Skip to main content
Top
Published in: Clinical Reviews in Bone and Mineral Metabolism 2/2014

01-06-2014 | Original Paper

Physiology of Mechanotransduction: How Do Muscle and Bone “Talk” to One Another?

Authors: Janalee Isaacson, Marco Brotto

Published in: Clinical & Translational Metabolism | Issue 2/2014

Login to get access

Abstract

The complexity of cell interactions with their microenvironment and their ability to communicate at the autocrine, paracrine, and endocrine levels has gradually but significantly evolved in the last three decades. The musculoskeletal system has been historically recognized to be governed by a relationship of proximity and function, chiefly dictated by mechanical forces and the work of gravity itself. In this review article, we first provide a historical overview of the biomechanical theory of bone–muscle interactions. Next, we expand to detail the significant evolution in our understanding of the function of bones and muscles as secretory organs. Then, we review and discuss new evidence in support of a biochemical interaction between these two tissues. We then propose that these two models of interaction are complementary and intertwined providing for a new frontier for the investigation of how bone–muscle cross talk could be fully explored for the targeting of new therapies for musculoskeletal diseases, particularly the twin conditions of aging, osteoporosis and sarcopenia. In the last section, we explore the bone–muscle cross talk in the context of their interactions with other tissues and the global impact of these multi-tissue interactions on chronic diseases.
Literature
1.
2.
go back to reference Berg AH, et al. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med. 2001;7(8):947–53.PubMedCrossRef Berg AH, et al. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med. 2001;7(8):947–53.PubMedCrossRef
3.
go back to reference Sell H, Dietze-Schroeder D, Eckel J. The adipocyte–myocyte axis in insulin resistance. Trends Endocrinol Metab. 2006;17(10):416–22.PubMedCrossRef Sell H, Dietze-Schroeder D, Eckel J. The adipocyte–myocyte axis in insulin resistance. Trends Endocrinol Metab. 2006;17(10):416–22.PubMedCrossRef
4.
go back to reference Lafontan M. Historical perspectives in fat cell biology: the fat cell as a model for the investigation of hormonal and metabolic pathways. AJP Cell Physiol. 2011;302:C327–59.CrossRef Lafontan M. Historical perspectives in fat cell biology: the fat cell as a model for the investigation of hormonal and metabolic pathways. AJP Cell Physiol. 2011;302:C327–59.CrossRef
6.
go back to reference Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, et al. Years live with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2163–96.PubMedCrossRef Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, et al. Years live with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2163–96.PubMedCrossRef
7.
go back to reference Frost HM. Perspectives: a proposed general model of the “mechanostat” (suggestions from a new skeletal-biologic paradigm). Anat Rec. 1996;244:139–47.PubMedCrossRef Frost HM. Perspectives: a proposed general model of the “mechanostat” (suggestions from a new skeletal-biologic paradigm). Anat Rec. 1996;244:139–47.PubMedCrossRef
8.
go back to reference Marotti G, Ferretti M, Muglia MA, Palumbo C, Palazzini S. A quantitative evaluation of osteoblast–osteocyte relationships on growing endosteal surface of rabbit tibiae. Bone. 1992;13:363–8.PubMedCrossRef Marotti G, Ferretti M, Muglia MA, Palumbo C, Palazzini S. A quantitative evaluation of osteoblast–osteocyte relationships on growing endosteal surface of rabbit tibiae. Bone. 1992;13:363–8.PubMedCrossRef
9.
go back to reference Tanaka K, Matsuo T, Ohta M, Sato T, Tezuka K, Nijweide PJ, et al. Time-lapse microcinematography of osteocytes. Miner Electrolyte Metab. 1995;21:189–92.PubMed Tanaka K, Matsuo T, Ohta M, Sato T, Tezuka K, Nijweide PJ, et al. Time-lapse microcinematography of osteocytes. Miner Electrolyte Metab. 1995;21:189–92.PubMed
10.
go back to reference Klein-Nulend J, van der Plas A, Semeins CM, Ajubi NE, Frangos JA, Nijweide PJ, et al. Sensitivity of osteocytes to biomechanical stress in vitro. FASB J. 1995;9:441–5. Klein-Nulend J, van der Plas A, Semeins CM, Ajubi NE, Frangos JA, Nijweide PJ, et al. Sensitivity of osteocytes to biomechanical stress in vitro. FASB J. 1995;9:441–5.
