Skip to main content
Top
Published in: European Journal of Nutrition 1/2018

Open Access 01-02-2018 | Review

Gut microbiota functions: metabolism of nutrients and other food components

Authors: Ian Rowland, Glenn Gibson, Almut Heinken, Karen Scott, Jonathan Swann, Ines Thiele, Kieran Tuohy

Published in: European Journal of Nutrition | Issue 1/2018

Login to get access

Abstract

The diverse microbial community that inhabits the human gut has an extensive metabolic repertoire that is distinct from, but complements the activity of mammalian enzymes in the liver and gut mucosa and includes functions essential for host digestion. As such, the gut microbiota is a key factor in shaping the biochemical profile of the diet and, therefore, its impact on host health and disease. The important role that the gut microbiota appears to play in human metabolism and health has stimulated research into the identification of specific microorganisms involved in different processes, and the elucidation of metabolic pathways, particularly those associated with metabolism of dietary components and some host-generated substances. In the first part of the review, we discuss the main gut microorganisms, particularly bacteria, and microbial pathways associated with the metabolism of dietary carbohydrates (to short chain fatty acids and gases), proteins, plant polyphenols, bile acids, and vitamins. The second part of the review focuses on the methodologies, existing and novel, that can be employed to explore gut microbial pathways of metabolism. These include mathematical models, omics techniques, isolated microbes, and enzyme assays.
Literature
1.
go back to reference Rajilić-Stojanović M, de Vos WM (2014) The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev 38:996–1047CrossRef Rajilić-Stojanović M, de Vos WM (2014) The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev 38:996–1047CrossRef
2.
go back to reference Zhang Q, Raoof M, Chen Y et al (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464:104–107CrossRef Zhang Q, Raoof M, Chen Y et al (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464:104–107CrossRef
3.
go back to reference Nicholson JK, Holmes E, Kinross J et al (2012) Host-gut microbiota metabolic interactions. Science 336:1262–1267CrossRef Nicholson JK, Holmes E, Kinross J et al (2012) Host-gut microbiota metabolic interactions. Science 336:1262–1267CrossRef
4.
go back to reference Greenblum S, Turnbaugh PJ, Borenstein E (2012) Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proc Natl Acad Sci U S A 109:594–599CrossRef Greenblum S, Turnbaugh PJ, Borenstein E (2012) Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proc Natl Acad Sci U S A 109:594–599CrossRef
5.
go back to reference Marchesi JR, Adams DH, Fava F et al (2016) The gut microbiota and host health: a new clinical frontier. Gut 65:330–339CrossRef Marchesi JR, Adams DH, Fava F et al (2016) The gut microbiota and host health: a new clinical frontier. Gut 65:330–339CrossRef
6.
go back to reference Boyd SD, Liu Y, Wang C et al (2013) Human lymphocyte repertoires in ageing. Curr Opin Immunol 25:511–515CrossRef Boyd SD, Liu Y, Wang C et al (2013) Human lymphocyte repertoires in ageing. Curr Opin Immunol 25:511–515CrossRef
7.
go back to reference Macfarlane GT, Gibson GR, Cummings JH (1992) Comparison of fermentation reactions in different regions of the human colon. J Appl Bacteriol 72:57–64 Macfarlane GT, Gibson GR, Cummings JH (1992) Comparison of fermentation reactions in different regions of the human colon. J Appl Bacteriol 72:57–64
8.
go back to reference Steliou K, Boosalis MS, Perrine SP et al (2012) Butyrate histone deacetylase inhibitors. Biores Open Access 1:192–198CrossRef Steliou K, Boosalis MS, Perrine SP et al (2012) Butyrate histone deacetylase inhibitors. Biores Open Access 1:192–198CrossRef
9.
go back to reference De Vadder F, Kovatcheva-Datchary P, Goncalves D et al (2014) Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156:84–96CrossRef De Vadder F, Kovatcheva-Datchary P, Goncalves D et al (2014) Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156:84–96CrossRef
10.
go back to reference Brown AJ, Goldsworthy SM, Barnes AA et al (2003) The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 278:11312–11319CrossRef Brown AJ, Goldsworthy SM, Barnes AA et al (2003) The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 278:11312–11319CrossRef
11.
go back to reference Tazoe H, Otomo Y, Kaji I et al (2008) Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions. J Physiol Pharmacol 59(Suppl 2):251–262 Tazoe H, Otomo Y, Kaji I et al (2008) Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions. J Physiol Pharmacol 59(Suppl 2):251–262
12.
go back to reference Duncan SH, Holtrop G, Lobley GE et al (2004) Contribution of acetate to butyrate formation by human faecal bacteria. Br J Nutr 91:915–923CrossRef Duncan SH, Holtrop G, Lobley GE et al (2004) Contribution of acetate to butyrate formation by human faecal bacteria. Br J Nutr 91:915–923CrossRef
13.
go back to reference Frost G, Sleeth ML, Sahuri-Arisoylu M et al (2014) The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun 5:3611CrossRef Frost G, Sleeth ML, Sahuri-Arisoylu M et al (2014) The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun 5:3611CrossRef
14.
go back to reference Bjerrum JT, Wang Y, Hao F et al (2015) Metabonomics of human fecal extracts characterize ulcerative colitis, Crohn’s disease and healthy individuals. Metabolomics 11:122–133CrossRef Bjerrum JT, Wang Y, Hao F et al (2015) Metabonomics of human fecal extracts characterize ulcerative colitis, Crohn’s disease and healthy individuals. Metabolomics 11:122–133CrossRef
15.
go back to reference Belenguer A, Duncan SH, Calder AG et al (2006) Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Appl Environ Microbiol 72:3593–3599CrossRef Belenguer A, Duncan SH, Calder AG et al (2006) Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Appl Environ Microbiol 72:3593–3599CrossRef
16.
go back to reference Falony G, Vlachou A, Verbrugghe K, De Vuyst L (2006) Cross-feeding between Bifidobacterium longum BB536 and acetate-converting, butyrate-producing colon bacteria during growth on oligofructose. Appl Environ Microbiol 72:7835–7841CrossRef Falony G, Vlachou A, Verbrugghe K, De Vuyst L (2006) Cross-feeding between Bifidobacterium longum BB536 and acetate-converting, butyrate-producing colon bacteria during growth on oligofructose. Appl Environ Microbiol 72:7835–7841CrossRef
17.
go back to reference Louis P, Young P, Holtrop G, Flint HJ (2010) Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA: acetate CoA-transferase gene. Environ Microbiol 12:304–314CrossRef Louis P, Young P, Holtrop G, Flint HJ (2010) Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA: acetate CoA-transferase gene. Environ Microbiol 12:304–314CrossRef
18.
go back to reference Reichardt N, Duncan SH, Young P et al (2014) Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J 8:1323–1335CrossRef Reichardt N, Duncan SH, Young P et al (2014) Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J 8:1323–1335CrossRef
19.
go back to reference Vital M, Howe AC, Tiedje JM (2014) Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data. MBio 5:e00889CrossRef Vital M, Howe AC, Tiedje JM (2014) Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data. MBio 5:e00889CrossRef
20.
go back to reference Louis P, Duncan SH, McCrae SI et al (2004) Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon. J Bacteriol 186:2099–2106CrossRef Louis P, Duncan SH, McCrae SI et al (2004) Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon. J Bacteriol 186:2099–2106CrossRef
21.
go back to reference Louis P, Flint HJ (2017) Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol 19(1):29–41CrossRef Louis P, Flint HJ (2017) Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol 19(1):29–41CrossRef
22.
go back to reference Scott KP, Martin JC, Campbell G et al (2006) Whole-genome transcription profiling reveals genes up-regulated by growth on fucose in the human gut bacterium ‘Roseburia inulinivorans’. J Bacteriol 188:4340–4349CrossRef Scott KP, Martin JC, Campbell G et al (2006) Whole-genome transcription profiling reveals genes up-regulated by growth on fucose in the human gut bacterium ‘Roseburia inulinivorans’. J Bacteriol 188:4340–4349CrossRef
23.
