Skip to main content
Top
Published in: NeuroMolecular Medicine 3/2015

01-09-2015 | Original Paper

NGF Expression in Reelin-Deprived Retinal Cells: A Potential Neuroprotective Effect

Authors: Bijorn Omar Balzamino, Graziana Esposito, Ramona Marino, Flavio Keller, Alessandra Micera

Published in: NeuroMolecular Medicine | Issue 3/2015

Login to get access

Abstract

We recently reported that increased NGF and p75NTR as well as decreased trkANGFR characterized the Reelin-deprived (E-Reeler) retina, prospecting a potential contribution of NGF during E-Reeler retinogenesis. Herein, retinal ganglion cells (RGCs), glial cells and rod bipolar cells (RBCs) were isolated from E-Reeler retinas, and NGF, trkANGFR/p75NTR expression and apoptosis were investigated. E-Reeler (n = 28) and E-control (n = 34) retinas were digested, and RGCs, glial cells and RBCs were isolated by the magnetic bead separation. Expression of NGF, trkANGFR, p75NTR, Annexin V/PI and Bcl2/Bax was quantified by flow cytometry and validated by real-time PCR or WB. In E-Reeler retinas, NGF was significantly increased in RGCs and glial cells, p75NTR was increased in both RBCs and RGCs, and trkANGFR was unchanged. In E-control retinas, NGF and p75NTR were expressed mainly in RBCs and RGCs and faintly in glial cells, while trkANGFR was weakly expressed by RBCs and RGCs. In RBCs and RGCs, Annexin V expression was unchanged, while Bcl2 increased and Bax decreased selectively in E-Reeler RGCs. The data indicate that E-Reeler RBCs and RGCs overexpress NGF and p75NTR as a protective endogenous response to Reelin deprivation. The observation is strongly supported by the absence of apoptosis in both cell types.
Literature
go back to reference Aloe, L., Tirassa, P., & Lambiase, A. (2008). The topical application of nerve growth factor as a pharmacological tool for human corneal and skin ulcers. Pharmacological Research, 57(4), 253–258.CrossRefPubMed Aloe, L., Tirassa, P., & Lambiase, A. (2008). The topical application of nerve growth factor as a pharmacological tool for human corneal and skin ulcers. Pharmacological Research, 57(4), 253–258.CrossRefPubMed
go back to reference Angelucci, C., Maulucci, G., Lama, G., Proietti, G., Colabianchi, A., Papi, M., et al. (2012). Epithelial-stromal interactions in human breast cancer: Effects on adhesion, plasma membrane fluidity and migration speed and directness. PLoS One, 7(12), e50804.PubMedCentralCrossRefPubMed Angelucci, C., Maulucci, G., Lama, G., Proietti, G., Colabianchi, A., Papi, M., et al. (2012). Epithelial-stromal interactions in human breast cancer: Effects on adhesion, plasma membrane fluidity and migration speed and directness. PLoS One, 7(12), e50804.PubMedCentralCrossRefPubMed
go back to reference Bai, Y., Dergham, P., Nedev, H., Xu, J., Galan, A., Rivera, J. C., et al. (2012). Chronic and acute models of retinal neurodegeneration TrkA activity are neuroprotective whereas p75NTR activity is neurotoxic through a paracrine mechanism. Journal of Biological Chemistry, 285(50), 39392–39400.CrossRef Bai, Y., Dergham, P., Nedev, H., Xu, J., Galan, A., Rivera, J. C., et al. (2012). Chronic and acute models of retinal neurodegeneration TrkA activity are neuroprotective whereas p75NTR activity is neurotoxic through a paracrine mechanism. Journal of Biological Chemistry, 285(50), 39392–39400.CrossRef
go back to reference Balzamino, B. O., Biamonte, F., Esposito, G., Marino, R., Fanelli, F., Keller, F., & Micera, A. (2014). Characterization of NGF, trkANGFR and p75NTR in retina of mice lacking Reelin glycoprotein. International Journal of Cell Biology, 2014, 725928.PubMedCentralCrossRefPubMed Balzamino, B. O., Biamonte, F., Esposito, G., Marino, R., Fanelli, F., Keller, F., & Micera, A. (2014). Characterization of NGF, trkANGFR and p75NTR in retina of mice lacking Reelin glycoprotein. International Journal of Cell Biology, 2014, 725928.PubMedCentralCrossRefPubMed
go back to reference Bandtlow, C., & Dechant, G. (2004). From cell death to neuronal regeneration, effects of the p75 neurotrophin receptor depend on interactions with partner subunits. Science STKE, 2004, pe24. Bandtlow, C., & Dechant, G. (2004). From cell death to neuronal regeneration, effects of the p75 neurotrophin receptor depend on interactions with partner subunits. Science STKE, 2004, pe24.