11.
go back to reference Burger EH, Klein-Nulend J. Mechanotransduction in bone—role of the lacuna-canalicular network. FASEB J. 1999;13:101–12. Burger EH, Klein-Nulend J. Mechanotransduction in bone—role of the lacuna-canalicular network. FASEB J. 1999;13:101–12.
12.
go back to reference Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, et al. Osteocyte control of one formatin via sclerostin, a novel BMP antagonist. EMBO J. 2003;22:6267–76.PubMedCentralPubMedCrossRef Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, et al. Osteocyte control of one formatin via sclerostin, a novel BMP antagonist. EMBO J. 2003;22:6267–76.PubMedCentralPubMedCrossRef
13.
go back to reference Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T, et al. Targeted ablation of Fgf23 demonstrates an essential physiologyical role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest. 2004;113:561–8.PubMedCentralPubMedCrossRef Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T, et al. Targeted ablation of Fgf23 demonstrates an essential physiologyical role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest. 2004;113:561–8.PubMedCentralPubMedCrossRef
15.
go back to reference Martin A, Liu S, David V, Li H, Karydis A, Feng JQ, et al. Bone proteins PHEX and DMP1 regulate fibroblastic growth factor Fgf23 expression in osteocytes through a common pathway involving FGF receptor (FGFR) signaling. FASEB J. 2011;25:2551–62.PubMedCentralPubMedCrossRef Martin A, Liu S, David V, Li H, Karydis A, Feng JQ, et al. Bone proteins PHEX and DMP1 regulate fibroblastic growth factor Fgf23 expression in osteocytes through a common pathway involving FGF receptor (FGFR) signaling. FASEB J. 2011;25:2551–62.PubMedCentralPubMedCrossRef
16.
go back to reference Karsenty G, Wagner EF. Reaching a genetic and molecular understanding of skeletal development. Dev Cell. 2002;2:389–406.PubMedCrossRef Karsenty G, Wagner EF. Reaching a genetic and molecular understanding of skeletal development. Dev Cell. 2002;2:389–406.PubMedCrossRef
17.
go back to reference Lajeunesse D, Kiebzak GM, Frondoza C, Sacktor B. Regulation of osteocalcin secretion by human primary bone cells and by the human osteosarcoma cell line MG-63. Bone Miner. 1991;14:237–50.PubMedCrossRef Lajeunesse D, Kiebzak GM, Frondoza C, Sacktor B. Regulation of osteocalcin secretion by human primary bone cells and by the human osteosarcoma cell line MG-63. Bone Miner. 1991;14:237–50.PubMedCrossRef
18.
go back to reference Ducy P, Desbois C, Boyce B, Pinero G, et al. Increased bone formation in osteocalcin-deficient mice. Nature. 1996;382:448–52.PubMedCrossRef Ducy P, Desbois C, Boyce B, Pinero G, et al. Increased bone formation in osteocalcin-deficient mice. Nature. 1996;382:448–52.PubMedCrossRef
19.
go back to reference Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell. 1997;89:747–54.PubMedCrossRef Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell. 1997;89:747–54.PubMedCrossRef
20.