go back to reference Hooper LV, Xu J, Falk PG et al (1999) A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc Natl Acad Sci USA 96:9833–9838CrossRef Hooper LV, Xu J, Falk PG et al (1999) A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc Natl Acad Sci USA 96:9833–9838CrossRef
24.
go back to reference El Aidy S, Van den Abbeele P, Van de Wiele T et al (2013) Intestinal colonization: how key microbial players become established in this dynamic process. Bioessays 35:913–923 El Aidy S, Van den Abbeele P, Van de Wiele T et al (2013) Intestinal colonization: how key microbial players become established in this dynamic process. Bioessays 35:913–923
25.
go back to reference Duncan SH, Belenguer A, Holtrop G et al (2007) Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl Env Microbiol 73:1073–1078CrossRef Duncan SH, Belenguer A, Holtrop G et al (2007) Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl Env Microbiol 73:1073–1078CrossRef
26.
go back to reference Francois IEJA, Lescroart O, Veraverbeke WS et al (2012) Effects of a wheat bran extract containing arabinoxylan oligosaccharides on gastrointestinal health parameters in healthy adult human volunteers: a double-blind, randomised, placebo-controlled, cross-over trial. Br J Nutr 108:2229–2242CrossRef Francois IEJA, Lescroart O, Veraverbeke WS et al (2012) Effects of a wheat bran extract containing arabinoxylan oligosaccharides on gastrointestinal health parameters in healthy adult human volunteers: a double-blind, randomised, placebo-controlled, cross-over trial. Br J Nutr 108:2229–2242CrossRef
27.
go back to reference Halmos EP, Christophersen CT, Bird AR et al (2015) Diets that differ in their FODMAP content alter the colonic luminal microenvironment. Gut 64:93–100CrossRef Halmos EP, Christophersen CT, Bird AR et al (2015) Diets that differ in their FODMAP content alter the colonic luminal microenvironment. Gut 64:93–100CrossRef
28.
go back to reference Levitt MD, Bond JH Jr (1970) Volume, composition, and source of intestinal gas. Gastroenterology 59:921–929 Levitt MD, Bond JH Jr (1970) Volume, composition, and source of intestinal gas. Gastroenterology 59:921–929
29.
go back to reference Cummings JH, Macfarlane GT (1991) The control and consequences of bacterial fermentation in the human colon. J Appl Bacteriol 70:443–459CrossRef Cummings JH, Macfarlane GT (1991) The control and consequences of bacterial fermentation in the human colon. J Appl Bacteriol 70:443–459CrossRef
30.
go back to reference Suarez F, Furne J, Springfield J, Levitt M (1997) Insights into human colonic physiology obtained from the study of flatus composition. Am J Physiol 272:G1028–G1033 Suarez F, Furne J, Springfield J, Levitt M (1997) Insights into human colonic physiology obtained from the study of flatus composition. Am J Physiol 272:G1028–G1033
31.
go back to reference Gibson GR (1990) Physiology and ecology of the sulphate-reducing bacteria. J Appl Bacteriol 69:769–797CrossRef Gibson GR (1990) Physiology and ecology of the sulphate-reducing bacteria. J Appl Bacteriol 69:769–797CrossRef
32.
go back to reference Wolf PG, Biswas A, Morales SE, Greening C, Gaskins HR (2016) H2 metabolism is widespread and diverse among human colonic microbes. Gut Microbes 3:235–245CrossRef Wolf PG, Biswas A, Morales SE, Greening C, Gaskins HR (2016) H2 metabolism is widespread and diverse among human colonic microbes. Gut Microbes 3:235–245CrossRef
33.
go back to reference Christl SU, Murgatroyd PR, Gibson GR, Cummings JH (1992) Production, metabolism, and excretion of hydrogen in the large intestine. Gastroenterology 102:1269–1277CrossRef Christl SU, Murgatroyd PR, Gibson GR, Cummings JH (1992) Production, metabolism, and excretion of hydrogen in the large intestine. Gastroenterology 102:1269–1277CrossRef
34.
go back to reference Tomasova L, Konopelski P, Ufnal M (2016) Gut bacteria and hydrogen sulfide: the new old players in circulatory system homeostasis. Molecules 17:E1558CrossRef Tomasova L, Konopelski P, Ufnal M (2016) Gut bacteria and hydrogen sulfide: the new old players in circulatory system homeostasis. Molecules 17:E1558CrossRef
35.
go back to reference Gibson GR, Cummings JH, Macfarlane GT (1988) Use of a three-stage continuous culture system to study the effect of mucin on dissimilatory sulfate reduction and methanogenesis by mixed populations of human gut bacteria. Appl Environ Microbiol 54:2750–2755 Gibson GR, Cummings JH, Macfarlane GT (1988) Use of a three-stage continuous culture system to study the effect of mucin on dissimilatory sulfate reduction and methanogenesis by mixed populations of human gut bacteria. Appl Environ Microbiol 54:2750–2755
36.
go back to reference Lajoie SF, Bank S, Miller TL, Wolin MJ (1988) Acetate production from hydrogen and [13C] carbon dioxide by the microflora of human feces. Appl Environ Microbiol 54:2723–2727 Lajoie SF, Bank S, Miller TL, Wolin MJ (1988) Acetate production from hydrogen and [13C] carbon dioxide by the microflora of human feces. Appl Environ Microbiol 54:2723–2727
37.
go back to reference Christl SU, Gibson GR, Murgatroyd PR et al (1993) Impaired hydrogen metabolism in pneumatosis cystoides intestinalis. Gastroenterology 104:392–397CrossRef Christl SU, Gibson GR, Murgatroyd PR et al (1993) Impaired hydrogen metabolism in pneumatosis cystoides intestinalis. Gastroenterology 104:392–397CrossRef
38.
go back to reference Shen X, Carlstrom M, Borniquel S et al (2013) Microbial regulation of host hydrogen sulfide bioavailability and metabolism. Free Radic Biol Med 60:195–200CrossRef Shen X, Carlstrom M, Borniquel S et al (2013) Microbial regulation of host hydrogen sulfide bioavailability and metabolism. Free Radic Biol Med 60:195–200CrossRef
39.
go back to reference Watanabe K, Mikamo H, Tanaka K (2007) [Clinical significance of sulfate-reducing bacteria for ulcerative colitis]. Nihon Rinsho 65:1337–1346. Watanabe K, Mikamo H, Tanaka K (2007) [Clinical significance of sulfate-reducing bacteria for ulcerative colitis]. Nihon Rinsho 65:1337–1346.
40.
go back to reference Rowan FE, Docherty NG, Coffey JC, O’Connell PR (2009) Sulphate-reducing bacteria and hydrogen sulphide in the aetiology of ulcerative colitis. Br J Surg 96:151–158CrossRef Rowan FE, Docherty NG, Coffey JC, O’Connell PR (2009) Sulphate-reducing bacteria and hydrogen sulphide in the aetiology of ulcerative colitis. Br J Surg 96:151–158CrossRef
41.
go back to reference Flick JA, Hamilton SR, Rosales FJ, Perman JA (1990) Methane excretion and experimental colonic carcinogenesis. Dig Dis Sci 35:221–224CrossRef Flick JA, Hamilton SR, Rosales FJ, Perman JA (1990) Methane excretion and experimental colonic carcinogenesis. Dig Dis Sci 35:221–224CrossRef
42.
go back to reference Macfarlane GT, Cummings JH, Allison C (1986) Protein degradation by human intestinal bacteria. Microbiology 132:1647–1656CrossRef Macfarlane GT, Cummings JH, Allison C (1986) Protein degradation by human intestinal bacteria. Microbiology 132:1647–1656CrossRef
43.
go back to reference Gibson SA, McFarlan C, Hay S, MacFarlane GT (1989) Significance of microflora in proteolysis in the colon. Appl Environ Microbiol 55:679–683 Gibson SA, McFarlan C, Hay S, MacFarlane GT (1989) Significance of microflora in proteolysis in the colon. Appl Environ Microbiol 55:679–683
44.