go back to reference Barnstable, C. J., & Drager, U. C. (1984). Thy-1 antigen: A ganglion cell specific marker in rodent retina. Neuroscience, 11(4), 847–855.CrossRefPubMed Barnstable, C. J., & Drager, U. C. (1984). Thy-1 antigen: A ganglion cell specific marker in rodent retina. Neuroscience, 11(4), 847–855.CrossRefPubMed
go back to reference Berardi, N., Cellerino, A., Domenici, L., Fagiolini, M., Pizzorusso, T., Cattaneo, A., & Maffei, L. (1994). Monoclonal antibodies to nerve growth factor affect the postnatal development of the visual system. Proceedings of the National Academy of Sciences USA, 91(2), 684–688.CrossRef Berardi, N., Cellerino, A., Domenici, L., Fagiolini, M., Pizzorusso, T., Cattaneo, A., & Maffei, L. (1994). Monoclonal antibodies to nerve growth factor affect the postnatal development of the visual system. Proceedings of the National Academy of Sciences USA, 91(2), 684–688.CrossRef
go back to reference Berardi, N., Lodovichi, C., Caleo, M., Pizzorusso, T., & Maffei, L. (1999). Role of neurotrophins in neural plasticity: What we learn from the visual cortex. Restorative Neurology and Neuroscience, 15(2–3), 125–136.PubMed Berardi, N., Lodovichi, C., Caleo, M., Pizzorusso, T., & Maffei, L. (1999). Role of neurotrophins in neural plasticity: What we learn from the visual cortex. Restorative Neurology and Neuroscience, 15(2–3), 125–136.PubMed
go back to reference Berardi, N., & Maffei, L. (1999). From visual experience to visual function: Roles of neurotrophins. Journal of Neurobiology, 41(1), 119–126.CrossRefPubMed Berardi, N., & Maffei, L. (1999). From visual experience to visual function: Roles of neurotrophins. Journal of Neurobiology, 41(1), 119–126.CrossRefPubMed
go back to reference Bonfanti, L., Strettoi, E., Chierzi, S., Cenni, M. C., Liu, X. H., Martinou, J. C., et al. (1996). Protection of retinal ganglion cells from natural and axotomy-induced cell death in neonatal transgenic mice overexpressing bcl-2. Journal of Neuroscience, 16(13), 4186–4194.PubMed Bonfanti, L., Strettoi, E., Chierzi, S., Cenni, M. C., Liu, X. H., Martinou, J. C., et al. (1996). Protection of retinal ganglion cells from natural and axotomy-induced cell death in neonatal transgenic mice overexpressing bcl-2. Journal of Neuroscience, 16(13), 4186–4194.PubMed
go back to reference Carmignoto, G., Comelli, M. C., Candeo, P., Cavicchioli, L., Yan, Q., Merighi, A., & Maffei, L. (1991). Expression of NGF receptor and NGF receptor mRNA in the developing and adult rat retina. Experimental Neurology, 111(3), 302–311.CrossRefPubMed Carmignoto, G., Comelli, M. C., Candeo, P., Cavicchioli, L., Yan, Q., Merighi, A., & Maffei, L. (1991). Expression of NGF receptor and NGF receptor mRNA in the developing and adult rat retina. Experimental Neurology, 111(3), 302–311.CrossRefPubMed
go back to reference Carmignoto, G., Maffei, L., Candeo, P., Canella, R., & Comelli, C. (1989). Effect of NGF on the survival of rat retinal ganglion cells following optic nerve section. Journal of Neuroscience, 9(4), 1263–1272.PubMed Carmignoto, G., Maffei, L., Candeo, P., Canella, R., & Comelli, C. (1989). Effect of NGF on the survival of rat retinal ganglion cells following optic nerve section. Journal of Neuroscience, 9(4), 1263–1272.PubMed
go back to reference Chao, M. V., & Hempstead, B. L. (1995). p75 and Trk: A two-receptor system. Trends in Neuroscience, 18(7), 321–326.CrossRef Chao, M. V., & Hempstead, B. L. (1995). p75 and Trk: A two-receptor system. Trends in Neuroscience, 18(7), 321–326.CrossRef
