Skip to main content
Top
Published in: Endocrine 2/2012

01-04-2012 | Mini Review

Erythropoietin produced by the retina: its role in physiology and diabetic retinopathy

Authors: Cristina Hernández, Rafael Simó

Published in: Endocrine | Issue 2/2012

Login to get access

Abstract

Erythropoietin (Epo) is the principal regulator of erythropoiesis by inhibiting apoptosis and by stimulating the proliferation and differentiation of erythroid precursor cells. However, Epo also performs extra-erythropoietic actions of which the neuroprotective effects are among the most relevant. Apart from kidney and liver, Epo is also produced by the brain and the retina. In addition, Epo receptor (Epo-R) expression has also been found in the brain and in the retina, thus suggesting an autocrine/paracrine action which seems essential for the physiological homeostasis of both brain and retina. In this review, we will give an overview of the current concepts of the physiology of Epo and will focus on its role in the retina in both normal conditions and in the setting of diabetic retinopathy. Finally, the reasons as to why Epo could be contemplated as a potential new treatment for the early stages of diabetic retinopathy will be given.
Literature
1.
go back to reference P. Carnot, C. DeFlandre, Sur l’activite hemopoietique de serum au cours de la regeneration du sang. C. R. Acad. Sci. (Paris) 143, 384–386 (1906) P. Carnot, C. DeFlandre, Sur l’activite hemopoietique de serum au cours de la regeneration du sang. C. R. Acad. Sci. (Paris) 143, 384–386 (1906)
2.
go back to reference L.O. Jacobson, E. Goldwasser, W. Fried, L. Plzak, Role of the kidney in erythropoiesis. Nature 179, 633 (1957)PubMedCrossRef L.O. Jacobson, E. Goldwasser, W. Fried, L. Plzak, Role of the kidney in erythropoiesis. Nature 179, 633 (1957)PubMedCrossRef
3.
go back to reference J.W. Fisher, B.J. Birdwell, Erythropoietin production by the in situ perfused kidney. Acta Haematol. 26, 224–232 (1961)PubMedCrossRef J.W. Fisher, B.J. Birdwell, Erythropoietin production by the in situ perfused kidney. Acta Haematol. 26, 224–232 (1961)PubMedCrossRef
4.
go back to reference Z. Kuratowska, B. Lewartowski, E. Michalski, Studies on the production of erythropoietin by isolated perfused organs. Blood 18, 527–534 (1961) Z. Kuratowska, B. Lewartowski, E. Michalski, Studies on the production of erythropoietin by isolated perfused organs. Blood 18, 527–534 (1961)
5.
go back to reference A.J. Erslev, In vitro production of erythropoietin by kidneys perfused with a serum free solution. Blood 44, 77–85 (1974)PubMed A.J. Erslev, In vitro production of erythropoietin by kidneys perfused with a serum free solution. Blood 44, 77–85 (1974)PubMed
6.
go back to reference S.T. Koury, M.S. Bondurant, M.J. Koury, Localization of erythropoietin synthesizing cells in murine kidneys by in situ hybridization. Blood 71, 524–537 (1988)PubMed S.T. Koury, M.S. Bondurant, M.J. Koury, Localization of erythropoietin synthesizing cells in murine kidneys by in situ hybridization. Blood 71, 524–537 (1988)PubMed
7.
go back to reference J.W. Fisher, S. Koury, T. Ducey, S. Mendel, Erythropoietin (Epo) production by interstitial cells of hypoxic monkey kindeys. Br. J. Haematol. 95, 27–32 (1996)PubMedCrossRef J.W. Fisher, S. Koury, T. Ducey, S. Mendel, Erythropoietin (Epo) production by interstitial cells of hypoxic monkey kindeys. Br. J. Haematol. 95, 27–32 (1996)PubMedCrossRef
8.
go back to reference E.D. Zanjani, J. Poster, H. Burlington, L.I. Mann, L.R. Wasserman, Liver as the primary site of erythropoietin production in the fetus. J. Lab. Clin. Med. 89, 640–644 (1977)PubMed E.D. Zanjani, J. Poster, H. Burlington, L.I. Mann, L.R. Wasserman, Liver as the primary site of erythropoietin production in the fetus. J. Lab. Clin. Med. 89, 640–644 (1977)PubMed
9.
go back to reference S.T. Koury, M.C. Bondurant, M.J. Koury, G.L. Semenza, Localization of cells producing erythropoietin in murine liver by in situ hybridization. Blood 77, 2497–2503 (1991)PubMed S.T. Koury, M.C. Bondurant, M.J. Koury, G.L. Semenza, Localization of cells producing erythropoietin in murine liver by in situ hybridization. Blood 77, 2497–2503 (1991)PubMed
10.
go back to reference T. Miyake, C.K.H. Kung, E. Goldwasser, Purification of human erythropoietin. J. Biol. Chem. 252, 5558–5564 (1977)PubMed T. Miyake, C.K.H. Kung, E. Goldwasser, Purification of human erythropoietin. J. Biol. Chem. 252, 5558–5564 (1977)PubMed
11.
go back to reference F.K. Lin, S. Suggs, C.H. Lin, J.K. Browne, R. Smailing, J.C. Egric, K.K. Chen, G.M. Fox, F. Martin, Z. Wasser, Cloning and expression of the human erythropoietin gene. Proc. Natl. Acad. Sci. USA 92, 7850–7884 (1985) F.K. Lin, S. Suggs, C.H. Lin, J.K. Browne, R. Smailing, J.C. Egric, K.K. Chen, G.M. Fox, F. Martin, Z. Wasser, Cloning and expression of the human erythropoietin gene. Proc. Natl. Acad. Sci. USA 92, 7850–7884 (1985)
12.