go back to reference Smith EA, Macfarlane GT (1996) Enumeration of human colonic bacteria producing phenolic and indolic compounds: effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism. J Appl Bacteriol 81:288–302CrossRef Smith EA, Macfarlane GT (1996) Enumeration of human colonic bacteria producing phenolic and indolic compounds: effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism. J Appl Bacteriol 81:288–302CrossRef
45.
go back to reference Russell WR, Duncan SH, Scobbie L, Duncan G, Cantlay L, Calder AG, Anderson SE, Flint HJ (2013) Major phenylpropanoid-derived metabolites in the human gut can arise from microbial fermentation of protein. Mol Nutr Food Res 57:523–535CrossRef Russell WR, Duncan SH, Scobbie L, Duncan G, Cantlay L, Calder AG, Anderson SE, Flint HJ (2013) Major phenylpropanoid-derived metabolites in the human gut can arise from microbial fermentation of protein. Mol Nutr Food Res 57:523–535CrossRef
46.
go back to reference Davila A-M, Blachier F, Gotteland M et al (2013) Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host. Pharmacol Res 68:95–107CrossRef Davila A-M, Blachier F, Gotteland M et al (2013) Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host. Pharmacol Res 68:95–107CrossRef
47.
go back to reference Dai Z-L, Zhang J, Wu G, Zhu W-Y (2010) Utilization of amino acids by bacteria from the pig small intestine. Amino Acids 39:1201–1215CrossRef Dai Z-L, Zhang J, Wu G, Zhu W-Y (2010) Utilization of amino acids by bacteria from the pig small intestine. Amino Acids 39:1201–1215CrossRef
48.
go back to reference Dai Z-L, Li X-L, Xi P-B et al (2013) L-Glutamine regulates amino acid utilization by intestinal bacteria. Amino Acids 45:501–512CrossRef Dai Z-L, Li X-L, Xi P-B et al (2013) L-Glutamine regulates amino acid utilization by intestinal bacteria. Amino Acids 45:501–512CrossRef
49.
go back to reference Hermanussen M, Gonder U, Jakobs C et al (2010) Patterns of free amino acids in German convenience food products: marked mismatch between label information and composition. Eur J Clin Nutr 64:88–98CrossRef Hermanussen M, Gonder U, Jakobs C et al (2010) Patterns of free amino acids in German convenience food products: marked mismatch between label information and composition. Eur J Clin Nutr 64:88–98CrossRef
50.
go back to reference Wu G, Wu Z, Dai Z et al (2013) Dietary requirements of ‘nutritionally non-essential amino acids’ by animals and humans. Amino Acids 44:1107–1113CrossRef Wu G, Wu Z, Dai Z et al (2013) Dietary requirements of ‘nutritionally non-essential amino acids’ by animals and humans. Amino Acids 44:1107–1113CrossRef
51.
go back to reference Karau A, Grayson I (2014) Amino acids in human and animal nutrition. Adv Biochem Eng Biotechnol 143:189–228 Karau A, Grayson I (2014) Amino acids in human and animal nutrition. Adv Biochem Eng Biotechnol 143:189–228
52.
go back to reference Hill MJ (1997) Intestinal flora and endogenous vitamin synthesis. Eur J Cancer Prev 6:S43–S45CrossRef Hill MJ (1997) Intestinal flora and endogenous vitamin synthesis. Eur J Cancer Prev 6:S43–S45CrossRef
53.
go back to reference Gustafsson BE, Daft FS, McDaniel EG et al (1962) Effects of vitamin K-active compounds and intestinal micro-organisms in vitamin K-deficient germfree rats. J Nutr 78:461–468CrossRef Gustafsson BE, Daft FS, McDaniel EG et al (1962) Effects of vitamin K-active compounds and intestinal micro-organisms in vitamin K-deficient germfree rats. J Nutr 78:461–468CrossRef
54.
go back to reference Frick PG, Riedler G, Brögli H (1967) Dose response and minimal daily requirement for vitamin K in man. J Appl Physiol 23:387–389CrossRef Frick PG, Riedler G, Brögli H (1967) Dose response and minimal daily requirement for vitamin K in man. J Appl Physiol 23:387–389CrossRef
55.
go back to reference Le Blanc JG, Milani C, de Giori GS et al (2013) Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol 24:160–168CrossRef Le Blanc JG, Milani C, de Giori GS et al (2013) Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol 24:160–168CrossRef
56.
go back to reference Magnúsdóttir S, Ravcheev D, de Crécy-Lagard V, Thiele I (2015) Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front Genet 6:148CrossRef Magnúsdóttir S, Ravcheev D, de Crécy-Lagard V, Thiele I (2015) Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front Genet 6:148CrossRef
57.
go back to reference Said HM (2013) Recent advances in transport of water-soluble vitamins in organs of the digestive system: a focus on the colon and the pancreas. Am J Physiol Gastrointest Liver Physiol 305:G601–G610CrossRef Said HM (2013) Recent advances in transport of water-soluble vitamins in organs of the digestive system: a focus on the colon and the pancreas. Am J Physiol Gastrointest Liver Physiol 305:G601–G610CrossRef
58.
go back to reference Kandell RL, Bernstein C (1991) Bile salt/acid induction of DNA damage in bacterial and mammalian cells: implications for colon cancer. Nutr Cancer 16:227–238CrossRef Kandell RL, Bernstein C (1991) Bile salt/acid induction of DNA damage in bacterial and mammalian cells: implications for colon cancer. Nutr Cancer 16:227–238CrossRef
59.
go back to reference Bernstein H, Payne CM, Bernstein C et al (1999) Activation of the promoters of genes associated with DNA damage, oxidative stress, ER stress and protein malfolding by the bile salt, deoxycholate. Toxicol Lett 108:37–46CrossRef Bernstein H, Payne CM, Bernstein C et al (1999) Activation of the promoters of genes associated with DNA damage, oxidative stress, ER stress and protein malfolding by the bile salt, deoxycholate. Toxicol Lett 108:37–46CrossRef
60.
go back to reference Begley M, Gahan CGM, Hill C (2005) The interaction between bacteria and bile. FEMS Microbiol Rev 29:625–651CrossRef Begley M, Gahan CGM, Hill C (2005) The interaction between bacteria and bile. FEMS Microbiol Rev 29:625–651CrossRef
61.
go back to reference Kurdi P, Kawanishi K, Mizutani K, Yokota A (2006) Mechanism of growth inhibition by free bile acids in lactobacilli and bifidobacteria. J Bacteriol 188:1979–1986CrossRef Kurdi P, Kawanishi K, Mizutani K, Yokota A (2006) Mechanism of growth inhibition by free bile acids in lactobacilli and bifidobacteria. J Bacteriol 188:1979–1986CrossRef
62.
go back to reference Kellogg TF (1971) Microbiological aspects of enterohepatic neutral sterol and bile acid metabolism. In: Fed. Proceedings. Fed. Am. Soc. Exp. Biol. pp 1808–1814 Kellogg TF (1971) Microbiological aspects of enterohepatic neutral sterol and bile acid metabolism. In: Fed. Proceedings. Fed. Am. Soc. Exp. Biol. pp 1808–1814
63.
go back to reference Jones BV, Begley M, Hill C et al (2008) Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc Natl Acad Sci USA 105:13580–13585CrossRef Jones BV, Begley M, Hill C et al (2008) Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc Natl Acad Sci USA 105:13580–13585CrossRef
64.
go back to reference Van Eldere J, Celis P, De Pauw G et al (1996) Tauroconjugation of cholic acid stimulates 7 alpha-dehydroxylation by fecal bacteria. Appl Environ Microbiol 62:656–661 Van Eldere J, Celis P, De Pauw G et al (1996) Tauroconjugation of cholic acid stimulates 7 alpha-dehydroxylation by fecal bacteria. Appl Environ Microbiol 62:656–661
65.