go back to reference Chen, D. F., Jhaveri, S., & Schneider, G. E. (1995). Intrinsic changes in developing retinal neurons result in regenerative failure of their axons. Proceedings of the National Academy of Sciences USA, 92(16), 7287–7291.CrossRef Chen, D. F., Jhaveri, S., & Schneider, G. E. (1995). Intrinsic changes in developing retinal neurons result in regenerative failure of their axons. Proceedings of the National Academy of Sciences USA, 92(16), 7287–7291.CrossRef
go back to reference Coassin, M., Lambiase, A., Sposato, V., Micera, A., Bonini, S., & Aloe, L. (2008). Retinal p75 and Bax overexpression is associated with retinal ganglion cells apoptosis in a rat model of glaucoma. Graefe’s Archive for Clinical and Experimental Ophthalmology, 246(12), 1743–1749.CrossRefPubMed Coassin, M., Lambiase, A., Sposato, V., Micera, A., Bonini, S., & Aloe, L. (2008). Retinal p75 and Bax overexpression is associated with retinal ganglion cells apoptosis in a rat model of glaucoma. Graefe’s Archive for Clinical and Experimental Ophthalmology, 246(12), 1743–1749.CrossRefPubMed
go back to reference Colafrancesco, V., Coassin, M., Rossi, S., & Aloe, L. (2011). Effect of eye NGF administration on two animal models of retinal ganglion cells degeneration. Annuali dell’Istituto Superiore di Sanità, 47(3), 284–289. Colafrancesco, V., Coassin, M., Rossi, S., & Aloe, L. (2011). Effect of eye NGF administration on two animal models of retinal ganglion cells degeneration. Annuali dell’Istituto Superiore di Sanità, 47(3), 284–289.
go back to reference Cui, Q., Tang, L. S., Hu, B., So, K. F., & Yip, H. K. (2002). Expression of trkA, trkB, and trkC in injured and regenerating retinal ganglion cells of adult rats. Investigative Ophthalmology & Visual Science, 43(6), 1954–1964. Cui, Q., Tang, L. S., Hu, B., So, K. F., & Yip, H. K. (2002). Expression of trkA, trkB, and trkC in injured and regenerating retinal ganglion cells of adult rats. Investigative Ophthalmology & Visual Science, 43(6), 1954–1964.
go back to reference D’Arcangelo, G., Miao, G. G., Chen, S. C., Soares, H. D., Morgan, J. I., & Curran, T. (1995). A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature, 374(6524), 719–723.CrossRefPubMed D’Arcangelo, G., Miao, G. G., Chen, S. C., Soares, H. D., Morgan, J. I., & Curran, T. (1995). A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature, 374(6524), 719–723.CrossRefPubMed
go back to reference D’Arcangelo, G., Miao, G. G., & Curran, T. (1996). Detection of the reelin breakpoint in reeler mice. Molecular Brain Research, 39(1–2), 234–236.CrossRefPubMed D’Arcangelo, G., Miao, G. G., & Curran, T. (1996). Detection of the reelin breakpoint in reeler mice. Molecular Brain Research, 39(1–2), 234–236.CrossRefPubMed
go back to reference Förster, E., Bock, H. H., Herz, J., Chai, X., Frotscher, M., & Zhao, S. (2010). Emerging topics in Reelin function. European Journal of Neuroscience, 31(9), 1511–1518.PubMedCentralPubMed Förster, E., Bock, H. H., Herz, J., Chai, X., Frotscher, M., & Zhao, S. (2010). Emerging topics in Reelin function. European Journal of Neuroscience, 31(9), 1511–1518.PubMedCentralPubMed
go back to reference Gragnani, A., Ipolito, M. Z., Sobral, C. S., Brunialti, M. K., Salomão, R., & Ferreira, L. M. (2008). Flow cytometry of human primary epidermal and follicular keratinocytes. Eplasty, 8, e14.PubMedCentralPubMed Gragnani, A., Ipolito, M. Z., Sobral, C. S., Brunialti, M. K., Salomão, R., & Ferreira, L. M. (2008). Flow cytometry of human primary epidermal and follicular keratinocytes. Eplasty, 8, e14.PubMedCentralPubMed