go back to reference K. Jacobs, C. Shoemaker, R. Rudersdorf, S.D. Neill, R.J. Kaufman, A. Mufson, A. Seehra, S.S. Jones, R. Hewick, E.F. Fritsch, M. Kawakita, T. Shimiza, T. Miyoke, Isolation and characterization of genomic cDNA clones of human erythropoietin. Nature 313, 806–810 (1985)PubMedCrossRef K. Jacobs, C. Shoemaker, R. Rudersdorf, S.D. Neill, R.J. Kaufman, A. Mufson, A. Seehra, S.S. Jones, R. Hewick, E.F. Fritsch, M. Kawakita, T. Shimiza, T. Miyoke, Isolation and characterization of genomic cDNA clones of human erythropoietin. Nature 313, 806–810 (1985)PubMedCrossRef
13.
go back to reference J.W. Fisher, Erythropoietin: physiology and pharmacology update. Exp. Biol. Med. 228, 1–14 (2003) J.W. Fisher, Erythropoietin: physiology and pharmacology update. Exp. Biol. Med. 228, 1–14 (2003)
14.
go back to reference S. Bartesaghi, M. Marinovich, E. Corsini, C.L. Galli, B. Viviani, Erythropoietin: a novel neuroprotective cytokine. Neurotoxicology 26, 923–928 (2005)PubMedCrossRef S. Bartesaghi, M. Marinovich, E. Corsini, C.L. Galli, B. Viviani, Erythropoietin: a novel neuroprotective cytokine. Neurotoxicology 26, 923–928 (2005)PubMedCrossRef
15.
go back to reference J.W. Fisher, Landmark advances in the development of erythropoietin. Exp. Biol. Med. 235, 1398–1411 (2010)CrossRef J.W. Fisher, Landmark advances in the development of erythropoietin. Exp. Biol. Med. 235, 1398–1411 (2010)CrossRef
16.
go back to reference E. Morishita, S. Masuda, M. Nagao, Y. Yasuda, R. Sasaki, Erythropoietin receptor is expressed in rat hippocampal and cerebral cortical neurons, and erythropoietin prevents in vitro glutamate-induced neuronal death. Neuroscience 76, 105–116 (1997)PubMedCrossRef E. Morishita, S. Masuda, M. Nagao, Y. Yasuda, R. Sasaki, Erythropoietin receptor is expressed in rat hippocampal and cerebral cortical neurons, and erythropoietin prevents in vitro glutamate-induced neuronal death. Neuroscience 76, 105–116 (1997)PubMedCrossRef
17.
go back to reference L. Calvillo, R. Latini, J. Kajstura, A. Leri, P. Anversa, P. Ghezzi, M. Salio, A. Cerami, M. Brines, Recombinant human erythropoietin protects the myocardium from ischemic–reperfusion injury and promotes beneficial remodeling. Proc. Natl. Acad. Sci. 100, 4802–4806 (2003)PubMedCrossRef L. Calvillo, R. Latini, J. Kajstura, A. Leri, P. Anversa, P. Ghezzi, M. Salio, A. Cerami, M. Brines, Recombinant human erythropoietin protects the myocardium from ischemic–reperfusion injury and promotes beneficial remodeling. Proc. Natl. Acad. Sci. 100, 4802–4806 (2003)PubMedCrossRef
18.
go back to reference C. Moon, M. Krawczyk, D. Ahn, I. Ahmet, D. Paik, E.G. Lakatta, M. Talan, Erythropoietin reduces myocardial infarction and left ventricular function decline after coronary artery ligation in rats. Proc. Natl. Acad Sci. USA 100, 11612–11617 (2003)PubMedCrossRef C. Moon, M. Krawczyk, D. Ahn, I. Ahmet, D. Paik, E.G. Lakatta, M. Talan, Erythropoietin reduces myocardial infarction and left ventricular function decline after coronary artery ligation in rats. Proc. Natl. Acad Sci. USA 100, 11612–11617 (2003)PubMedCrossRef
19.
go back to reference C. Klopsch, D. Furlani, R. Gabel, W. Li, E. Pittermann, E. Uguriucan, G. Kundt, G. Zingler, U. Titze, W. Wang, L.L. Ong, K. Wagner, R.K. Li, N. Ma, G. Steinhoff, Intracardiac injection of erythropoietin induces stem cell recruitment and improves cardiac functions in a rat myocardial infarction model. J. Cell. Mol. Med. 13, 664–679 (2008)CrossRef C. Klopsch, D. Furlani, R. Gabel, W. Li, E. Pittermann, E. Uguriucan, G. Kundt, G. Zingler, U. Titze, W. Wang, L.L. Ong, K. Wagner, R.K. Li, N. Ma, G. Steinhoff, Intracardiac injection of erythropoietin induces stem cell recruitment and improves cardiac functions in a rat myocardial infarction model. J. Cell. Mol. Med. 13, 664–679 (2008)CrossRef
20.
go back to reference A. Anagnostou, Z. Liu, M. Steiner, K. Chin, E.S. Lee, N. Kessimian, C.T. Noguchi, Erythropoietin receptor mRNA expression in human endothelial cells. Proc. Natl. Acad. Sci. USA 91, 3974–3978 (1994)PubMedCrossRef A. Anagnostou, Z. Liu, M. Steiner, K. Chin, E.S. Lee, N. Kessimian, C.T. Noguchi, Erythropoietin receptor mRNA expression in human endothelial cells. Proc. Natl. Acad. Sci. USA 91, 3974–3978 (1994)PubMedCrossRef
21.
go back to reference D. Ribatti, M. Presta, A. Vacca, R. Ria, R. Giuliani, P. Dell’Era, B. Nico, L. Roncali, F. Dammacco, Human erythropoietin induces a pro-angiogenic phenotype in cultured endothelial cells and stimulates neovascularization in vivo. Blood 93, 2627–2636 (1999)PubMed D. Ribatti, M. Presta, A. Vacca, R. Ria, R. Giuliani, P. Dell’Era, B. Nico, L. Roncali, F. Dammacco, Human erythropoietin induces a pro-angiogenic phenotype in cultured endothelial cells and stimulates neovascularization in vivo. Blood 93, 2627–2636 (1999)PubMed
22.
go back to reference B. Bojana, B. Cokic, V.P. Cokie, X. Yu, B.B. Wiksler, A.N. Schechter, C.T. Noguchi, Erythropoietin and hypoxia stimulate erythropoietin receptor and nitric oxide production in endothelial cells. Blood 104, 2073–2080 (2004)CrossRef B. Bojana, B. Cokic, V.P. Cokie, X. Yu, B.B. Wiksler, A.N. Schechter, C.T. Noguchi, Erythropoietin and hypoxia stimulate erythropoietin receptor and nitric oxide production in endothelial cells. Blood 104, 2073–2080 (2004)CrossRef
23.