go back to reference Ridlon JM, Kang D-J, Hylemon PB (2006) Bile salt biotransformations by human intestinal bacteria. J Lipid Res 47:241–259CrossRef Ridlon JM, Kang D-J, Hylemon PB (2006) Bile salt biotransformations by human intestinal bacteria. J Lipid Res 47:241–259CrossRef
66.
go back to reference Gustafsson BE, Angelin B, Einarsson K, Gustafsson JA (1977) Effects of cholesterol feeding on synthesis and metabolism of cholesterol and bile acids in germfree rats. J Lipid Res 18:717–721 Gustafsson BE, Angelin B, Einarsson K, Gustafsson JA (1977) Effects of cholesterol feeding on synthesis and metabolism of cholesterol and bile acids in germfree rats. J Lipid Res 18:717–721
67.
go back to reference Mallonee DH, Hylemon PB (1996) Sequencing and expression of a gene encoding a bile acid transporter from Eubacterium sp. strain VPI 12708. J Bacteriol 178:7053–7058CrossRef Mallonee DH, Hylemon PB (1996) Sequencing and expression of a gene encoding a bile acid transporter from Eubacterium sp. strain VPI 12708. J Bacteriol 178:7053–7058CrossRef
68.
go back to reference Hussaini SH, Pereira SP, Murphy GM, Dowling RH (1995) Deoxycholic acid influences cholesterol solubilization and microcrystal nucleation time in gallbladder bile. Hepatology 22:1735–1744 Hussaini SH, Pereira SP, Murphy GM, Dowling RH (1995) Deoxycholic acid influences cholesterol solubilization and microcrystal nucleation time in gallbladder bile. Hepatology 22:1735–1744
69.
go back to reference Ridlon JM, Wolf PG, Gaskins R (2016) Taurocholic acid metabolism by gut microbes and colon cancer. Gut Microbes 7:201–215CrossRef Ridlon JM, Wolf PG, Gaskins R (2016) Taurocholic acid metabolism by gut microbes and colon cancer. Gut Microbes 7:201–215CrossRef
70.
go back to reference Hofmann AF (2004) Detoxification of lithocholic acid, a toxic bile acid: relevance to drug hepatotoxicity. Drug Metab Rev 36:703–722CrossRef Hofmann AF (2004) Detoxification of lithocholic acid, a toxic bile acid: relevance to drug hepatotoxicity. Drug Metab Rev 36:703–722CrossRef
71.
go back to reference Woollett LA, Buckley DD, Yao L et al (2003) Effect of ursodeoxycholic acid on cholesterol absorption and metabolism in humans. J Lipid Res 44:935–942CrossRef Woollett LA, Buckley DD, Yao L et al (2003) Effect of ursodeoxycholic acid on cholesterol absorption and metabolism in humans. J Lipid Res 44:935–942CrossRef
72.
go back to reference Garcia-Canaveras JC, Donato MT, Castell JV, Lahoz A (2012) Targeted profiling of circulating and hepatic bile acids in human, mouse, and rat using a UPLC-MRM-MS-validated method. J Lipid Res 53:2231–2241CrossRef Garcia-Canaveras JC, Donato MT, Castell JV, Lahoz A (2012) Targeted profiling of circulating and hepatic bile acids in human, mouse, and rat using a UPLC-MRM-MS-validated method. J Lipid Res 53:2231–2241CrossRef
73.
go back to reference Houten SM, Watanabe M, Auwerx J (2006) Endocrine functions of bile acids. EMBO J 25:1419–1425CrossRef Houten SM, Watanabe M, Auwerx J (2006) Endocrine functions of bile acids. EMBO J 25:1419–1425CrossRef
74.
go back to reference Eloranta JJ, Kullak-Ublick GA (2008) The role of FXR in disorders of bile acid homeostasis. Physiology 23:286–295CrossRef Eloranta JJ, Kullak-Ublick GA (2008) The role of FXR in disorders of bile acid homeostasis. Physiology 23:286–295CrossRef
75.
go back to reference Goodwin B, Jones SA, Price RR et al (2000) A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol Cell 6:517–526CrossRef Goodwin B, Jones SA, Price RR et al (2000) A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol Cell 6:517–526CrossRef
76.
go back to reference Pircher PC, Kitto JL, Petrowski ML et al (2003) Farnesoid X receptor regulates bile acid-amino acid conjugation. J Biol Chem 278:27703–27711CrossRef Pircher PC, Kitto JL, Petrowski ML et al (2003) Farnesoid X receptor regulates bile acid-amino acid conjugation. J Biol Chem 278:27703–27711CrossRef
77.
go back to reference Song CS, Echchgadda I, Baek BS et al (2001) Dehydroepiandrosterone sulfotransferase gene induction by bile acid activated farnesoid X receptor. J Biol Chem 276:42549–42556CrossRef Song CS, Echchgadda I, Baek BS et al (2001) Dehydroepiandrosterone sulfotransferase gene induction by bile acid activated farnesoid X receptor. J Biol Chem 276:42549–42556CrossRef
78.
go back to reference Hirokane H, Nakahara M, Tachibana S et al (2004) Bile acid reduces the secretion of very low density lipoprotein by repressing microsomal triglyceride transfer protein gene expression mediated by hepatocyte nuclear factor-4. J Biol Chem 279:45685–45692CrossRef Hirokane H, Nakahara M, Tachibana S et al (2004) Bile acid reduces the secretion of very low density lipoprotein by repressing microsomal triglyceride transfer protein gene expression mediated by hepatocyte nuclear factor-4. J Biol Chem 279:45685–45692CrossRef
79.
go back to reference Watanabe M, Houten SM, Wang L et al (2004) Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest 113:1408–1418CrossRef Watanabe M, Houten SM, Wang L et al (2004) Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest 113:1408–1418CrossRef
80.
go back to reference Katsuma S, Hirasawa A, Tsujimoto G (2005) Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem Biophys Res Commun 329:386–390CrossRef Katsuma S, Hirasawa A, Tsujimoto G (2005) Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem Biophys Res Commun 329:386–390CrossRef
81.
go back to reference Stayrook KR, Bramlett KS, Savkur RS et al (2005) Regulation of carbohydrate metabolism by the farnesoid X receptor. Endocrinology 146:984–991CrossRef Stayrook KR, Bramlett KS, Savkur RS et al (2005) Regulation of carbohydrate metabolism by the farnesoid X receptor. Endocrinology 146:984–991CrossRef
82.
go back to reference Watanabe M, Houten SM, Mataki C et al (2006) Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439:484–489CrossRef Watanabe M, Houten SM, Mataki C et al (2006) Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439:484–489CrossRef
83.
go back to reference Swann JR, Tuohy KM, Lindfors P et al (2011) Variation in antibiotic-induced microbial recolonization impacts on the host metabolic phenotypes of rats. J Proteome Res 10:3590–3603CrossRef Swann JR, Tuohy KM, Lindfors P et al (2011) Variation in antibiotic-induced microbial recolonization impacts on the host metabolic phenotypes of rats. J Proteome Res 10:3590–3603CrossRef
84.
go back to reference Pérez-Jiménez J, Fezeu L, Touvier M et al (2011) Dietary intake of 337 polyphenols in French adults. Am J Clin Nutr 93:1220–1228CrossRef Pérez-Jiménez J, Fezeu L, Touvier M et al (2011) Dietary intake of 337 polyphenols in French adults. Am J Clin Nutr 93:1220–1228CrossRef
85.
go back to reference Manach C, Scalbert A, Morand C et al (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747CrossRef Manach C, Scalbert A, Morand C et al (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747CrossRef
86.
go back to reference Russell WR, Scobbie L, Chesson A et al (2008) Anti-inflammatory implications of the microbial transformation of dietary phenolic compounds. Nutr Cancer 60:636–642CrossRef Russell WR, Scobbie L, Chesson A et al (2008) Anti-inflammatory implications of the microbial transformation of dietary phenolic compounds. Nutr Cancer 60:636–642CrossRef
87.