go back to reference Guo, X. J., Tian, X. S., Ruan, Z., Chen, Y. T., Wu, L., Gong, Q., et al. (2014). Dysregulation of neurotrophic and inflammatory systems accompanied by decreased CREB signaling in ischemic rat retina. Experimental Eye Research, 125, 156–163.CrossRefPubMed Guo, X. J., Tian, X. S., Ruan, Z., Chen, Y. T., Wu, L., Gong, Q., et al. (2014). Dysregulation of neurotrophic and inflammatory systems accompanied by decreased CREB signaling in ischemic rat retina. Experimental Eye Research, 125, 156–163.CrossRefPubMed
go back to reference Ha, Y., Shanmugam, A. K., Markand, S., Zorrilla, E., Ganapathy, V., & Smith, S. B. (2014). Sigma receptor 1 modulates ER stress and Bcl2 in murine retina. Cell Tissue Research, 356(1), 15–27.PubMedCentralCrossRefPubMed Ha, Y., Shanmugam, A. K., Markand, S., Zorrilla, E., Ganapathy, V., & Smith, S. B. (2014). Sigma receptor 1 modulates ER stress and Bcl2 in murine retina. Cell Tissue Research, 356(1), 15–27.PubMedCentralCrossRefPubMed
go back to reference Harada, C., Harada, T., Nakamura, K., Sakai, Y., Tanaka, K., & Parada, L. F. (2006). Effect of p75NTR on the regulation of naturally occurring cell death and retinal ganglion cell number in the mouse eye. Developmental Biology, 290(1), 57–65.CrossRefPubMed Harada, C., Harada, T., Nakamura, K., Sakai, Y., Tanaka, K., & Parada, L. F. (2006). Effect of p75NTR on the regulation of naturally occurring cell death and retinal ganglion cell number in the mouse eye. Developmental Biology, 290(1), 57–65.CrossRefPubMed
go back to reference Jeon, C. J., Strettoi, E., & Masland, R. H. (1998). The major cell populations of the mouse retina. Journal of Neuroscience, 18(21), 8936–8946.PubMed Jeon, C. J., Strettoi, E., & Masland, R. H. (1998). The major cell populations of the mouse retina. Journal of Neuroscience, 18(21), 8936–8946.PubMed
go back to reference Khialeeva, E., Lane, T. F., & Carpenter, E. M. (2011). Disruption of reelin signaling alters mammary gland morphogenesis. Development, 138(4), 767–776.PubMedCentralCrossRefPubMed Khialeeva, E., Lane, T. F., & Carpenter, E. M. (2011). Disruption of reelin signaling alters mammary gland morphogenesis. Development, 138(4), 767–776.PubMedCentralCrossRefPubMed
go back to reference Kim, Y. S., Jo, D. H., Lee, H., Kim, J. H., Kim, K. W., & Kim, J. H. (2013). Nerve growth factor-mediated vascular endothelial growth factor expression of astrocyte in retinal vascular development. Biochemical and Biophysical Research Communications, 431(4), 740–745.CrossRefPubMed Kim, Y. S., Jo, D. H., Lee, H., Kim, J. H., Kim, K. W., & Kim, J. H. (2013). Nerve growth factor-mediated vascular endothelial growth factor expression of astrocyte in retinal vascular development. Biochemical and Biophysical Research Communications, 431(4), 740–745.CrossRefPubMed
go back to reference Lambiase, A., Coassin, M., Tirassa, P., Mantelli, F., & Aloe, L. (2009). Nerve growth factor eye drops improve visual acuity and electrofunctional activity in age-related macular degeneration: A case report. Annuali Istituto Superiore di Sanità, 45(4), 439–442. Lambiase, A., Coassin, M., Tirassa, P., Mantelli, F., & Aloe, L. (2009). Nerve growth factor eye drops improve visual acuity and electrofunctional activity in age-related macular degeneration: A case report. Annuali Istituto Superiore di Sanità, 45(4), 439–442.