24.
go back to reference J. Chen, K.M. Connor, C.M. Aderman, L.E. Smith, Erythropoietin deficiency decreases vascular stability in mice. J. Clin. Invest. 118, 526–533 (2008)PubMed J. Chen, K.M. Connor, C.M. Aderman, L.E. Smith, Erythropoietin deficiency decreases vascular stability in mice. J. Clin. Invest. 118, 526–533 (2008)PubMed
25.
go back to reference E.D. Zanjani, J. Poster, H. Burlington, L.I. Mann, L.R. Wasserman, Liver as the primary site of erythropoietin formation in the liver. J. Lab. Clin. Med. 89, 640–644 (1997) E.D. Zanjani, J. Poster, H. Burlington, L.I. Mann, L.R. Wasserman, Liver as the primary site of erythropoietin formation in the liver. J. Lab. Clin. Med. 89, 640–644 (1997)
26.
go back to reference W. Jelkmann, Erythropoietin after a century of research: younger than ever. Eur. J. Haematol. 78, 183–205 (2007)PubMedCrossRef W. Jelkmann, Erythropoietin after a century of research: younger than ever. Eur. J. Haematol. 78, 183–205 (2007)PubMedCrossRef
27.
go back to reference W. Jelkmann, Control of erythropoietin gene expression and its use in medicine. Methods Enzymol. 435, 179–197 (2007)PubMedCrossRef W. Jelkmann, Control of erythropoietin gene expression and its use in medicine. Methods Enzymol. 435, 179–197 (2007)PubMedCrossRef
28.
go back to reference W. Jelkmann, Proinflammatory cytokines lowering erythropoietin production. J. Interferon. Cytokine. Res. 18, 555–559 (1992)CrossRef W. Jelkmann, Proinflammatory cytokines lowering erythropoietin production. J. Interferon. Cytokine. Res. 18, 555–559 (1992)CrossRef
29.
go back to reference S. Gobert, V. Duprez, C. Lacombe, S. Gisselbrecht, P. Mayeux, Erythropoietin activates three forms of MAP kinase in UT7 erythroleukemia cells. Eur. J. Biochem. 234, 75–83 (1995)PubMedCrossRef S. Gobert, V. Duprez, C. Lacombe, S. Gisselbrecht, P. Mayeux, Erythropoietin activates three forms of MAP kinase in UT7 erythroleukemia cells. Eur. J. Biochem. 234, 75–83 (1995)PubMedCrossRef
30.
go back to reference Y. Miura, O. Muira, J.N. Ihle, N. Aoki, Activation of the mitogen activated protein kinase pathway by the erythropoietin receptor. J. Biol. Chem. 269, 29962–29969 (1994)PubMed Y. Miura, O. Muira, J.N. Ihle, N. Aoki, Activation of the mitogen activated protein kinase pathway by the erythropoietin receptor. J. Biol. Chem. 269, 29962–29969 (1994)PubMed
31.
go back to reference C. Pallard, G. Fabrice, C. Martine, B. Groner, S. Gisselbrecht, I. Dusanter-Fourt, Interleukin-3, erythropoietin, and prolactin activate a STAT5 line factor in lymphoid cells. J. Biol. Chem. 270, 15942–15945 (1995)PubMedCrossRef C. Pallard, G. Fabrice, C. Martine, B. Groner, S. Gisselbrecht, I. Dusanter-Fourt, Interleukin-3, erythropoietin, and prolactin activate a STAT5 line factor in lymphoid cells. J. Biol. Chem. 270, 15942–15945 (1995)PubMedCrossRef
32.
go back to reference H. Wakao, N. Harada, T. Kitamura, A.L.F. Mui, A. Miyajima, Interleukin 2 and erythropoietin activate STAT5/MGF via distinct pathways. EMBO J. 14, 2527–2535 (1995)PubMed H. Wakao, N. Harada, T. Kitamura, A.L.F. Mui, A. Miyajima, Interleukin 2 and erythropoietin activate STAT5/MGF via distinct pathways. EMBO J. 14, 2527–2535 (1995)PubMed
33.
go back to reference K. Penta, S.T. Sawyer, Erythropoietin induces the tyrosine phosphorylation nuclear translocation and DNA binding of STAT1 and STAT5 in erythroid cells. J. Biol. Chem. 270, 31282–31287 (1995)PubMedCrossRef K. Penta, S.T. Sawyer, Erythropoietin induces the tyrosine phosphorylation nuclear translocation and DNA binding of STAT1 and STAT5 in erythroid cells. J. Biol. Chem. 270, 31282–31287 (1995)PubMedCrossRef
34.