go back to reference Duda-Chodak A, Tarko T, Satora P, Sroka P (2015) Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: a review. Eur J Nutr 54:325–341CrossRef Duda-Chodak A, Tarko T, Satora P, Sroka P (2015) Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: a review. Eur J Nutr 54:325–341CrossRef
88.
go back to reference Marín L, Miguélez EM, Villar CJ, Lombó F (2015) Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. Biomed Res Int 2015:905215CrossRef Marín L, Miguélez EM, Villar CJ, Lombó F (2015) Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. Biomed Res Int 2015:905215CrossRef
89.
go back to reference Braune A, Engst W, Blaut M (2015) Identification and functional expression of genes encoding flavonoid O-and C-glycosidases in intestinal bacteria. Environ Microbiol 18:2117–2129CrossRef Braune A, Engst W, Blaut M (2015) Identification and functional expression of genes encoding flavonoid O-and C-glycosidases in intestinal bacteria. Environ Microbiol 18:2117–2129CrossRef
90.
go back to reference Rechner AR, Smith MA, Kuhnle G et al (2004) Colonic metabolism of dietary polyphenols: influence of structure on microbial fermentation products. Free Radic Biol Med 36:212–225CrossRef Rechner AR, Smith MA, Kuhnle G et al (2004) Colonic metabolism of dietary polyphenols: influence of structure on microbial fermentation products. Free Radic Biol Med 36:212–225CrossRef
91.
go back to reference Braune A, Blaut M (2016) Bacterial species involved in the conversion of dietary flavonoids in the human gut. Gut Microbes 7:216–234CrossRef Braune A, Blaut M (2016) Bacterial species involved in the conversion of dietary flavonoids in the human gut. Gut Microbes 7:216–234CrossRef
92.
go back to reference Clavel T, Henderson G, Engst W et al (2006) Phylogeny of human intestinal bacteria that activate the dietary lignan secoisolariciresinol diglucoside. FEMS Microbiol Ecol 55:471–478CrossRef Clavel T, Henderson G, Engst W et al (2006) Phylogeny of human intestinal bacteria that activate the dietary lignan secoisolariciresinol diglucoside. FEMS Microbiol Ecol 55:471–478CrossRef
93.
go back to reference Clavel T, Lippman R, Gavini F et al (2007) Clostridium saccharogumia sp. nov. and Lactonifactor longoviformis gen. nov., sp. nov., two novel human faecal bacteria involved in the conversion of the dietary phytoestrogen secoisolariciresinol diglucoside. Syst Appl Microbiol 30:16–26CrossRef Clavel T, Lippman R, Gavini F et al (2007) Clostridium saccharogumia sp. nov. and Lactonifactor longoviformis gen. nov., sp. nov., two novel human faecal bacteria involved in the conversion of the dietary phytoestrogen secoisolariciresinol diglucoside. Syst Appl Microbiol 30:16–26CrossRef
94.
go back to reference Quartieri A, García-Villalba R, Amaretti A et al (2016) Detection of novel metabolites of flaxseed lignans in vitro and in vivo. Mol Nutr Food Res 60:1590–1601CrossRef Quartieri A, García-Villalba R, Amaretti A et al (2016) Detection of novel metabolites of flaxseed lignans in vitro and in vivo. Mol Nutr Food Res 60:1590–1601CrossRef
95.
go back to reference Gill CIR, McDougall GJ, Glidewell S et al (2010) Profiling of phenols in human fecal water after raspberry supplementation. J Agric Food Chem 58:10389–10395CrossRef Gill CIR, McDougall GJ, Glidewell S et al (2010) Profiling of phenols in human fecal water after raspberry supplementation. J Agric Food Chem 58:10389–10395CrossRef
96.
go back to reference Rowland I, Faughnan M, Hoey L et al (2003) Bioavailability of phyto-oestrogens. Br J Nutr 89(Suppl 1):S45–S58 Rowland I, Faughnan M, Hoey L et al (2003) Bioavailability of phyto-oestrogens. Br J Nutr 89(Suppl 1):S45–S58
97.
go back to reference Tomas-Barberan F, Garcia-Villalba R, Quartieri A et al (2014) In vitro transformation of chlorogenic acid by human gut microbiota. Mol Nutr Food Res 58:1122–1131CrossRef Tomas-Barberan F, Garcia-Villalba R, Quartieri A et al (2014) In vitro transformation of chlorogenic acid by human gut microbiota. Mol Nutr Food Res 58:1122–1131CrossRef
98.
go back to reference Decroos K, Vanhemmens S, Cattoir S et al (2005) Isolation and characterisation of an equol-producing mixed microbial culture from a human faecal sample and its activity under gastrointestinal conditions. Arch Microbiol 183:45–55CrossRef Decroos K, Vanhemmens S, Cattoir S et al (2005) Isolation and characterisation of an equol-producing mixed microbial culture from a human faecal sample and its activity under gastrointestinal conditions. Arch Microbiol 183:45–55CrossRef
99.
go back to reference Landete JM, Arqués J, Medina M et al (2015) Bioactivation of phytoestrogens: intestinal bacteria and health. Crit Rev Food Sci Nutr 56:1826–1843CrossRef Landete JM, Arqués J, Medina M et al (2015) Bioactivation of phytoestrogens: intestinal bacteria and health. Crit Rev Food Sci Nutr 56:1826–1843CrossRef
100.
go back to reference Lampe JW (2009) Is equol the key to the efficacy of soy foods? Am J Clin Nutr 89:1664S–1667SCrossRef Lampe JW (2009) Is equol the key to the efficacy of soy foods? Am J Clin Nutr 89:1664S–1667SCrossRef
101.
go back to reference Tomas-Barberan FA, Gonzalez-Sarrias A, Garcia-Villalba R et al. (2016) Urolithins, the rescue of ‘old’ metabolites to understand a ‘new’ concept: metabotypes as a nexus between phenolic metabolism, microbiota dysbiosis and host health status. Mol Nutr Food Res 61:1500901CrossRef Tomas-Barberan FA, Gonzalez-Sarrias A, Garcia-Villalba R et al. (2016) Urolithins, the rescue of ‘old’ metabolites to understand a ‘new’ concept: metabotypes as a nexus between phenolic metabolism, microbiota dysbiosis and host health status. Mol Nutr Food Res 61:1500901CrossRef
102.
go back to reference Matthies A, Blaut M, Braune A (2009) Isolation of a human intestinal bacterium capable of daidzein and genistein conversion. Appl Environ Microbiol 75:1740–1744CrossRef Matthies A, Blaut M, Braune A (2009) Isolation of a human intestinal bacterium capable of daidzein and genistein conversion. Appl Environ Microbiol 75:1740–1744CrossRef
103.
go back to reference Bastos F, Bessa J, Pacheco CC et al (2002) Enrichment of microbial cultures able to degrade 1,3-dichloro-2-propanol: a comparison between batch and continuous methods. Biodegradation 13:211–220CrossRef Bastos F, Bessa J, Pacheco CC et al (2002) Enrichment of microbial cultures able to degrade 1,3-dichloro-2-propanol: a comparison between batch and continuous methods. Biodegradation 13:211–220CrossRef
104.
go back to reference Ziemer CJ (2014) Newly cultured bacteria with broad diversity isolated from eight-week continuous culture enrichments of cow feces on complex polysaccharides. Appl Environ Microbiol 80:574–585CrossRef Ziemer CJ (2014) Newly cultured bacteria with broad diversity isolated from eight-week continuous culture enrichments of cow feces on complex polysaccharides. Appl Environ Microbiol 80:574–585CrossRef
105.
go back to reference Cole CB, Fuller R, Mallet AK, Rowland IR (1985) The influence of the host on expression of intestinal microbial enzyme activities involved in metabolism of foreign compounds. J Appl Bacteriol 59:549–553CrossRef Cole CB, Fuller R, Mallet AK, Rowland IR (1985) The influence of the host on expression of intestinal microbial enzyme activities involved in metabolism of foreign compounds. J Appl Bacteriol 59:549–553CrossRef
106.