go back to reference Lameirão, S. V., Hamassaki, D. E., Rodrigues, A. R., DE Lima, S. M., Finlay, B. L., & Silveira, L. C. (2009). Rod bipolar cells in the retina of the capuchin monkey (Cebus apella): Characterization and distribution. Visual Neuroscience, 26(4), 389–396.CrossRefPubMed Lameirão, S. V., Hamassaki, D. E., Rodrigues, A. R., DE Lima, S. M., Finlay, B. L., & Silveira, L. C. (2009). Rod bipolar cells in the retina of the capuchin monkey (Cebus apella): Characterization and distribution. Visual Neuroscience, 26(4), 389–396.CrossRefPubMed
go back to reference Lebrun-Julien, F., Morquette, B., Douillette, A., Saragovi, H. U., & Di Polo, A. (2009). Inhibition of p75(NTR) in glia potentiates TrkA-mediated survival of injured retinal ganglion cells. Molecular Cell Neuroscience, 40(4), 410–420.CrossRef Lebrun-Julien, F., Morquette, B., Douillette, A., Saragovi, H. U., & Di Polo, A. (2009). Inhibition of p75(NTR) in glia potentiates TrkA-mediated survival of injured retinal ganglion cells. Molecular Cell Neuroscience, 40(4), 410–420.CrossRef
go back to reference Levi-Montalcini, R. (1987). The nerve growth factor 35 years later. Science, 237(4819), 1154–1162.CrossRefPubMed Levi-Montalcini, R. (1987). The nerve growth factor 35 years later. Science, 237(4819), 1154–1162.CrossRefPubMed
go back to reference Lin, S. F., Mao, Y. X., Li, B., Sun, W., & Tang, S. B. (2013). Morphological and immunocytochemical analysis of human retinal glia subtypes in vitro. International Journal of Ophthalmolology, 6(5), 559–563. Lin, S. F., Mao, Y. X., Li, B., Sun, W., & Tang, S. B. (2013). Morphological and immunocytochemical analysis of human retinal glia subtypes in vitro. International Journal of Ophthalmolology, 6(5), 559–563.
go back to reference Maffei, L., Berardi, N., Domenici, L., Parisi, V., & Pizzorusso, T. (1992). Nerve growth factor (NGF) prevents the shift in ocular dominance distribution of visual cortical neurons in monocularly deprived rats. Journal of Neuroscience, 12(12), 4651–4662.PubMed Maffei, L., Berardi, N., Domenici, L., Parisi, V., & Pizzorusso, T. (1992). Nerve growth factor (NGF) prevents the shift in ocular dominance distribution of visual cortical neurons in monocularly deprived rats. Journal of Neuroscience, 12(12), 4651–4662.PubMed
go back to reference Masu, M., Iwakabe, H., Tagawa, Y., Miyoshi, T., Yamashita, M., Fukuda, Y., et al. (1995). Specific deficit of the ON response in visual transmission by targeted disruption of the mGluR6 gene. Cell, 80(5), 757–765.CrossRefPubMed Masu, M., Iwakabe, H., Tagawa, Y., Miyoshi, T., Yamashita, M., Fukuda, Y., et al. (1995). Specific deficit of the ON response in visual transmission by targeted disruption of the mGluR6 gene. Cell, 80(5), 757–765.CrossRefPubMed
go back to reference Micera, A., Lambiase, A., Puxeddu, I., Aloe, L., Stampachiacchiere, B., Levi-Schaffer, F., et al. (2006). Nerve growth factor effect on human primary fibroblastic-keratocytes: Possible mechanism during corneal healing. Experimental Eye Research, 83(4), 747–757.CrossRefPubMed Micera, A., Lambiase, A., Puxeddu, I., Aloe, L., Stampachiacchiere, B., Levi-Schaffer, F., et al. (2006). Nerve growth factor effect on human primary fibroblastic-keratocytes: Possible mechanism during corneal healing. Experimental Eye Research, 83(4), 747–757.CrossRefPubMed
go back to reference Micera, A., Lambiase, A., Stampachiacchiere, B., Bonini, S., Bonini, S., & Levi-Schaffer, F. (2007). Nerve growth factor and tissue repair remodeling: trkA(NGFR) and p75(NTR), two receptors one fate. Cytokine and Growth Factor Review, 18(3–4), 245–256.CrossRef Micera, A., Lambiase, A., Stampachiacchiere, B., Bonini, S., Bonini, S., & Levi-Schaffer, F. (2007). Nerve growth factor and tissue repair remodeling: trkA(NGFR) and p75(NTR), two receptors one fate. Cytokine and Growth Factor Review, 18(3–4), 245–256.CrossRef