21.
go back to reference Agas D, Marchetti L, Hurley MM, Sabbieti MG. Prostablandin F2α: a bone remodeling mediator. J Cell Physiol. 2013;228:25–9.PubMedCrossRef Agas D, Marchetti L, Hurley MM, Sabbieti MG. Prostablandin F2α: a bone remodeling mediator. J Cell Physiol. 2013;228:25–9.PubMedCrossRef
22.
go back to reference Mo C, Romero-Suarez S, Brotto MA. Pge2 accelerates myogenesis of C2C12 myoblasts. Biophys J. 2011;100:288a.CrossRef Mo C, Romero-Suarez S, Brotto MA. Pge2 accelerates myogenesis of C2C12 myoblasts. Biophys J. 2011;100:288a.CrossRef
23.
go back to reference Karsenty G, Ferron M. The contribution of bone to whole-organism physiology. Nature. 2012;481:314–20.PubMedCrossRef Karsenty G, Ferron M. The contribution of bone to whole-organism physiology. Nature. 2012;481:314–20.PubMedCrossRef
24.
go back to reference Orestes-Cardoso SM, Nefussi JR, Hotton D, Mesbah M, Orestes-Cardoso MDS, Robert B, et al. Postnatal Msx1 expression pattern in craniofacial, axial, and appendicular skeleton of transgenic mice from the first week until the second year. Dev Dyn. 2001;221:1–13.PubMedCrossRef Orestes-Cardoso SM, Nefussi JR, Hotton D, Mesbah M, Orestes-Cardoso MDS, Robert B, et al. Postnatal Msx1 expression pattern in craniofacial, axial, and appendicular skeleton of transgenic mice from the first week until the second year. Dev Dyn. 2001;221:1–13.PubMedCrossRef
25.
go back to reference Pearson OM, Lieberman DE. The aging of Wolff’s law: ontogeny and responses to mechanical loading in cortical bone. Am J Phys Anthropol. 2004;125:63–99.CrossRef Pearson OM, Lieberman DE. The aging of Wolff’s law: ontogeny and responses to mechanical loading in cortical bone. Am J Phys Anthropol. 2004;125:63–99.CrossRef
26.
go back to reference Lang TF. The bone–muscle relationship in men and women. J Osteoporos. 2011;2011:1–4.CrossRef Lang TF. The bone–muscle relationship in men and women. J Osteoporos. 2011;2011:1–4.CrossRef
27.
go back to reference Zanchetta JR, Plotkin H, Filgueira MLA. Bone mass in children: normative values for the 2–20-year-old population. Bone. 1995;16:S393–9. Zanchetta JR, Plotkin H, Filgueira MLA. Bone mass in children: normative values for the 2–20-year-old population. Bone. 1995;16:S393–9.
28.
go back to reference Wang Q, Alen M, Nicholson P, Suominen H, Koistinen A, Kroger H, et al. Weight-bearing, muscle loading and bone mineral accrual in pubertal girls—a 2-year longitudinal study. Bone. 2007;40:1196–202.PubMedCrossRef Wang Q, Alen M, Nicholson P, Suominen H, Koistinen A, Kroger H, et al. Weight-bearing, muscle loading and bone mineral accrual in pubertal girls—a 2-year longitudinal study. Bone. 2007;40:1196–202.PubMedCrossRef
29.
go back to reference Hirokawa N, Niwa S, Tanaka Y. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron. 2010;68:610–38.PubMedCrossRef Hirokawa N, Niwa S, Tanaka Y. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron. 2010;68:610–38.PubMedCrossRef
30.
go back to reference Gomez-Pinilla F. Voluntary exercise induces a BDNF-mediated mechanism that promotes neuroplasticity. J Neurophysiol. 2002;88:2187–95.PubMedCrossRef Gomez-Pinilla F. Voluntary exercise induces a BDNF-mediated mechanism that promotes neuroplasticity. J Neurophysiol. 2002;88:2187–95.PubMedCrossRef
31.