go back to reference Mallett AK, Rowland IR (1990) Bacterial enzymes: their role in the formation of mutagens and carcinogens in the intestine. Dig Dis 8(2):71–79CrossRef Mallett AK, Rowland IR (1990) Bacterial enzymes: their role in the formation of mutagens and carcinogens in the intestine. Dig Dis 8(2):71–79CrossRef
107.
go back to reference Dabek M, McCrae SI, Stevens VJ et al (2008) Distribution of β-glucosidase and β-glucuronidase activity and of β-glucuronidase gene gus in human colonic bacteria. FEMS Microbiol Ecol 66:487–495CrossRef Dabek M, McCrae SI, Stevens VJ et al (2008) Distribution of β-glucosidase and β-glucuronidase activity and of β-glucuronidase gene gus in human colonic bacteria. FEMS Microbiol Ecol 66:487–495CrossRef
108.
go back to reference McIntosh FM, Maison N, Holtrop G et al (2012) Phylogenetic distribution of genes encoding β-glucuronidase activity in human colonic bacteria and the impact of diet on faecal glycosidase activities. Environ Microbiol 14:1876–1887CrossRef McIntosh FM, Maison N, Holtrop G et al (2012) Phylogenetic distribution of genes encoding β-glucuronidase activity in human colonic bacteria and the impact of diet on faecal glycosidase activities. Environ Microbiol 14:1876–1887CrossRef
109.
go back to reference El Kaoutari A, Armougom F, Leroy Q et al (2013) Development and Validation of a Microarray for the Investigation of the CAZymes Encoded by the Human Gut Microbiome. PLoS One 8:e84033CrossRef El Kaoutari A, Armougom F, Leroy Q et al (2013) Development and Validation of a Microarray for the Investigation of the CAZymes Encoded by the Human Gut Microbiome. PLoS One 8:e84033CrossRef
110.
go back to reference Roume H, Muller EEL, Cordes T et al (2013) A biomolecular isolation framework for eco-systems biology. ISME J 7:110–121CrossRef Roume H, Muller EEL, Cordes T et al (2013) A biomolecular isolation framework for eco-systems biology. ISME J 7:110–121CrossRef
111.
go back to reference Wang W-L, Xu S-Y, Ren Z-G et al (2015) Application of metagenomics in the human gut microbiome. World J Gastroenterol 21:803–814CrossRef Wang W-L, Xu S-Y, Ren Z-G et al (2015) Application of metagenomics in the human gut microbiome. World J Gastroenterol 21:803–814CrossRef
112.
go back to reference Wei X, Yan X, Zou D et al (2013) Abnormal fecal microbiota community and functions in patients with hepatitis B liver cirrhosis as revealed by a metagenomic approach. BMC Gastroenterol 13:175CrossRef Wei X, Yan X, Zou D et al (2013) Abnormal fecal microbiota community and functions in patients with hepatitis B liver cirrhosis as revealed by a metagenomic approach. BMC Gastroenterol 13:175CrossRef
113.
go back to reference Mohammed A, Guda C (2015) Application of a hierarchical enzyme classification method reveals the role of gut microbiome in human metabolism. BMC Genomics 16:1CrossRef Mohammed A, Guda C (2015) Application of a hierarchical enzyme classification method reveals the role of gut microbiome in human metabolism. BMC Genomics 16:1CrossRef
114.
go back to reference Tasse L, Bercovici J, Pizzut-Serin S et al (2010) Functional metagenomics to mine the human gut microbiome for dietary fiber catabolic enzymes. Genome Res 20:1605-1612-274CrossRef Tasse L, Bercovici J, Pizzut-Serin S et al (2010) Functional metagenomics to mine the human gut microbiome for dietary fiber catabolic enzymes. Genome Res 20:1605-1612-274CrossRef
115.
go back to reference Walker AW, Duncan SH, Louis P, Flint HJ (2014) Phylogeny, culturing, and metagenomics of the approaches to unravel multi-species microbial community functioning. Comput Struct. Biotechnol J 13:24–32 Walker AW, Duncan SH, Louis P, Flint HJ (2014) Phylogeny, culturing, and metagenomics of the approaches to unravel multi-species microbial community functioning. Comput Struct. Biotechnol J 13:24–32
116.
go back to reference Abram F (2015) Systems-based approaches to unravel multi-species microbial community functioning. Comput Struct Biotechnol J 13:24–32CrossRef Abram F (2015) Systems-based approaches to unravel multi-species microbial community functioning. Comput Struct Biotechnol J 13:24–32CrossRef
117.
go back to reference Turnbaugh PJ, Hamady M, Yatsunenko T et al (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484CrossRef Turnbaugh PJ, Hamady M, Yatsunenko T et al (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484CrossRef
118.
go back to reference Gosalbes MJ, Durbán A, Pignatelli M et al (2011) Metatranscriptomic approach to analyze the functional human gut microbiota. PLoS One 6:e17447CrossRef Gosalbes MJ, Durbán A, Pignatelli M et al (2011) Metatranscriptomic approach to analyze the functional human gut microbiota. PLoS One 6:e17447CrossRef
119.
go back to reference Xiong W, Abraham PE, Li Z et al (2015) Microbial metaproteomics for characterizing the range of metabolic functions and activities of human gut microbiota. Proteomics 15:3424–3438CrossRef Xiong W, Abraham PE, Li Z et al (2015) Microbial metaproteomics for characterizing the range of metabolic functions and activities of human gut microbiota. Proteomics 15:3424–3438CrossRef
120.
go back to reference Young JC, Pan C, Adams RM et al (2015) Metaproteomics reveals functional shifts in microbial and human proteins during a preterm infant gut colonization case. Proteomics 15:3463–3473CrossRef Young JC, Pan C, Adams RM et al (2015) Metaproteomics reveals functional shifts in microbial and human proteins during a preterm infant gut colonization case. Proteomics 15:3463–3473CrossRef
121.
go back to reference Verberkmoes NC, Russell AL, Shah M et al (2009) Shotgun metaproteomics of the human distal gut microbiota. ISME J 3:179–189CrossRef Verberkmoes NC, Russell AL, Shah M et al (2009) Shotgun metaproteomics of the human distal gut microbiota. ISME J 3:179–189CrossRef
122.
go back to reference Kolmeder CA, De Been M, Nikkilä J et al (2012) Comparative metaproteomics and diversity analysis of human intestinal microbiota testifies for its temporal stability and expression of core functions. PLoS One 7:e29913CrossRef Kolmeder CA, De Been M, Nikkilä J et al (2012) Comparative metaproteomics and diversity analysis of human intestinal microbiota testifies for its temporal stability and expression of core functions. PLoS One 7:e29913CrossRef
123.
go back to reference Kolmeder CA, de Vos WM (2014) Metaproteomics of our microbiome—developing insight in function and activity in man and model systems. J Proteomics 97:3–16CrossRef Kolmeder CA, de Vos WM (2014) Metaproteomics of our microbiome—developing insight in function and activity in man and model systems. J Proteomics 97:3–16CrossRef
124.
go back to reference Lenz EM, Wilson ID (2007) Analytical strategies in metabonomics. J Proteome Res 6:443–458CrossRef Lenz EM, Wilson ID (2007) Analytical strategies in metabonomics. J Proteome Res 6:443–458CrossRef
125.
go back to reference Wang Y, Liu S, Hu Y et al (2015) Current state of the art of mass spectrometry-based metabolomics studies—a review focusing on wide coverage, high throughput and easy identification. RSC Adv 5:78728–78737CrossRef Wang Y, Liu S, Hu Y et al (2015) Current state of the art of mass spectrometry-based metabolomics studies—a review focusing on wide coverage, high throughput and easy identification. RSC Adv 5:78728–78737CrossRef
126.
go back to reference Emwas A-HM (2015) The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research. Metabonomics Methods Protoc 1277:161–193 Emwas A-HM (2015) The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research. Metabonomics Methods Protoc 1277:161–193
127.