go back to reference S.S. Watowich, A. Mikami, R.A. Busche, X. Xie, P.N. Pharr, G.D. Hongmore, P. Manduit, M. Sabbah, B. Druker, W. Vainchenker, S. Fisher, C. Lacombe, S. Gisselbreccht, Erythropoietin receptors that signal through Stat5 or Stat3 support fetal liver and adult erythropoiesis: lack of specificity of STAT signals during red blood cell development. J. Interferon. Cytokine. Res. 20, 1065–1070 (2000)PubMedCrossRef S.S. Watowich, A. Mikami, R.A. Busche, X. Xie, P.N. Pharr, G.D. Hongmore, P. Manduit, M. Sabbah, B. Druker, W. Vainchenker, S. Fisher, C. Lacombe, S. Gisselbreccht, Erythropoietin receptors that signal through Stat5 or Stat3 support fetal liver and adult erythropoiesis: lack of specificity of STAT signals during red blood cell development. J. Interferon. Cytokine. Res. 20, 1065–1070 (2000)PubMedCrossRef
36.
go back to reference J.E. Damen, H. Wakao, A. Miyajima, J. Krosl, R.K. Humphries, R.L. Cutler, G. Krystal, Tyrosine 343 in the erythropoietin-receptor positively regulates erythropoietin-induced cell proliferation and STAT5 activation. EMBO J. 14, 5557–5568 (1995)PubMed J.E. Damen, H. Wakao, A. Miyajima, J. Krosl, R.K. Humphries, R.L. Cutler, G. Krystal, Tyrosine 343 in the erythropoietin-receptor positively regulates erythropoietin-induced cell proliferation and STAT5 activation. EMBO J. 14, 5557–5568 (1995)PubMed
37.
go back to reference H. Wu, U. Klingmuller, P. Besmer, H.F. Lodish, Interaction of the erythropoietin and stem-cell-factor receptors. Nature 377, 242–246 (1995)PubMedCrossRef H. Wu, U. Klingmuller, P. Besmer, H.F. Lodish, Interaction of the erythropoietin and stem-cell-factor receptors. Nature 377, 242–246 (1995)PubMedCrossRef
38.
go back to reference M. Brines, G. Grasso, F. Fiordaliso, A. Sfacteria, P. Ghezzi, M. Fratelli, R. Latini, Q.W. Xie, J. Smart, C.J. Su-Rick, E. Pobre, D. Diaz, D. Gomez, C. Hand, T. Coleman, A. Cerami, Erythropoietin mediates tissue protection through an erythropoietin and common beta-subunit heteroreceptor. Proc. Natl. Acad. Sci. USA 101, 14907–14912 (2004)PubMedCrossRef M. Brines, G. Grasso, F. Fiordaliso, A. Sfacteria, P. Ghezzi, M. Fratelli, R. Latini, Q.W. Xie, J. Smart, C.J. Su-Rick, E. Pobre, D. Diaz, D. Gomez, C. Hand, T. Coleman, A. Cerami, Erythropoietin mediates tissue protection through an erythropoietin and common beta-subunit heteroreceptor. Proc. Natl. Acad. Sci. USA 101, 14907–14912 (2004)PubMedCrossRef
39.
go back to reference H. Ubeda, M. Brines, M. Yamin, T. Umemoto, J. Ako, S. Monomura, A. Cerami, M. Kawakami, Cardioprotection by nonerythropoietic, tissue-protective peptide mimicking the 3D structure of erythropoietin. Proc. Natl. Acad. Sci. USA 107, 14357–14362 (2010)CrossRef H. Ubeda, M. Brines, M. Yamin, T. Umemoto, J. Ako, S. Monomura, A. Cerami, M. Kawakami, Cardioprotection by nonerythropoietic, tissue-protective peptide mimicking the 3D structure of erythropoietin. Proc. Natl. Acad. Sci. USA 107, 14357–14362 (2010)CrossRef
40.
go back to reference M. Brines, A. Cerami, Erythropoietin-mediated tissue protection: reducing collateral damage from the primary injury response. J. Intern. Med. 264, 405–432 (2008)PubMedCrossRef M. Brines, A. Cerami, Erythropoietin-mediated tissue protection: reducing collateral damage from the primary injury response. J. Intern. Med. 264, 405–432 (2008)PubMedCrossRef
41.
42.
go back to reference C. Hernández, A. Fonollosa, M. García-Ramírez et al., Erythropoietin is expressed in the human retina and it is highly elevated in the vitreous fluid of patients with diabetic macular edema. Diabetes Care 29, 2028–2033 (2006)PubMedCrossRef C. Hernández, A. Fonollosa, M. García-Ramírez et al., Erythropoietin is expressed in the human retina and it is highly elevated in the vitreous fluid of patients with diabetic macular edema. Diabetes Care 29, 2028–2033 (2006)PubMedCrossRef
43.
go back to reference M. García-Ramírez, C. Hernández, R. Simó, Expression of erythropoietin and its receptor in the human retina: a comparative study of diabetic and nondiabetic subjects. Diabetes Care 31, 1189–1194 (2008)PubMedCrossRef M. García-Ramírez, C. Hernández, R. Simó, Expression of erythropoietin and its receptor in the human retina: a comparative study of diabetic and nondiabetic subjects. Diabetes Care 31, 1189–1194 (2008)PubMedCrossRef
44.
go back to reference W. Jelkmann, Effects of erythropoietin on brain function. Curr. Pharm. Biotechnol. 6, 65–79 (2005)PubMed W. Jelkmann, Effects of erythropoietin on brain function. Curr. Pharm. Biotechnol. 6, 65–79 (2005)PubMed
45.
go back to reference S.P. Becerra, J. Amaral, Erythropoietin: an endogenous retinal survival factor. N. Engl. J. Med. 347, 1968–1970 (2002)PubMedCrossRef S.P. Becerra, J. Amaral, Erythropoietin: an endogenous retinal survival factor. N. Engl. J. Med. 347, 1968–1970 (2002)PubMedCrossRef
46.
go back to reference T.S. Rex, T.Y. Wong, K. Kodali, S. Merry, Neuroprotection of photoreceptors by direct delivery of erythropoietin to the retina of the retinal degeneration slow mouse. Exp. Eye Res. 89, 735–740 (2009)PubMedCrossRef T.S. Rex, T.Y. Wong, K. Kodali, S. Merry, Neuroprotection of photoreceptors by direct delivery of erythropoietin to the retina of the retinal degeneration slow mouse. Exp. Eye Res. 89, 735–740 (2009)PubMedCrossRef
47.