go back to reference Goldspink DF, Goldspink G. The role of passive stretch in retarding muscle atrophy. In: Nix WA, Vrbova G, editors. Electrical stimulation and neuromuscular disorders. Berlin: Springer; 1986. p. 91–100.CrossRef Goldspink DF, Goldspink G. The role of passive stretch in retarding muscle atrophy. In: Nix WA, Vrbova G, editors. Electrical stimulation and neuromuscular disorders. Berlin: Springer; 1986. p. 91–100.CrossRef
32.
go back to reference Kurek JB, Bower JJ, Romanella M, Koentgen F, Murphy M, Austin L. The role of leukemia inhibitory factor in skeletal muscle regeneration. Muscle Nerve. 1997;20:815–22.PubMedCrossRef Kurek JB, Bower JJ, Romanella M, Koentgen F, Murphy M, Austin L. The role of leukemia inhibitory factor in skeletal muscle regeneration. Muscle Nerve. 1997;20:815–22.PubMedCrossRef
33.
go back to reference Pedersen BK, Steensberg A, Fischer C, Keller C, Keller P, Plomgaard P, et al. Searching for the exercise factor: is IL-6 a candidate? J Muscle Res Cell Motil. 2003;24:113–9.PubMedCrossRef Pedersen BK, Steensberg A, Fischer C, Keller C, Keller P, Plomgaard P, et al. Searching for the exercise factor: is IL-6 a candidate? J Muscle Res Cell Motil. 2003;24:113–9.PubMedCrossRef
34.
go back to reference Steensberg A, Hall G, Osada T, Sacchetti M, Saltin B, Pedersen BK. Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J Physiol. 2000;529:237–42.PubMedCentralPubMedCrossRef Steensberg A, Hall G, Osada T, Sacchetti M, Saltin B, Pedersen BK. Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J Physiol. 2000;529:237–42.PubMedCentralPubMedCrossRef
35.
go back to reference Andersen K, Pedersen B. The role of inflammation in vascular insulin resistance with focus on IL-6. Horm Metab Res. 2008;40:635–9.PubMedCrossRef Andersen K, Pedersen B. The role of inflammation in vascular insulin resistance with focus on IL-6. Horm Metab Res. 2008;40:635–9.PubMedCrossRef
36.
go back to reference Keller C. Transcriptional activation of the IL-6 gene in human contracting skeletal muscle: influence of muscle glycogen content. FASEB J. 2001;15(14):2748–50.PubMed Keller C. Transcriptional activation of the IL-6 gene in human contracting skeletal muscle: influence of muscle glycogen content. FASEB J. 2001;15(14):2748–50.PubMed
37.
go back to reference Nielsen AR, Pedersen BK. The biological roles of exercise-induced cytokines: IL-6, IL-8, and IL-15. Appl Physiol Nutr Metab. 2007;32:833–9.PubMedCrossRef Nielsen AR, Pedersen BK. The biological roles of exercise-induced cytokines: IL-6, IL-8, and IL-15. Appl Physiol Nutr Metab. 2007;32:833–9.PubMedCrossRef
38.
go back to reference Pedersen BK, Akerstrom TCA, Nielsen AR, Fischer CP. Role of myokines in exercise and metabolism. J Appl Physiol. 2007;103:1093–8.PubMedCrossRef Pedersen BK, Akerstrom TCA, Nielsen AR, Fischer CP. Role of myokines in exercise and metabolism. J Appl Physiol. 2007;103:1093–8.PubMedCrossRef
39.
go back to reference Matthews VB, Astrom MB, Chan MHS, Bruce CR, Krabbe KS, Prelovsek O, et al. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia. 2009;52:1409–18.PubMedCrossRef Matthews VB, Astrom MB, Chan MHS, Bruce CR, Krabbe KS, Prelovsek O, et al. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia. 2009;52:1409–18.PubMedCrossRef
40.
go back to reference Pedersen L, Olsen CH, Pedersen BK, Hojman P. Muscle-derived expression of the chemokine CXCL1 attenuates diet-induced obesity and improves fatty acid oxidation in the muscle. AJP Endocrinol Metab. 2012;302:E831–40.CrossRef Pedersen L, Olsen CH, Pedersen BK, Hojman P. Muscle-derived expression of the chemokine CXCL1 attenuates diet-induced obesity and improves fatty acid oxidation in the muscle. AJP Endocrinol Metab. 2012;302:E831–40.CrossRef
42.