go back to reference Trygg J, Holmes E, Lundstedt T (2007) Chemometrics in metabonomics. J Proteome Res 6:469–479CrossRef Trygg J, Holmes E, Lundstedt T (2007) Chemometrics in metabonomics. J Proteome Res 6:469–479CrossRef
128.
go back to reference Madsen R, Lundstedt T, Trygg J (2010) Chemometrics in metabolomics—a review in human disease diagnosis. Anal Chim Acta 659:23–33CrossRef Madsen R, Lundstedt T, Trygg J (2010) Chemometrics in metabolomics—a review in human disease diagnosis. Anal Chim Acta 659:23–33CrossRef
129.
go back to reference Alonso A, Marsal S, Julia A (2015) Analytical methods in untargeted metabolomics: state of the art in 2015. Front Bioeng Biotechnol 3:23CrossRef Alonso A, Marsal S, Julia A (2015) Analytical methods in untargeted metabolomics: state of the art in 2015. Front Bioeng Biotechnol 3:23CrossRef
130.
go back to reference Marcobal A, Yusufaly T, Higginbottom S et al (2015) Metabolome progression during early gut microbial colonization of gnotobiotic mice. Sci Rep 5:11589CrossRef Marcobal A, Yusufaly T, Higginbottom S et al (2015) Metabolome progression during early gut microbial colonization of gnotobiotic mice. Sci Rep 5:11589CrossRef
131.
go back to reference Kok MGM, Ruijken MMA, Swann JR et al (2013) Anionic metabolic profiling of urine from antibiotic-treated rats by capillary electrophoresis-mass spectrometry. Anal Bioanal Chem 405:2585–2594CrossRef Kok MGM, Ruijken MMA, Swann JR et al (2013) Anionic metabolic profiling of urine from antibiotic-treated rats by capillary electrophoresis-mass spectrometry. Anal Bioanal Chem 405:2585–2594CrossRef
132.
go back to reference Wikoff WR, Anfora AT, Liu J et al (2009) Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci USA 106:3698–3703CrossRef Wikoff WR, Anfora AT, Liu J et al (2009) Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci USA 106:3698–3703CrossRef
133.
go back to reference Wang Z, Klipfell E, Bennett BJ et al (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472:57–63CrossRef Wang Z, Klipfell E, Bennett BJ et al (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472:57–63CrossRef
134.
go back to reference Tannock GW, Lawley B, Munro K et al (2014) RNA-stable-isotope probing shows utilization of carbon from inulin by specific bacterial populations in the rat large bowel. Appl Environ Microbiol 80:2240–2247CrossRef Tannock GW, Lawley B, Munro K et al (2014) RNA-stable-isotope probing shows utilization of carbon from inulin by specific bacterial populations in the rat large bowel. Appl Environ Microbiol 80:2240–2247CrossRef
135.
go back to reference Franzosa EA, Hsu T, Sirota-Madi A et al (2015) Sequencing and beyond: integrating molecular ‘omics’ for microbial community profiling. Nat Rev Microbiol 13:360–372CrossRef Franzosa EA, Hsu T, Sirota-Madi A et al (2015) Sequencing and beyond: integrating molecular ‘omics’ for microbial community profiling. Nat Rev Microbiol 13:360–372CrossRef
136.
go back to reference Manor O, Levy R, Borenstein E (2014) Mapping the inner workings of the microbiome: genomic- and metagenomic-based study of metabolism and metabolic interactions in the human microbiome. Cell Metab 20:742–752CrossRef Manor O, Levy R, Borenstein E (2014) Mapping the inner workings of the microbiome: genomic- and metagenomic-based study of metabolism and metabolic interactions in the human microbiome. Cell Metab 20:742–752CrossRef
137.
go back to reference Muñoz-Tamayo R, Laroche B, Walter E et al (2011) Kinetic modelling of lactate utilization and butyrate production by key human colonic bacterial species. FEMS Microbiol Ecol 76:615–624CrossRef Muñoz-Tamayo R, Laroche B, Walter E et al (2011) Kinetic modelling of lactate utilization and butyrate production by key human colonic bacterial species. FEMS Microbiol Ecol 76:615–624CrossRef
138.
go back to reference Kettle H, Donnelly R, Flint HJ, Marion G (2014) pH feedback and phenotypic diversity within bacterial functional groups of the human gut. J Theor Biol 342:62–69CrossRef Kettle H, Donnelly R, Flint HJ, Marion G (2014) pH feedback and phenotypic diversity within bacterial functional groups of the human gut. J Theor Biol 342:62–69CrossRef
139.
go back to reference Kettle H, Louis P, Holtrop G et al (2015) Modelling the emergent dynamics and major metabolites of the human colonic microbiota. Environ Microbiol 17:1615–1630CrossRef Kettle H, Louis P, Holtrop G et al (2015) Modelling the emergent dynamics and major metabolites of the human colonic microbiota. Environ Microbiol 17:1615–1630CrossRef
140.
go back to reference Walker AW, Ince J, Duncan SH et al (2011) Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J 5:220–230CrossRef Walker AW, Ince J, Duncan SH et al (2011) Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J 5:220–230CrossRef
141.
go back to reference Shashkova T, Popenko A, Tyakht A et al (2016) Agent based modeling of human gut microbiome interactions and perturbations. PLoS One 11:e0148386CrossRef Shashkova T, Popenko A, Tyakht A et al (2016) Agent based modeling of human gut microbiome interactions and perturbations. PLoS One 11:e0148386CrossRef
142.
go back to reference Heinken A, Thiele I (2015) Systems biology of host-microbe metabolomics. Syst Biol Med 7:195–219 Heinken A, Thiele I (2015) Systems biology of host-microbe metabolomics. Syst Biol Med 7:195–219
143.
go back to reference Steinway SN, Biggs MB, Loughran TPJ et al (2015) Inference of network dynamics and metabolic interactions in the gut microbiome. PLoS Comput Biol 11:e1004338CrossRef Steinway SN, Biggs MB, Loughran TPJ et al (2015) Inference of network dynamics and metabolic interactions in the gut microbiome. PLoS Comput Biol 11:e1004338CrossRef
144.
go back to reference Noecker C, Eng A, Srinivasan S et al (2016) Metabolic model-based integration of microbiome taxonomic and metabolomic profiles elucidates mechanistic links between ecological and metabolic variation. mSystems 1:e00013–15CrossRef Noecker C, Eng A, Srinivasan S et al (2016) Metabolic model-based integration of microbiome taxonomic and metabolomic profiles elucidates mechanistic links between ecological and metabolic variation. mSystems 1:e00013–15CrossRef
145.
go back to reference Palsson BØ (2006) Systems biology: properties of reconstructed networks. Cambridge University Press, Cambridge Palsson BØ (2006) Systems biology: properties of reconstructed networks. Cambridge University Press, Cambridge
146.
go back to reference Bordbar A, Monk JM, King ZA, Palsson BO (2014) Constraint-based models predict metabolic and associated cellular functions. Nat Rev Genet 15:107–120CrossRef Bordbar A, Monk JM, King ZA, Palsson BO (2014) Constraint-based models predict metabolic and associated cellular functions. Nat Rev Genet 15:107–120CrossRef
147.
go back to reference Heinken A, Khan MT, Paglia G et al (2014) Functional metabolic map of Faecalibacterium prausnitzii, a beneficial human gut microbe. J Bacteriol 196:3289–3302CrossRef Heinken A, Khan MT, Paglia G et al (2014) Functional metabolic map of Faecalibacterium prausnitzii, a beneficial human gut microbe. J Bacteriol 196:3289–3302CrossRef
148.
go back to reference Bauer E, Laczny CC, Magnusdottir S et al (2015) Phenotypic differentiation of gastrointestinal microbes is reflected in their encoded metabolic repertoires. Microbiome 3:55CrossRef Bauer E, Laczny CC, Magnusdottir S et al (2015) Phenotypic differentiation of gastrointestinal microbes is reflected in their encoded metabolic repertoires. Microbiome 3:55CrossRef
149.
