Wang, B.S. Levison, J.A. Buffa, E. Org, B.T. Sheehy, E.B. Britt, X. Fu, Y. Wu, L. Li, J.D. Smith, J.A. Didonato, J. Chen, H. Li, G.D. Wu, J.D. Lewis, M. Warrier, J.M. Brown, R.M. Krauss, W.H.W. Tang, F.D. Bushman, A.J. Lusis, S.L. Hazen, Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19, 576–585 (2013). https://doi.org/10.1038/nm.3145 PubMedPubMedCentralCrossRef R.A. Koeth, Z. Wang, B.S. Levison, J.A. Buffa, E. Org, B.T. Sheehy, E.B. Britt, X. Fu, Y. Wu, L. Li, J.D. Smith, J.A. Didonato, J. Chen, H. Li, G.D. Wu, J.D. Lewis, M. Warrier, J.M. Brown, R.M. Krauss, W.H.W. Tang, F.D. Bushman, A.J. Lusis, S.L. Hazen, Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19, 576–585 (2013). https://​doi.​org/​10.​1038/​nm.​3145 PubMedPubMedCentralCrossRef
96.
go back to reference W.H.W. Tang, Z. Wang, Y. Fan, B. Levison, J.E. Hazen, L.M. Donahue, Y. Wu, S.L. Hazen, Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: Refining the gut hypothesis. J. Am. Coll. Cardiol. 64, 1908–1914 (2014)PubMedCrossRef W.H.W. Tang, Z. Wang, Y. Fan, B. Levison, J.E. Hazen, L.M. Donahue, Y. Wu, S.L. Hazen, Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: Refining the gut hypothesis. J. Am. Coll. Cardiol. 64, 1908–1914 (2014)PubMedCrossRef
97.
98.
go back to reference R. Ostan, M.C. Béné, L. Spazzafumo, A. Pinto, L.M. Donini, F. Pryen, Z. Charrouf, L. Valentini, H. Lochs, I. Bourdel-Marchasson, C. Blanc-Bisson, F. Buccolini, P. Brigidi, C. Franceschi, P.A. d’Alessio, Impact of diet and nutraceutical supplementation on inflammation in elderly people. Results from the RISTOMED study, an open-label randomized control trial. Clin. Nutr. 35, 812–818 (2016). https://doi.org/10.1016/j.clnu.2015.06.010 PubMedCrossRef R. Ostan, M.C. Béné, L. Spazzafumo, A. Pinto, L.M. Donini, F. Pryen, Z. Charrouf, L. Valentini, H. Lochs, I. Bourdel-Marchasson, C. Blanc-Bisson, F. Buccolini, P. Brigidi, C. Franceschi, P.A. d’Alessio, Impact of diet and nutraceutical supplementation on inflammation in elderly people. Results from the RISTOMED study, an open-label randomized control trial. Clin. Nutr. 35, 812–818 (2016). https://​doi.​org/​10.​1016/​j.​clnu.​2015.​06.​010 PubMedCrossRef
99.
go back to reference J.L. Griffin, X. Wang, E. Stanley, Does Our gut microbiome predict cardiovascular risk? A review of the evidence from metabolomics. Circ. Cardiovasc Genet. 8, 187–191 (2015)PubMedPubMedCentralCrossRef J.L. Griffin, X. Wang, E. Stanley, Does Our gut microbiome predict cardiovascular risk? A review of the evidence from metabolomics. Circ. Cardiovasc Genet. 8, 187–191 (2015)PubMedPubMedCentralCrossRef
100.
go back to reference J. Joseph, J. Loscalzo, Nutri(meta)genetics and cardiovascular disease: novel concepts in the interaction of diet and genomic variation. Curr. Atherosler Rep. 17, 505 (2015) J. Joseph, J. Loscalzo, Nutri(meta)genetics and cardiovascular disease: novel concepts in the interaction of diet and genomic variation. Curr. Atherosler Rep. 17, 505 (2015)
105.
go back to reference M.H. Floch, Probiotics and prebiotics. Gastroenterol. Hepatol. (N. Y) 10, 680–681 (2014) M.H. Floch, Probiotics and prebiotics. Gastroenterol. Hepatol. (N. Y) 10, 680–681 (2014)
106.