43.
go back to reference Hee Park K, Zaichenko L, Brinkoetter M, Thakkar B, Sahin-Efe A, Joung KE, et al. Circulating irisin in relation to insulin resistance and the metabolic syndrome. J Clin Endocrinol Metab. 2013;98(12):4899–907. Hee Park K, Zaichenko L, Brinkoetter M, Thakkar B, Sahin-Efe A, Joung KE, et al. Circulating irisin in relation to insulin resistance and the metabolic syndrome. J Clin Endocrinol Metab. 2013;98(12):4899–907.
44.
go back to reference Chan JKK, Harry L, Williams G, Nanchahal J. Soft-tissue reconstruction of open fractures of the lower limb: muscle versus fasciocutaneous flaps. Plast Reconstr Surg. 2012;130:284e–95e.PubMedCentralPubMedCrossRef Chan JKK, Harry L, Williams G, Nanchahal J. Soft-tissue reconstruction of open fractures of the lower limb: muscle versus fasciocutaneous flaps. Plast Reconstr Surg. 2012;130:284e–95e.PubMedCentralPubMedCrossRef
45.
go back to reference McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-p superfamily member. Nature. 1997;387:83–90.PubMedCrossRef McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-p superfamily member. Nature. 1997;387:83–90.PubMedCrossRef
46.
go back to reference Jouliaekaza D, Cabello G. The myostatin gene: physiology and pharmacological relevance. Curr Opin Pharmacol. 2007;7:310–5.CrossRef Jouliaekaza D, Cabello G. The myostatin gene: physiology and pharmacological relevance. Curr Opin Pharmacol. 2007;7:310–5.CrossRef
47.
go back to reference Zimmers TA. Induction of cachexia in mice by systemically administered myostatin. Science. 2002;296:1486–8.PubMedCrossRef Zimmers TA. Induction of cachexia in mice by systemically administered myostatin. Science. 2002;296:1486–8.PubMedCrossRef
48.
go back to reference Hamrick MW, McPherron AC, Lovejoy CO. Bone mineral content and density in humerus of adult myostatin-deficient mice. Calcif Tissue Int. 2002;71:63–8.PubMedCrossRef Hamrick MW, McPherron AC, Lovejoy CO. Bone mineral content and density in humerus of adult myostatin-deficient mice. Calcif Tissue Int. 2002;71:63–8.PubMedCrossRef
49.
go back to reference Hamrick MW. Increased bone mineral density in the femora of GDF8 knockout mice. Anat Rec. 2003;272A:388–91.CrossRef Hamrick MW. Increased bone mineral density in the femora of GDF8 knockout mice. Anat Rec. 2003;272A:388–91.CrossRef
50.
go back to reference Hamrick MW, Samaddar T, Pennington C, McCormick J. Increased muscle mass with myostatin deficiency improves gains in bone strength with exercise. J Bone Miner Res. 2005;21:477–83.PubMedCrossRef Hamrick MW, Samaddar T, Pennington C, McCormick J. Increased muscle mass with myostatin deficiency improves gains in bone strength with exercise. J Bone Miner Res. 2005;21:477–83.PubMedCrossRef
51.
go back to reference Morissette MR, Stricker JC, Rosenberg MA, Buranasombati C, Levitan EB, Mittleman MA, et al. Effects of myostatin deletion in aging mice. Aging Cell. 2009;8:573–83.PubMedCentralPubMedCrossRef Morissette MR, Stricker JC, Rosenberg MA, Buranasombati C, Levitan EB, Mittleman MA, et al. Effects of myostatin deletion in aging mice. Aging Cell. 2009;8:573–83.PubMedCentralPubMedCrossRef
52.