go back to reference J. Shen, Y. Wu, J.Y. Xu, S.H. Sinclair, M. Yanoff, G. Xu, W. Li, G.T. Xu, ERK- and Akt-dependent neuroprotection by erythropoietin (EPO) against glyoxal-AGEs via modulation of Bcl-xL, Bax, and BAD. Invest. Ophthalmol. Vis. Sci. 5, 35–46 (2010)CrossRef J. Shen, Y. Wu, J.Y. Xu, S.H. Sinclair, M. Yanoff, G. Xu, W. Li, G.T. Xu, ERK- and Akt-dependent neuroprotection by erythropoietin (EPO) against glyoxal-AGEs via modulation of Bcl-xL, Bax, and BAD. Invest. Ophthalmol. Vis. Sci. 5, 35–46 (2010)CrossRef
48.
go back to reference O.M. Martinez-Estrada, E. Rodriguez-Millan, E. Gonzalez-De Vicente, M. Reina, S. Vilaro, M. Fabre, Erythropoietin protects the in vitro blood–brain barrier against VEGF-induced permeability. Eur. J. Neurosci. 18, 2538–2544 (2003)PubMedCrossRef O.M. Martinez-Estrada, E. Rodriguez-Millan, E. Gonzalez-De Vicente, M. Reina, S. Vilaro, M. Fabre, Erythropoietin protects the in vitro blood–brain barrier against VEGF-induced permeability. Eur. J. Neurosci. 18, 2538–2544 (2003)PubMedCrossRef
49.
go back to reference G. Uzum, A. Sarper Diler, N. Bahcekapili, Y. Ziya Ziylan, Erythropoietin prevents the increase in blood–brain barrier permeability during pentylenetetrazol induced seizures. Life. Sci. 78, 2571–2576 (2006)PubMedCrossRef G. Uzum, A. Sarper Diler, N. Bahcekapili, Y. Ziya Ziylan, Erythropoietin prevents the increase in blood–brain barrier permeability during pentylenetetrazol induced seizures. Life. Sci. 78, 2571–2576 (2006)PubMedCrossRef
50.
go back to reference E.A. Friedman, F.A. L’Esperance, C.D. Brown, D.H. Berman, Treating azotemia-induced anemia with erythropoietin improves diabetic eye disease. Kidney Int. 64, S57–S63 (2003)CrossRef E.A. Friedman, F.A. L’Esperance, C.D. Brown, D.H. Berman, Treating azotemia-induced anemia with erythropoietin improves diabetic eye disease. Kidney Int. 64, S57–S63 (2003)CrossRef
51.
go back to reference P. Villa, P. Bigini, T. Mennini, D. Agnello, T. Laragione, A. Cagnotto, B. Viviani, M. Marinovich, A. Cerami, T.R. Coleman, M. Brines, P. Ghezzi, Erythropoietin selectively attenuates cytokine production and inflammation in cerebral ischemia by targeting neuronal apoptosis. J. Exp. Med. 198, 971–975 (2003)PubMedCrossRef P. Villa, P. Bigini, T. Mennini, D. Agnello, T. Laragione, A. Cagnotto, B. Viviani, M. Marinovich, A. Cerami, T.R. Coleman, M. Brines, P. Ghezzi, Erythropoietin selectively attenuates cytokine production and inflammation in cerebral ischemia by targeting neuronal apoptosis. J. Exp. Med. 198, 971–975 (2003)PubMedCrossRef
52.
go back to reference H. Chung, H. Lee, F. Lamoke, H. Hrushesky, P.A. Wood, W.J. Jahng, Neuroprotective role of erythropoietin by anti-apoptosis in the retina. J. Neurosci. Res. 87, 2365–2374 (2009)PubMedCrossRef H. Chung, H. Lee, F. Lamoke, H. Hrushesky, P.A. Wood, W.J. Jahng, Neuroprotective role of erythropoietin by anti-apoptosis in the retina. J. Neurosci. Res. 87, 2365–2374 (2009)PubMedCrossRef
53.
go back to reference C. Heeschen, A. Aicher, R. Lehmann, S. Fichtlscherer, M. Vasa, C. Urbich, C. Mildner-Rihm, H. Martin, A.M. Zeiher, S. Dimmeler, Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization. Blood 102, 1340–1346 (2003)PubMedCrossRef C. Heeschen, A. Aicher, R. Lehmann, S. Fichtlscherer, M. Vasa, C. Urbich, C. Mildner-Rihm, H. Martin, A.M. Zeiher, S. Dimmeler, Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization. Blood 102, 1340–1346 (2003)PubMedCrossRef
54.
go back to reference Y. Katsura, T. Okano, K. Matsuno, M. Osako, M. Kure, T. Watanabe, Y. Iwaki, M. Noritake, H. Kosano, H. Nishigori, T. Matsuoka, Erythropoietin is highly elevated in vitreous fluid of patients with proliferative diabetic retinopathy. Diabetes Care 28, 2252–2254 (2005)PubMedCrossRef Y. Katsura, T. Okano, K. Matsuno, M. Osako, M. Kure, T. Watanabe, Y. Iwaki, M. Noritake, H. Kosano, H. Nishigori, T. Matsuoka, Erythropoietin is highly elevated in vitreous fluid of patients with proliferative diabetic retinopathy. Diabetes Care 28, 2252–2254 (2005)PubMedCrossRef
55.