go back to reference M.C. Dao, A. Everard, J. Aron-Wisnewsky, N. Sokolovska, E. Prifti, E.O. Verger, B.D. Kayser, F. Levenez, J. Chilloux, L. Hoyles, M.-E. Dumas, S.W. Rizkalla, J. Doré, P.D. Cani, K. Clément, Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 65, 426–436 (2016)PubMedCrossRef M.C. Dao, A. Everard, J. Aron-Wisnewsky, N. Sokolovska, E. Prifti, E.O. Verger, B.D. Kayser, F. Levenez, J. Chilloux, L. Hoyles, M.-E. Dumas, S.W. Rizkalla, J. Doré, P.D. Cani, K. Clément, Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 65, 426–436 (2016)PubMedCrossRef
108.
go back to reference L.J. Cohen, D. Esterhazy, S.-H. Kim, C. Lemetre, R.R. Aguilar, E.A. Gordon, A.J. Pickard, J.R. Cross, A.B. Emiliano, S.M. Han, J. Chu, X. Vila-Farres, J. Kaplitt, A. Rogoz, P.Y. Calle, C. Hunter, J.K. Bitok, S.F. Brady, Commensal bacteria make GPCR ligands that mimic human signalling molecules. Nature 549, 48–53 (2017). https://doi.org/10.1038/nature23874 PubMedPubMedCentralCrossRef L.J. Cohen, D. Esterhazy, S.-H. Kim, C. Lemetre, R.R. Aguilar, E.A. Gordon, A.J. Pickard, J.R. Cross, A.B. Emiliano, S.M. Han, J. Chu, X. Vila-Farres, J. Kaplitt, A. Rogoz, P.Y. Calle, C. Hunter, J.K. Bitok, S.F. Brady, Commensal bacteria make GPCR ligands that mimic human signalling molecules. Nature 549, 48–53 (2017). https://​doi.​org/​10.​1038/​nature23874 PubMedPubMedCentralCrossRef
110.
go back to reference Z.Z.R. Hamady, N. Scott, M.D. Farrar, M. Wadhwa, P. Dilger, T.R. Whitehead, R. Thorpe, K.T. Holland, J.P.A. Lodge, S.R. Carding, Treatment of colitis with a commensal gut bacterium engineered to secrete human tgf-β1 under the control of dietary xylan 1. Inflamm. Bowel. Dis. 17, 1925–1935 (2011). https://doi.org/10.1002/ibd.21565 PubMedCrossRef Z.Z.R. Hamady, N. Scott, M.D. Farrar, M. Wadhwa, P. Dilger, T.R. Whitehead, R. Thorpe, K.T. Holland, J.P.A. Lodge, S.R. Carding, Treatment of colitis with a commensal gut bacterium engineered to secrete human tgf-β1 under the control of dietary xylan 1. Inflamm. Bowel. Dis. 17, 1925–1935 (2011). https://​doi.​org/​10.​1002/​ibd.​21565 PubMedCrossRef
111.
go back to reference K. Vandenbroucke, H. De Haard, E. Beirnaert, T. Dreier, M. Lauwereys, L. Huyck, J. Van Huysse, P. Demetter, L. Steidler, E. Remaut, C. Cuvelier, P. Rottiers, Orally administered L. lactis secreting an anti-TNF Nanobody demonstrate efficacy in chronic colitis. Mucosal Immunol. 3, 49–56 (2010). https://doi.org/10.1038/mi.2009.116 PubMedCrossRef K. Vandenbroucke, H. De Haard, E. Beirnaert, T. Dreier, M. Lauwereys, L. Huyck, J. Van Huysse, P. Demetter, L. Steidler, E. Remaut, C. Cuvelier, P. Rottiers, Orally administered L. lactis secreting an anti-TNF Nanobody demonstrate efficacy in chronic colitis. Mucosal Immunol. 3, 49–56 (2010). https://​doi.​org/​10.​1038/​mi.​2009.​116 PubMedCrossRef
112.