go back to reference Coiro V, Volpi R, Cataldo S, Magotti MG, Maffei ML, Giumelli C, et al. Effect of physiological exercise on osteocalcin levels in subjects with adrenal incidentaloma. J Endocrinol Invest. 2012;35:357–8.PubMedCrossRef Coiro V, Volpi R, Cataldo S, Magotti MG, Maffei ML, Giumelli C, et al. Effect of physiological exercise on osteocalcin levels in subjects with adrenal incidentaloma. J Endocrinol Invest. 2012;35:357–8.PubMedCrossRef
53.
go back to reference Centers for Disease Control and Prevention (US); Prevalence of obesity among older adults in the United States, 2007–2010. 2012. (NCHS Data Brief; no. 106). Centers for Disease Control and Prevention (US); Prevalence of obesity among older adults in the United States, 2007–2010. 2012. (NCHS Data Brief; no. 106).
54.
go back to reference Beltran-Sanchez H, Harhay MO, Harhay MM, McElliogott S. Prevalence and trends of metabolic syndrome in the adult U.S. population, 1999–2010. J Am Coll Cardiol. 2013;62(8):697–703.PubMedCrossRef Beltran-Sanchez H, Harhay MO, Harhay MM, McElliogott S. Prevalence and trends of metabolic syndrome in the adult U.S. population, 1999–2010. J Am Coll Cardiol. 2013;62(8):697–703.PubMedCrossRef
55.
go back to reference Morley JE, Baumgartner RN, Roubenoff R, Mayer J, Nair KS. Sarcopenia. J Lab Clin Med. 2001;137:231–43.PubMedCrossRef Morley JE, Baumgartner RN, Roubenoff R, Mayer J, Nair KS. Sarcopenia. J Lab Clin Med. 2001;137:231–43.PubMedCrossRef
56.
go back to reference Karakelides H, Nair KS. Sarcopenia of aging and its metabolic impact. Curr Top Dev Biol. 2005;68:123–48.PubMedCrossRef Karakelides H, Nair KS. Sarcopenia of aging and its metabolic impact. Curr Top Dev Biol. 2005;68:123–48.PubMedCrossRef
57.
go back to reference Cosqueric G, Sebag A, Ducolombier C, Thomas C, Piette F, Weill-Engerer S. Sarcopenia is predictive of nosocomial infection in care of the elderly. Br J Nutr. 2006;96(5):895–901.PubMedCrossRef Cosqueric G, Sebag A, Ducolombier C, Thomas C, Piette F, Weill-Engerer S. Sarcopenia is predictive of nosocomial infection in care of the elderly. Br J Nutr. 2006;96(5):895–901.PubMedCrossRef
58.
go back to reference Kalantar-Zadeh K, Rhee C, Sim JJ, Stenvinkel P, Anker SD, Kovesdy CP. Why cachexia kills: examining the causality of poor outcomes in wasting conditions. J Cachexia Sarcopenia Muscle. 2013;4:89–94.PubMedCentralPubMedCrossRef Kalantar-Zadeh K, Rhee C, Sim JJ, Stenvinkel P, Anker SD, Kovesdy CP. Why cachexia kills: examining the causality of poor outcomes in wasting conditions. J Cachexia Sarcopenia Muscle. 2013;4:89–94.PubMedCentralPubMedCrossRef
59.