go back to reference D. Watanabe, K. Suzuma, S. Matsui, M. Kurimoto, J. Kiryu, M. Kita, I. Suzuma, H. Ohashi, T. Ojima, T. Murakami, T. Kobayashi, S. Masuda, M. Nagao, N. Yoshimura, H. Takagi, Erythropoietin as a retinal angiogenic factor in proliferative diabetic retinopathy. N. Engl. J. Med. 353, 782–792 (2005)PubMedCrossRef D. Watanabe, K. Suzuma, S. Matsui, M. Kurimoto, J. Kiryu, M. Kita, I. Suzuma, H. Ohashi, T. Ojima, T. Murakami, T. Kobayashi, S. Masuda, M. Nagao, N. Yoshimura, H. Takagi, Erythropoietin as a retinal angiogenic factor in proliferative diabetic retinopathy. N. Engl. J. Med. 353, 782–792 (2005)PubMedCrossRef
56.
go back to reference K. Jaquet, K. Krause, M. Tawakol-Khodai, S. Geidel, K.H. Kuck, Erythropoietin and VEGF exhibit equal angiogenic potential. Microvasc. Res. 64, 326–333 (2002)PubMedCrossRef K. Jaquet, K. Krause, M. Tawakol-Khodai, S. Geidel, K.H. Kuck, Erythropoietin and VEGF exhibit equal angiogenic potential. Microvasc. Res. 64, 326–333 (2002)PubMedCrossRef
57.
go back to reference J. García-Arumí, A. Fonollosa, C. Macià, C. Hernandez, V. Martinez-Castillo, A. Boixadera, M.A. Zapata, R. Simo, Vitreous levels of erythropoietin in patients with macular oedema secondary to retinal vein occlusions: a comparative study with diabetic macular oedema. Eye 23, 1066–1071 (2009)PubMedCrossRef J. García-Arumí, A. Fonollosa, C. Macià, C. Hernandez, V. Martinez-Castillo, A. Boixadera, M.A. Zapata, R. Simo, Vitreous levels of erythropoietin in patients with macular oedema secondary to retinal vein occlusions: a comparative study with diabetic macular oedema. Eye 23, 1066–1071 (2009)PubMedCrossRef
58.
go back to reference A.M. Joussen, V. Poulaki, M.L. Le, K. Koizumi, C. Esser, H. Janicki, U. Schraermeyer, N. Kociok, S. Fauser, B. Kirchhof, T.S. Kern, A.P. Adamis, A central role for inflammation in the pathogenesis of diabetic retinopathy. FASEB. J. 18, 1450–1452 (2004)PubMed A.M. Joussen, V. Poulaki, M.L. Le, K. Koizumi, C. Esser, H. Janicki, U. Schraermeyer, N. Kociok, S. Fauser, B. Kirchhof, T.S. Kern, A.P. Adamis, A central role for inflammation in the pathogenesis of diabetic retinopathy. FASEB. J. 18, 1450–1452 (2004)PubMed
59.
go back to reference X.M. Sun, Y.X. Zhang, Effects of glucose on growth, metabolism and EPO expresión in recombinant CHO cell cultures. Sheng. Wu. Gong. Cheng. Xue. Bao. 17, 698–702 (2001)PubMed X.M. Sun, Y.X. Zhang, Effects of glucose on growth, metabolism and EPO expresión in recombinant CHO cell cultures. Sheng. Wu. Gong. Cheng. Xue. Bao. 17, 698–702 (2001)PubMed
60.
go back to reference R.J. Darling, U. Kuchibhotla, W. Glaesner, R. Micanovic, D.R. Witcher, J.M. Beals, Glycosylation of erythropoietin affects receptor binding kinetics: role of electrostática interactions. Biochemistry 41, 14524–14531 (2002)PubMedCrossRef R.J. Darling, U. Kuchibhotla, W. Glaesner, R. Micanovic, D.R. Witcher, J.M. Beals, Glycosylation of erythropoietin affects receptor binding kinetics: role of electrostática interactions. Biochemistry 41, 14524–14531 (2002)PubMedCrossRef
61.
go back to reference A.W. Gross, H.F. Lodish, Cellular trafficking and degradation of erythropoietin and novel erythropoiesis stimulating proteína (NESP). J. Biol. Chem. 281, 2024–2032 (2006)PubMedCrossRef A.W. Gross, H.F. Lodish, Cellular trafficking and degradation of erythropoietin and novel erythropoiesis stimulating proteína (NESP). J. Biol. Chem. 281, 2024–2032 (2006)PubMedCrossRef
62.
go back to reference A.K. Junk, A. Mammis, S.I. Savitz, M. Singh, S. Roth, S. Malhotra, P.S. Rosenbaum, A. Cerami, M. Brines, D.M. Rosenbaum, Erythropoietin administration protects retinal neurons from acute ischemia–reperfusion injury. Proc. Natl. Acad. Sci. USA 99, 10659–10664 (2002)PubMedCrossRef A.K. Junk, A. Mammis, S.I. Savitz, M. Singh, S. Roth, S. Malhotra, P.S. Rosenbaum, A. Cerami, M. Brines, D.M. Rosenbaum, Erythropoietin administration protects retinal neurons from acute ischemia–reperfusion injury. Proc. Natl. Acad. Sci. USA 99, 10659–10664 (2002)PubMedCrossRef
63.
go back to reference C. Grimm, A. Wenzel, M. Groszer, H. Mayser, M. Seeliger, M. Samardzija, C. Bauer, M. Gassmann, C. Reme, HIF-1-induced erythropoietin in the hypoxic retina protects against light-induced retinal degeneration. Nat. Med. 8, 718–724 (2002)PubMedCrossRef C. Grimm, A. Wenzel, M. Groszer, H. Mayser, M. Seeliger, M. Samardzija, C. Bauer, M. Gassmann, C. Reme, HIF-1-induced erythropoietin in the hypoxic retina protects against light-induced retinal degeneration. Nat. Med. 8, 718–724 (2002)PubMedCrossRef
64.