go back to reference Micera, A., Puxeddu, I., Balzamino, B. O., Bonini, S., & Levi-Schaffer, F. (2012). Chronic nerve growth factor exposure increases apoptosis in a model of in vitro induced conjunctival myofibroblasts. PLoS One, 7(10), e47316.PubMedCentralCrossRefPubMed Micera, A., Puxeddu, I., Balzamino, B. O., Bonini, S., & Levi-Schaffer, F. (2012). Chronic nerve growth factor exposure increases apoptosis in a model of in vitro induced conjunctival myofibroblasts. PLoS One, 7(10), e47316.PubMedCentralCrossRefPubMed
go back to reference Nadal-Nicolás, F. M., Jiménez-López, M., Sobrado-Calvo, P., Nieto-López, L., Cánovas-Martínez, I., Salinas-Navarro, M., et al. (2009). Brn3a as a marker of retinal ganglion cells: Qualitative and quantitative time course studies in naive and optic nerve-injured retinas. Investigative Ophthalmology & Visual Science, 50(8), 3860–3868.CrossRef Nadal-Nicolás, F. M., Jiménez-López, M., Sobrado-Calvo, P., Nieto-López, L., Cánovas-Martínez, I., Salinas-Navarro, M., et al. (2009). Brn3a as a marker of retinal ganglion cells: Qualitative and quantitative time course studies in naive and optic nerve-injured retinas. Investigative Ophthalmology & Visual Science, 50(8), 3860–3868.CrossRef
go back to reference Nakamura, K., Harada, C., Okumura, A., Namekata, K., Mitamura, Y., Yoshida, K., et al. (2005). Effect of p75NTR on the regulation of photoreceptor apoptosis in the rd mouse. Molecular Vision, 11, 1229–1235.PubMed Nakamura, K., Harada, C., Okumura, A., Namekata, K., Mitamura, Y., Yoshida, K., et al. (2005). Effect of p75NTR on the regulation of photoreceptor apoptosis in the rd mouse. Molecular Vision, 11, 1229–1235.PubMed
go back to reference Nirenberg, S., & Meister, M. (1997). The light response of retinal ganglion cells is truncated by a displaced amacrine circuit. Neuron, 18(4), 637–650.CrossRefPubMed Nirenberg, S., & Meister, M. (1997). The light response of retinal ganglion cells is truncated by a displaced amacrine circuit. Neuron, 18(4), 637–650.CrossRefPubMed
go back to reference Oberdick, J., Smeyne, R. J., Mann, J. R., Zackson, S., & Morgan, J. I. (1990). A promoter that drives transgene expression in cerebellar Purkinje and retinal bipolar neurons. Science, 248(4952), 223–226.CrossRefPubMed Oberdick, J., Smeyne, R. J., Mann, J. R., Zackson, S., & Morgan, J. I. (1990). A promoter that drives transgene expression in cerebellar Purkinje and retinal bipolar neurons. Science, 248(4952), 223–226.CrossRefPubMed
go back to reference Portillo, J. A., Okenka, G., Kern, T. S., & Subauste, C. S. (2009). Identification of primary retinal cells and ex vivo detection of proinflammatory molecules using flow cytometry. Molecular Vision, 15, 1383–1389.PubMedCentralPubMed Portillo, J. A., Okenka, G., Kern, T. S., & Subauste, C. S. (2009). Identification of primary retinal cells and ex vivo detection of proinflammatory molecules using flow cytometry. Molecular Vision, 15, 1383–1389.PubMedCentralPubMed
go back to reference Pulido, J. S., Sugaya, I., Comstock, J., & Sugaya, K. (2007). Reelin expression is upregulated ocular tissue injury. Graefe’s Archive for Clinical and Experimental Ophthalmology, 245(6), 889–893.CrossRefPubMed Pulido, J. S., Sugaya, I., Comstock, J., & Sugaya, K. (2007). Reelin expression is upregulated ocular tissue injury. Graefe’s Archive for Clinical and Experimental Ophthalmology, 245(6), 889–893.CrossRefPubMed