go back to reference Heinken A, Sahoo S, Fleming RMT, Thiele I (2013) Systems-level characterization of a host-microbe metabolic symbiosis in the mammalian gut. Gut Microbes 4:28–40CrossRef Heinken A, Sahoo S, Fleming RMT, Thiele I (2013) Systems-level characterization of a host-microbe metabolic symbiosis in the mammalian gut. Gut Microbes 4:28–40CrossRef
150.
go back to reference Heinken A, Thiele I (2015) Systematic prediction of health-relevant human-microbial co-metabolism through a computational framework. Gut Microbes 6:120–130CrossRef Heinken A, Thiele I (2015) Systematic prediction of health-relevant human-microbial co-metabolism through a computational framework. Gut Microbes 6:120–130CrossRef
151.
go back to reference Biggs MB, Medlock GL, Kolling GL, Papin JA (2015) Metabolic network modeling of microbial communities. Syst Biol Med 7:317–334 Biggs MB, Medlock GL, Kolling GL, Papin JA (2015) Metabolic network modeling of microbial communities. Syst Biol Med 7:317–334
152.
go back to reference Zomorrodi AR, Segre D (2016) Synthetic ecology of microbes: mathematical models and applications. J Mol Biol 428:837–861CrossRef Zomorrodi AR, Segre D (2016) Synthetic ecology of microbes: mathematical models and applications. J Mol Biol 428:837–861CrossRef
153.
go back to reference Heinken A, Thiele I (2015) Anoxic conditions promote species-specific mutualism between gut microbes in silico. Appl Environ Microbiol 81:4049–4061CrossRef Heinken A, Thiele I (2015) Anoxic conditions promote species-specific mutualism between gut microbes in silico. Appl Environ Microbiol 81:4049–4061CrossRef
154.
go back to reference Lewis NE, Nagarajan H, Palsson BO (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. Nat Rev Microbiol 10:291–305CrossRef Lewis NE, Nagarajan H, Palsson BO (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. Nat Rev Microbiol 10:291–305CrossRef
155.
go back to reference Joyce SA, MacSharry J, Casey PG et al (2014) Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut. Proc Natl Acad Sci USA 111:7421–7426CrossRef Joyce SA, MacSharry J, Casey PG et al (2014) Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut. Proc Natl Acad Sci USA 111:7421–7426CrossRef
156.
go back to reference Louis P, Hold GL, Flint HJ (2014) The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 12:661–672CrossRef Louis P, Hold GL, Flint HJ (2014) The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 12:661–672CrossRef
157.
go back to reference Selma M V, Beltran D, Garcia-Villalba R et al (2014) Description of urolithin production capacity from ellagic acid of two human intestinal Gordonibacter species. Food Funct 5:1779–1784CrossRef Selma M V, Beltran D, Garcia-Villalba R et al (2014) Description of urolithin production capacity from ellagic acid of two human intestinal Gordonibacter species. Food Funct 5:1779–1784CrossRef
158.
go back to reference Tomas-Barberan FA, Garcia-Villalba R, Gonzalez-Sarrias A et al (2014) Ellagic acid metabolism by human gut microbiota: consistent observation of three urolithin phenotypes in intervention trials, independent of food source, age, and health status. J Agric Food Chem 62:6535–6538CrossRef Tomas-Barberan FA, Garcia-Villalba R, Gonzalez-Sarrias A et al (2014) Ellagic acid metabolism by human gut microbiota: consistent observation of three urolithin phenotypes in intervention trials, independent of food source, age, and health status. J Agric Food Chem 62:6535–6538CrossRef
159.
go back to reference Couteau D, McCartney AL, Gibson GR et al (2001) Isolation and characterization of human colonic bacteria able to hydrolyse chlorogenic acid. J Appl Microbiol 90:873–881CrossRef Couteau D, McCartney AL, Gibson GR et al (2001) Isolation and characterization of human colonic bacteria able to hydrolyse chlorogenic acid. J Appl Microbiol 90:873–881CrossRef
160.
go back to reference Possemiers S, Rabot S, Espín JC et al (2008) Eubacterium limosum activates isoxanthohumol from hops (Humulus lupulus L.) into the potent phytoestrogen 8-prenylnaringenin in vitro and in rat intestine. J Nutr 138:1310–1316CrossRef Possemiers S, Rabot S, Espín JC et al (2008) Eubacterium limosum activates isoxanthohumol from hops (Humulus lupulus L.) into the potent phytoestrogen 8-prenylnaringenin in vitro and in rat intestine. J Nutr 138:1310–1316CrossRef
161.
go back to reference Hanske L, Loh G, Sczesny S et al (2009) The bioavailability of apigenin-7-glucoside is influenced by human intestinal microbiota in rats. J Nutr 139:1095–1102CrossRef Hanske L, Loh G, Sczesny S et al (2009) The bioavailability of apigenin-7-glucoside is influenced by human intestinal microbiota in rats. J Nutr 139:1095–1102CrossRef
162.
go back to reference Matthies A, Loh G, Blaut M, Braune A (2012) Daidzein and genistein are converted to equol and 5-hydroxy-equol by human intestinal Slackia isoflavoniconvertens in gnotobiotic rats. J Nutr 142:40–46CrossRef Matthies A, Loh G, Blaut M, Braune A (2012) Daidzein and genistein are converted to equol and 5-hydroxy-equol by human intestinal Slackia isoflavoniconvertens in gnotobiotic rats. J Nutr 142:40–46CrossRef
163.
go back to reference Blaut M, Schoefer L, Braune A (2003) Transformation of flavonoids by intestinal microorganisms. Int J Vitam Nutr Res 73:79–87CrossRef Blaut M, Schoefer L, Braune A (2003) Transformation of flavonoids by intestinal microorganisms. Int J Vitam Nutr Res 73:79–87CrossRef
164.
go back to reference Hanske L, Engst W, Loh G et al (2013) Contribution of gut bacteria to the metabolism of cyanidin 3-glucoside in human microbiota-associated rats. Br J Nutr 109:1433–1441CrossRef Hanske L, Engst W, Loh G et al (2013) Contribution of gut bacteria to the metabolism of cyanidin 3-glucoside in human microbiota-associated rats. Br J Nutr 109:1433–1441CrossRef
165.
go back to reference Corona G, Tzounis X, Assunta Dessi M et al (2006) The fate of olive oil polyphenols in the gastrointestinal tract: implications of gastric and colonic microflora-dependent biotransformation. Free Radic Res 40:647–658CrossRef Corona G, Tzounis X, Assunta Dessi M et al (2006) The fate of olive oil polyphenols in the gastrointestinal tract: implications of gastric and colonic microflora-dependent biotransformation. Free Radic Res 40:647–658CrossRef
166.
go back to reference Lockyer S, Corona G, Yaqoob P et al (2015) Secoiridoids delivered as olive leaf extract induce acute improvements in human vascular function and reduction of an inflammatory cytokine: a randomised, double-blind, placebo-controlled, cross-over trial. Br J Nutr 114:75–83CrossRef Lockyer S, Corona G, Yaqoob P et al (2015) Secoiridoids delivered as olive leaf extract induce acute improvements in human vascular function and reduction of an inflammatory cytokine: a randomised, double-blind, placebo-controlled, cross-over trial. Br J Nutr 114:75–83CrossRef
Metadata
Title
Gut microbiota functions: metabolism of nutrients and other food components
Authors
Ian Rowland
Glenn Gibson
Almut Heinken
Karen Scott
Jonathan Swann
Ines Thiele
Kieran Tuohy
Publication date
01-02-2018
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nutrition / Issue 1/2018
Print ISSN: 1436-6207
Electronic ISSN: 1436-6215
DOI
https://doi.org/10.1007/s00394-017-1445-8

Other articles of this Issue 1/2018

European Journal of Nutrition 1/2018 Go to the issue