60.
go back to reference Jensen GL, Friedmann JM. Obesity is associated with functional decline in community-dwelling rural older persons. J Am Geriatr Soc. 2002;50(5):918–23.PubMedCrossRef Jensen GL, Friedmann JM. Obesity is associated with functional decline in community-dwelling rural older persons. J Am Geriatr Soc. 2002;50(5):918–23.PubMedCrossRef
61.
go back to reference Srikanthan P, Hevener AL, Karlamangla AS. Sarcopenia exacerbates obesity-associated insulin resistance and dysglycemia: findings from the National Health and Nutrition Examination Survey III. PLoS One. 2010;5(5):1–7.CrossRef Srikanthan P, Hevener AL, Karlamangla AS. Sarcopenia exacerbates obesity-associated insulin resistance and dysglycemia: findings from the National Health and Nutrition Examination Survey III. PLoS One. 2010;5(5):1–7.CrossRef
62.
go back to reference Kim TN, Park MS, Yang SJ, Yoo HJ, Kang HJ, Song W, et al. Prevalence and determinant factors of sarcopenia in patients with type 2 diabetes. Diabetes Care. 2010;33(7):1497–9.PubMedCentralPubMedCrossRef Kim TN, Park MS, Yang SJ, Yoo HJ, Kang HJ, Song W, et al. Prevalence and determinant factors of sarcopenia in patients with type 2 diabetes. Diabetes Care. 2010;33(7):1497–9.PubMedCentralPubMedCrossRef
64.
go back to reference Lee CG, Boyko EJ, Strotmeyer ES, Lewis CE, Cawthon PM, Hoffman AR, et al. Association between insulin resistance and lean mass loss and fat mass gain in older men without diabetes mellitus. J Am Geriatr Soc. 2011;59:1217–24.PubMedCentralPubMedCrossRef Lee CG, Boyko EJ, Strotmeyer ES, Lewis CE, Cawthon PM, Hoffman AR, et al. Association between insulin resistance and lean mass loss and fat mass gain in older men without diabetes mellitus. J Am Geriatr Soc. 2011;59:1217–24.PubMedCentralPubMedCrossRef
65.
go back to reference Hofbauer LG, Brueck C, Singh SK, Dobnig H. Osteoporosis in patients with diabetes mellitus. JBMR. 2007;22(9):1317–28.CrossRef Hofbauer LG, Brueck C, Singh SK, Dobnig H. Osteoporosis in patients with diabetes mellitus. JBMR. 2007;22(9):1317–28.CrossRef
66.
go back to reference Strotmeyer ES, Cauley JA. Diabetes mellitus, bone mineral density, and fracture risk. Curr Opin Endocrinol Diabetes Obes. 2007;14:429–35.PubMedCrossRef Strotmeyer ES, Cauley JA. Diabetes mellitus, bone mineral density, and fracture risk. Curr Opin Endocrinol Diabetes Obes. 2007;14:429–35.PubMedCrossRef
67.
go back to reference Vestergaard P, Rejnmark L, Mosekilde L. Diabetes and its complications and their relationship with risk of fractures in type 1 and 2 diabetes. Calcif Tissue Int. 2009;84:45–55.PubMedCrossRef Vestergaard P, Rejnmark L, Mosekilde L. Diabetes and its complications and their relationship with risk of fractures in type 1 and 2 diabetes. Calcif Tissue Int. 2009;84:45–55.PubMedCrossRef
68.
go back to reference Hamann C, Kirschner S, Gunther KP, Hofbauer LC. Bone sweet bone—osteoporotic fractures in diabetes mellitus. Nat Rev Endocrinol. 2012;8:297–305.PubMedCrossRef Hamann C, Kirschner S, Gunther KP, Hofbauer LC. Bone sweet bone—osteoporotic fractures in diabetes mellitus. Nat Rev Endocrinol. 2012;8:297–305.PubMedCrossRef
Metadata
Title
Physiology of Mechanotransduction: How Do Muscle and Bone “Talk” to One Another?
Authors
Janalee Isaacson
Marco Brotto
Publication date
01-06-2014
Publisher
Springer US
Published in
Clinical & Translational Metabolism / Issue 2/2014
Print ISSN: 1534-8644
Electronic ISSN: 2948-2445
DOI
https://doi.org/10.1007/s12018-013-9152-3

Other articles of this Issue 2/2014

Clinical Reviews in Bone and Mineral Metabolism 2/2014 Go to the issue