go back to reference Rice, D. S., Nusinowitz, S., Azimi, A. M., Martínez, A., Soriano, E., & Curran, T. (2001). The reelin pathway modulates the structure and function of retinal synaptic circuitry. Neuron, 31(6), 929–941.CrossRefPubMed Rice, D. S., Nusinowitz, S., Azimi, A. M., Martínez, A., Soriano, E., & Curran, T. (2001). The reelin pathway modulates the structure and function of retinal synaptic circuitry. Neuron, 31(6), 929–941.CrossRefPubMed
go back to reference Rodriguez-Tébar, A., Dechant, G., & Barde, Y. A. (1990). Binding of brain-derived neurotrophic factor to the nerve growth factor receptor. Neuron, 4(4), 487–492.CrossRefPubMed Rodriguez-Tébar, A., Dechant, G., & Barde, Y. A. (1990). Binding of brain-derived neurotrophic factor to the nerve growth factor receptor. Neuron, 4(4), 487–492.CrossRefPubMed
go back to reference Samuel, M. A., Zhang, Y., Meister, M., & Sanes, J. R. (2011). Age-related alterations in neurons of the mouse retina. Journal of Neuroscience, 31(44), 16033–16044.PubMedCentralCrossRefPubMed Samuel, M. A., Zhang, Y., Meister, M., & Sanes, J. R. (2011). Age-related alterations in neurons of the mouse retina. Journal of Neuroscience, 31(44), 16033–16044.PubMedCentralCrossRefPubMed
go back to reference Shi, Z., Birman, E., & Saragovi, H. U. (2007). Neurotrophic rationale in glaucoma: A TrkA agonist, but not NGF or a p75 antagonist, protects retinal ganglion cells in vivo. Developmental Neurobiology, 67(7), 884–894.CrossRefPubMed Shi, Z., Birman, E., & Saragovi, H. U. (2007). Neurotrophic rationale in glaucoma: A TrkA agonist, but not NGF or a p75 antagonist, protects retinal ganglion cells in vivo. Developmental Neurobiology, 67(7), 884–894.CrossRefPubMed
go back to reference Siliprandi, R., Canella, R., & Carmignoto, G. (1993). Nerve growth factor promotes functional recovery of retinal ganglion cells after ischemia. Investigative Ophthalmology & Visual Science, 34(12), 3232–3245. Siliprandi, R., Canella, R., & Carmignoto, G. (1993). Nerve growth factor promotes functional recovery of retinal ganglion cells after ischemia. Investigative Ophthalmology & Visual Science, 34(12), 3232–3245.
go back to reference Sivilia, S., Giuliani, A., Fernández, M., Turba, M. E., Forni, M., Massella, A., et al. (2009). Intravitreal NGF administration counteracts retina degeneration after permanent carotid artery occlusion in rat. BMC Neuroscience, 10, 52.PubMedCentralCrossRefPubMed Sivilia, S., Giuliani, A., Fernández, M., Turba, M. E., Forni, M., Massella, A., et al. (2009). Intravitreal NGF administration counteracts retina degeneration after permanent carotid artery occlusion in rat. BMC Neuroscience, 10, 52.PubMedCentralCrossRefPubMed
go back to reference Skeie, J. M., Tsang, S. H., & Mahajan, V. B. (2011). Evisceration of mouse vitreous and retina for proteomic analyses. Journal of Visualized Experiments, 50, 2795.PubMed Skeie, J. M., Tsang, S. H., & Mahajan, V. B. (2011). Evisceration of mouse vitreous and retina for proteomic analyses. Journal of Visualized Experiments, 50, 2795.PubMed
go back to reference Stranahan, A. M., Erion, J. R., & Wosiski-Kuhn, M. (2013). Reelin signaling in development, maintenance, and plasticity of neural networks. Ageing Research Reviews, 12(3), 815–822.PubMedCentralCrossRefPubMed Stranahan, A. M., Erion, J. R., & Wosiski-Kuhn, M. (2013). Reelin signaling in development, maintenance, and plasticity of neural networks. Ageing Research Reviews, 12(3), 815–822.PubMedCentralCrossRefPubMed