go back to reference J.C. Tsai, L. Wu, B. Worgul, M. Forbes, J. Cao, Intravitreal administration of erythropoietin and preservation of retinal ganglion cells in an experimental rat model of glaucoma. Curr. Eye Res. 30, 1025–1031 (2005)PubMedCrossRef J.C. Tsai, L. Wu, B. Worgul, M. Forbes, J. Cao, Intravitreal administration of erythropoietin and preservation of retinal ganglion cells in an experimental rat model of glaucoma. Curr. Eye Res. 30, 1025–1031 (2005)PubMedCrossRef
65.
go back to reference C.J. Layton, J.P. Wood, G. Chidlow, N.N. Osborne, Neuronal death in primary retinal cultures is related to nitric oxide production, and is inhibited by erythropoietin in a glucose-sensitive manner. J. Neurochem. 92, 487–493 (2005)PubMedCrossRef C.J. Layton, J.P. Wood, G. Chidlow, N.N. Osborne, Neuronal death in primary retinal cultures is related to nitric oxide production, and is inhibited by erythropoietin in a glucose-sensitive manner. J. Neurochem. 92, 487–493 (2005)PubMedCrossRef
66.
go back to reference J. Zhang, Y. Wu, Y. Jin, F. Ji, S.H. Sinclair, Y. Luo, G. Xu, L. Lu, W. Dai, M. Yanoff, W. Li, G.T. Xu, Intravitreal injection of erythropoietin protects both retinal vascular and neuronal cells in early diabetes. Invest. Ophthalmol. Vis. Sci. 49, 732–742 (2008)PubMedCrossRef J. Zhang, Y. Wu, Y. Jin, F. Ji, S.H. Sinclair, Y. Luo, G. Xu, L. Lu, W. Dai, M. Yanoff, W. Li, G.T. Xu, Intravitreal injection of erythropoietin protects both retinal vascular and neuronal cells in early diabetes. Invest. Ophthalmol. Vis. Sci. 49, 732–742 (2008)PubMedCrossRef
67.
go back to reference Q. Wang, S. Gorbey, F. Pfister, S. Höger, A. Dorn-Beineke, K. Krügel, E. Berrone, L. Wu, T. Korff, J. Lin, S. Busch, A. Reichenbach, Y. Feng, H.P. Hammes, Long-term treatment with suberythropoietic Epo is vaso- and neuroprotective in experimental diabetic retinopathy. Cell. Physiol. Biochem. 27, 769–782 (2011)PubMedCrossRef Q. Wang, S. Gorbey, F. Pfister, S. Höger, A. Dorn-Beineke, K. Krügel, E. Berrone, L. Wu, T. Korff, J. Lin, S. Busch, A. Reichenbach, Y. Feng, H.P. Hammes, Long-term treatment with suberythropoietic Epo is vaso- and neuroprotective in experimental diabetic retinopathy. Cell. Physiol. Biochem. 27, 769–782 (2011)PubMedCrossRef
68.
go back to reference L.M. Hu, Y. Luo, J. Zhang, X. Lei, J. Shen, Y. Wu, M. Qin, Y.B. Unver, Y. Zhong, G.T. Xu, W. Li, Epo reduces reactive gliosis and stimulates neurotrophin expresión in Muller cells. Front. Biosci. (Elite Ed) 3, 1541–1555 (2011) L.M. Hu, Y. Luo, J. Zhang, X. Lei, J. Shen, Y. Wu, M. Qin, Y.B. Unver, Y. Zhong, G.T. Xu, W. Li, Epo reduces reactive gliosis and stimulates neurotrophin expresión in Muller cells. Front. Biosci. (Elite Ed) 3, 1541–1555 (2011)
69.
go back to reference M. Garcia-Ramírez, C. Hernández, M. Ruiz-Meana, M. Villarroel, L. Corraliza, D. García-Dorado, R. Simó, Erythropoietin protects retinal pigment epithelial cells against the increase of permeability induced by diabetic conditions: essential role of JAK2/PI3K signaling. Cell. Signal. 23, 1596–1602 (2011)PubMedCrossRef M. Garcia-Ramírez, C. Hernández, M. Ruiz-Meana, M. Villarroel, L. Corraliza, D. García-Dorado, R. Simó, Erythropoietin protects retinal pigment epithelial cells against the increase of permeability induced by diabetic conditions: essential role of JAK2/PI3K signaling. Cell. Signal. 23, 1596–1602 (2011)PubMedCrossRef
70.
go back to reference N. Sekiguchi, T. Inoguchi, K. Kobayashi, N. Sonoda, H. Nawata, Erythropoietin attenuated high glucose-induced apoptosis in cultured human aortic endothelial cells. Biochem. Biophys. Res. Commun. 334, 218–222 (2005)PubMedCrossRef N. Sekiguchi, T. Inoguchi, K. Kobayashi, N. Sonoda, H. Nawata, Erythropoietin attenuated high glucose-induced apoptosis in cultured human aortic endothelial cells. Biochem. Biophys. Res. Commun. 334, 218–222 (2005)PubMedCrossRef
71.
go back to reference J. Liu, P. Narasimhan, Y.S. Song, T. Nishi, F. Yu, Y.S. Lee, P.H. Chan, Epo protects SOD2-deficient mouse astrocytes from damage by oxidative stress. Glia 53, 360–365 (2006)PubMedCrossRef J. Liu, P. Narasimhan, Y.S. Song, T. Nishi, F. Yu, Y.S. Lee, P.H. Chan, Epo protects SOD2-deficient mouse astrocytes from damage by oxidative stress. Glia 53, 360–365 (2006)PubMedCrossRef
72.
go back to reference M.B. Grant, M.E. Boulton, A.V. Ljubimov, Erythropoietin: when liability becomes asset in neurovascular repair. J. Clin. Invest. 118, 467–470 (2008)PubMedCrossRef M.B. Grant, M.E. Boulton, A.V. Ljubimov, Erythropoietin: when liability becomes asset in neurovascular repair. J. Clin. Invest. 118, 467–470 (2008)PubMedCrossRef
73.