go back to reference Z.Z.R. Hamady, N. Scott, M.D. Farrar, J.P.A. Lodge, K.T. Holland, T. Whitehead, S.R. Carding, Xylan-regulated delivery of human keratinocyte growth factor-2 to the inflamed colon by the human anaerobic commensal bacterium Bacteroides ovatus. Gut 59, 461–469 (2010)PubMedCrossRef Z.Z.R. Hamady, N. Scott, M.D. Farrar, J.P.A. Lodge, K.T. Holland, T. Whitehead, S.R. Carding, Xylan-regulated delivery of human keratinocyte growth factor-2 to the inflamed colon by the human anaerobic commensal bacterium Bacteroides ovatus. Gut 59, 461–469 (2010)PubMedCrossRef
113.
go back to reference J.P. Motta, L.G. Bermúdez-Humarán, C. Deraison, L. Martin, C. Rolland, P. Rousset, J. Boue, G. Dietrich, K. Chapman, P. Kharrat, J.P. Vinel, L. Alric, E. Mas, J.M. Sallenave, P. Langella, N. Vergnolle, Food-grade bacteria expressing elafin protect against inflammation and restore colon homeostasis. Sci. Transl. Med. 4, 158ra144 (2012). https://doi.org/10.1126/scitranslmed.3004212 PubMedCrossRef J.P. Motta, L.G. Bermúdez-Humarán, C. Deraison, L. Martin, C. Rolland, P. Rousset, J. Boue, G. Dietrich, K. Chapman, P. Kharrat, J.P. Vinel, L. Alric, E. Mas, J.M. Sallenave, P. Langella, N. Vergnolle, Food-grade bacteria expressing elafin protect against inflammation and restore colon homeostasis. Sci. Transl. Med. 4, 158ra144 (2012). https://​doi.​org/​10.​1126/​scitranslmed.​3004212 PubMedCrossRef
116.
go back to reference M. De Vrese, J. Schrezenmeir, Probiotics, prebiotics, and synbiotics. Adv. Biochem. Eng. Biotechnol. 111, 1–66 (2008)PubMed M. De Vrese, J. Schrezenmeir, Probiotics, prebiotics, and synbiotics. Adv. Biochem. Eng. Biotechnol. 111, 1–66 (2008)PubMed
118.
119.
go back to reference A. Coppola, L. Sasso, A. Bagnasco, A. Giustina, C. Gazzaruso, The role of patient education in the prevention and management of type 2 diabetes: an overview. Endocrine 53, 18–27 (2016)PubMedCrossRef A. Coppola, L. Sasso, A. Bagnasco, A. Giustina, C. Gazzaruso, The role of patient education in the prevention and management of type 2 diabetes: an overview. Endocrine 53, 18–27 (2016)PubMedCrossRef
120.
go back to reference V. Tosti, B. Bertozzi, L. Fontana, Health Benefits of the Mediterranean Diet: Metabolic and Molecular Mechanisms. J Gerontol A Biol Sci Med Sci. 73, 318–326 (2018)PubMedCrossRef V. Tosti, B. Bertozzi, L. Fontana, Health Benefits of the Mediterranean Diet: Metabolic and Molecular Mechanisms. J Gerontol A Biol Sci Med Sci. 73, 318–326 (2018)PubMedCrossRef
121.
go back to reference T.T.B. Nguyen, Y.Y. Jin, H.J. Chung, S.T. Hong, Pharmabiotics as an emerging medication for metabolic syndrome and its related diseases. Molecules 22(10), E1795 (2017)PubMedCrossRef T.T.B. Nguyen, Y.Y. Jin, H.J. Chung, S.T. Hong, Pharmabiotics as an emerging medication for metabolic syndrome and its related diseases. Molecules 22(10), E1795 (2017)PubMedCrossRef
127.
129.
Metadata
Title
Microbiota and metabolic diseases
Authors
Alessia Pascale
Nicoletta Marchesi
Cristina Marelli
Adriana Coppola
Livio Luzi
Stefano Govoni
Andrea Giustina
Carmine Gazzaruso
Publication date
01-09-2018
Publisher
Springer US
Published in
Endocrine / Issue 3/2018
Print ISSN: 1355-008X
Electronic ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-018-1605-5

Other articles of this Issue 3/2018

Endocrine 3/2018 Go to the issue