go back to reference Tomomura, M., Rice, D. S., Morgan, J. I., & Yuzaki, M. (2001). Purification of Purkinje cells by fluorescence-activated cell sorting from transgenic mice that express green fluorescent protein. European Journal of Neuroscience, 14(1), 57–63.CrossRefPubMed Tomomura, M., Rice, D. S., Morgan, J. I., & Yuzaki, M. (2001). Purification of Purkinje cells by fluorescence-activated cell sorting from transgenic mice that express green fluorescent protein. European Journal of Neuroscience, 14(1), 57–63.CrossRefPubMed
go back to reference Topham, C. H., & Taylor, S. S. (2013). Mitosis and apoptosis: How is the balance set? Current Opinion in Cell Biology, 25(6), 780–785.CrossRefPubMed Topham, C. H., & Taylor, S. S. (2013). Mitosis and apoptosis: How is the balance set? Current Opinion in Cell Biology, 25(6), 780–785.CrossRefPubMed
go back to reference Trotter, J. H., Klein, M., Jinwal, U. K., Abisambra, J. F., Dickey, C. A., Tharkur, J., et al. (2011). ApoER2 function in the establishment and maintenance of retinal synaptic connectivity. Journal of Neuroscience, 31(40), 14413–14423.PubMedCentralCrossRefPubMed Trotter, J. H., Klein, M., Jinwal, U. K., Abisambra, J. F., Dickey, C. A., Tharkur, J., et al. (2011). ApoER2 function in the establishment and maintenance of retinal synaptic connectivity. Journal of Neuroscience, 31(40), 14413–14423.PubMedCentralCrossRefPubMed
go back to reference Weng, S., Estevez, M. E., & Berson, D. M. (2013). Mouse ganglion-cell photoreceptors are driven by the most sensitive rod pathway and by both types of cones. PLoS One, 8, e66480.PubMedCentralCrossRefPubMed Weng, S., Estevez, M. E., & Berson, D. M. (2013). Mouse ganglion-cell photoreceptors are driven by the most sensitive rod pathway and by both types of cones. PLoS One, 8, e66480.PubMedCentralCrossRefPubMed
go back to reference Wexler, E. M., Berkovich, O., & Nawy, S. (1998). Role of the low-affinity NGF receptor (p75) in survival of retinal bipolar cells. Visual Neuroscience, 15(2), 211–218.CrossRefPubMed Wexler, E. M., Berkovich, O., & Nawy, S. (1998). Role of the low-affinity NGF receptor (p75) in survival of retinal bipolar cells. Visual Neuroscience, 15(2), 211–218.CrossRefPubMed
go back to reference Wilcox, R. R. (2002). Understanding the practical advantages of modern ANOVA methods. Journal of Clinical Child & Adolescent Psychology, 31(3), 399–412.CrossRef Wilcox, R. R. (2002). Understanding the practical advantages of modern ANOVA methods. Journal of Clinical Child & Adolescent Psychology, 31(3), 399–412.CrossRef
go back to reference Xu, J., Dodd, R. L., Makino, C. L., Simon, M. I., Baylor, D. A., & Chen, J. (1997). Prolonged photoresponses in transgenic mouse rods lacking arrestin. Nature, 389(6650), 505–509.CrossRefPubMed Xu, J., Dodd, R. L., Makino, C. L., Simon, M. I., Baylor, D. A., & Chen, J. (1997). Prolonged photoresponses in transgenic mouse rods lacking arrestin. Nature, 389(6650), 505–509.CrossRefPubMed
go back to reference Yamashita, T., Tucker, K. L., & Barde, Y. A. (1999). Neurotrophin binding to the p75 receptor modulates Rho activity and axonal outgrowth. Neuron, 24(3), 585–593.CrossRefPubMed Yamashita, T., Tucker, K. L., & Barde, Y. A. (1999). Neurotrophin binding to the p75 receptor modulates Rho activity and axonal outgrowth. Neuron, 24(3), 585–593.CrossRefPubMed
Metadata
Title
NGF Expression in Reelin-Deprived Retinal Cells: A Potential Neuroprotective Effect
Authors
Bijorn Omar Balzamino
Graziana Esposito
Ramona Marino
Flavio Keller
Alessandra Micera
Publication date
01-09-2015
Publisher
Springer US
Published in
NeuroMolecular Medicine / Issue 3/2015
Print ISSN: 1535-1084
Electronic ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-015-8360-z

Other articles of this Issue 3/2015

NeuroMolecular Medicine 3/2015 Go to the issue