go back to reference L.M. Hu, X. Lei, B. Ma, Y. Zhang, Y. Yan, Y.L. Wu, G.Z. Xu, W. Ye, L. Wang, G.X. Xu, G.T. Xu, L. Wei-Ye, Erythropoietin receptor positive circulating progenitor cells and endothelial progenitor cells in patients with different stages of diabetic retinopathy. Chin. Med. Sci. 26, 69–76 (2011)CrossRef L.M. Hu, X. Lei, B. Ma, Y. Zhang, Y. Yan, Y.L. Wu, G.Z. Xu, W. Ye, L. Wang, G.X. Xu, G.T. Xu, L. Wei-Ye, Erythropoietin receptor positive circulating progenitor cells and endothelial progenitor cells in patients with different stages of diabetic retinopathy. Chin. Med. Sci. 26, 69–76 (2011)CrossRef
74.
go back to reference M. Brines, N.S. Patel, P. Villa, C. Brines, T. Mennini, M. De Paola, Z. Erbayraktar, S. Erbayraktar, B. Sepodes, C. Thiemermann, P. Ghezzi, M. Yamin, C.C. Hand, Q.W. Xie, T. Coleman, A. Cerami, Nonerythropoietic, tissue-protective peptides derived from the tertiary structure of erythropoietin. Proc. Natl. Acad. Sci. USA 105, 10925–10930 (2008)PubMedCrossRef M. Brines, N.S. Patel, P. Villa, C. Brines, T. Mennini, M. De Paola, Z. Erbayraktar, S. Erbayraktar, B. Sepodes, C. Thiemermann, P. Ghezzi, M. Yamin, C.C. Hand, Q.W. Xie, T. Coleman, A. Cerami, Nonerythropoietic, tissue-protective peptides derived from the tertiary structure of erythropoietin. Proc. Natl. Acad. Sci. USA 105, 10925–10930 (2008)PubMedCrossRef
75.
go back to reference C.M. McVivar, R. Hamilton, L.M. Colhoun, T.A. Gardiner, M. Brines, A. Cerami, A.W. Stitt, Intervention with an erythropoietin-derived peptide protects against neuroglial and vascular degeneration during diabetic retinopathy. Diabetes 60, 2995–3005 (2011)CrossRef C.M. McVivar, R. Hamilton, L.M. Colhoun, T.A. Gardiner, M. Brines, A. Cerami, A.W. Stitt, Intervention with an erythropoietin-derived peptide protects against neuroglial and vascular degeneration during diabetic retinopathy. Diabetes 60, 2995–3005 (2011)CrossRef
76.
go back to reference E. Eljarrat-Binstock, J. Pe’er, A.J. Domb, New techniques for drug delivery to the posterior eye segment. Pharm. Res. 27, 530–543 (2010)PubMedCrossRef E. Eljarrat-Binstock, J. Pe’er, A.J. Domb, New techniques for drug delivery to the posterior eye segment. Pharm. Res. 27, 530–543 (2010)PubMedCrossRef
77.
go back to reference M. Saylor, L.K. McLoon, A.R. Harrison, M.S. Lee, Experimental and clinical evidence for brimonidine as an optic nerve and retinal neuroprotective agent: an evidence-based review. Arch. Ophthalmol. 127, 402–406 (2009)PubMedCrossRef M. Saylor, L.K. McLoon, A.R. Harrison, M.S. Lee, Experimental and clinical evidence for brimonidine as an optic nerve and retinal neuroprotective agent: an evidence-based review. Arch. Ophthalmol. 127, 402–406 (2009)PubMedCrossRef
78.
go back to reference A. Lambiase, L. Aloe, M. Centofanti, V. Parisi, F. Mantelli, V. Colafrancesco, G.L. Manni, M.G. Bucci, S. Bonini, R. Levi-Montalcini, Experimental and clinical evidence of neuroprotection by nerve growth factor eye drops: implications for glaucoma. Proc. Natl. Acad. Sci. USA 106, 13469–13474 (2008)CrossRef A. Lambiase, L. Aloe, M. Centofanti, V. Parisi, F. Mantelli, V. Colafrancesco, G.L. Manni, M.G. Bucci, S. Bonini, R. Levi-Montalcini, Experimental and clinical evidence of neuroprotection by nerve growth factor eye drops: implications for glaucoma. Proc. Natl. Acad. Sci. USA 106, 13469–13474 (2008)CrossRef
79.
go back to reference C.J. Dong, Y. Guo, P. Agey, L. Wheeler, W.A. Hare, Alpha 2 adrenergic modulation of NMDA receptor function as a major mechanism of RGC protection in experimental glaucoma and retinal excitotoxicity. Invest. Ophthalmol. Vis. Sci. 49, 4515–4522 (2008)PubMedCrossRef C.J. Dong, Y. Guo, P. Agey, L. Wheeler, W.A. Hare, Alpha 2 adrenergic modulation of NMDA receptor function as a major mechanism of RGC protection in experimental glaucoma and retinal excitotoxicity. Invest. Ophthalmol. Vis. Sci. 49, 4515–4522 (2008)PubMedCrossRef
80.
go back to reference L.P. Aiello, Targeting intraocular neovascularization and edema—one drop at a time. N. Engl. J. Med. 359, 967–969 (2008)PubMedCrossRef L.P. Aiello, Targeting intraocular neovascularization and edema—one drop at a time. N. Engl. J. Med. 359, 967–969 (2008)PubMedCrossRef
Metadata
Title
Erythropoietin produced by the retina: its role in physiology and diabetic retinopathy
Authors
Cristina Hernández
Rafael Simó
Publication date
01-04-2012
Publisher
Springer US
Published in
Endocrine / Issue 2/2012
Print ISSN: 1355-008X
Electronic ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-011-9579-6

Other articles of this Issue 2/2012

Endocrine 2/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.