Skip to main content
Top
Published in: NeuroMolecular Medicine 1/2015

01-03-2015 | Original Paper

Sumoylation of p35 Modulates p35/Cyclin-Dependent Kinase (Cdk) 5 Complex Activity

Authors: Anja Büchner, Petranka Krumova, Sundar Ganesan, Mathias Bähr, Katrin Eckermann, Jochen H. Weishaupt

Published in: NeuroMolecular Medicine | Issue 1/2015

Login to get access

Abstract

Cyclin-dependent kinase (Cdk) 5 is critical for central nervous system development and neuron-specific functions including neurite outgrowth as well as synaptic function and plasticity. Cdk5 activity requires association with one of the two regulatory subunits, called p35 and p39. p35 redistribution as well as misregulation of Cdk5 activity is followed by cell death in several models of neurodegeneration. Posttranslational protein modification by small ubiquitin-related modifier (SUMO) proteins (sumoylation) has emerged as key regulator of protein targeting and protein/protein interaction. Under cell-free in vitro conditions, we found p35 covalently modified by SUMO1. Using both biochemical and FRET-/FLIM-based approaches, we demonstrated that SUMO2 is robustly conjugated to p35 in cells and identified the two major SUMO acceptor lysines in p35, K246 and K290. Furthermore, different degrees of oxidative stress resulted in differential p35 sumoylation, linking oxidative stress that is encountered in neurodegenerative diseases to the altered activity of Cdk5. Functionally, sumoylation of p35 increased the activity of the p35/Cdk5 complex. We thus identified a novel neuronal SUMO target and show that sumoylation is a likely candidate mechanism for the rapid modulation of p35/Cdk5 activity in physiological situations as well as in disease.
Literature
go back to reference Amor, S., Peferoen, L. A., Vogel, D. Y., Breur, M., van der Valk, P., Baker, D., et al. (2014). Inflammation in neurodegenerative diseases–an update. Immunology, 142(2), 151–166.CrossRefPubMed Amor, S., Peferoen, L. A., Vogel, D. Y., Breur, M., van der Valk, P., Baker, D., et al. (2014). Inflammation in neurodegenerative diseases–an update. Immunology, 142(2), 151–166.CrossRefPubMed
go back to reference Asada, A., Yamamoto, N., Gohda, M., Saito, T., Hayashi, N., & Hisanaga, S. (2008). Myristoylation of p39 and p35 is a determinant of cytoplasmic or nuclear localization of active cyclin-dependent kinase 5 complexes. Journal of Neurochemistry, 106(3), 1325–1336.CrossRefPubMed Asada, A., Yamamoto, N., Gohda, M., Saito, T., Hayashi, N., & Hisanaga, S. (2008). Myristoylation of p39 and p35 is a determinant of cytoplasmic or nuclear localization of active cyclin-dependent kinase 5 complexes. Journal of Neurochemistry, 106(3), 1325–1336.CrossRefPubMed
go back to reference Bernier-Villamor, V., Sampson, D. A., Matunis, M. J., & Lima, C. D. (2002). Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell, 108(3), 345–356.CrossRefPubMed Bernier-Villamor, V., Sampson, D. A., Matunis, M. J., & Lima, C. D. (2002). Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell, 108(3), 345–356.CrossRefPubMed
go back to reference Bossis, G., & Melchior, F. (2006). Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes. Molecular Cell, 21(3), 349–357.CrossRefPubMed Bossis, G., & Melchior, F. (2006). Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes. Molecular Cell, 21(3), 349–357.CrossRefPubMed
go back to reference Chae, T., Kwon, Y. T., Bronson, R., Dikkes, P., Li, E., & Tsai, L. H. (1997). Mice lacking p35, a neuronal specific activator of Cdk5, display cortical lamination defects, seizures, and adult lethality. Neuron, 18(1), 29–42.CrossRefPubMed Chae, T., Kwon, Y. T., Bronson, R., Dikkes, P., Li, E., & Tsai, L. H. (1997). Mice lacking p35, a neuronal specific activator of Cdk5, display cortical lamination defects, seizures, and adult lethality. Neuron, 18(1), 29–42.CrossRefPubMed
go back to reference Choe, E. A., Liao, L., Zhou, J. Y., Cheng, D., Duong, D. M., Jin, P., et al. (2007). Neuronal morphogenesis is regulated by the interplay between cyclin-dependent kinase 5 and the ubiquitin ligase mind bomb 1. Journal of Neuroscience, 27(35), 9503–9512.CrossRefPubMed Choe, E. A., Liao, L., Zhou, J. Y., Cheng, D., Duong, D. M., Jin, P., et al. (2007). Neuronal morphogenesis is regulated by the interplay between cyclin-dependent kinase 5 and the ubiquitin ligase mind bomb 1. Journal of Neuroscience, 27(35), 9503–9512.CrossRefPubMed
go back to reference Day, R. N., Booker, C. F., & Periasamy, A. (2008). Characterization of an improved donor fluorescent protein for Forster resonance energy transfer microscopy. Journal of Biomedial Optics, 13(3), 031203.CrossRef Day, R. N., Booker, C. F., & Periasamy, A. (2008). Characterization of an improved donor fluorescent protein for Forster resonance energy transfer microscopy. Journal of Biomedial Optics, 13(3), 031203.CrossRef
go back to reference Desterro, J. M., Rodriguez, M. S., Kemp, G. D., & Hay, R. T. (1999). Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1. Journal of Biological Chemistry, 274(15), 10618–10624.CrossRefPubMed Desterro, J. M., Rodriguez, M. S., Kemp, G. D., & Hay, R. T. (1999). Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1. Journal of Biological Chemistry, 274(15), 10618–10624.CrossRefPubMed
go back to reference Dhavan, R., & Tsai, L. H. (2001). A decade of CDK5. Nature Reviews Molecular Cell Biology, 2(10), 749–759.CrossRefPubMed Dhavan, R., & Tsai, L. H. (2001). A decade of CDK5. Nature Reviews Molecular Cell Biology, 2(10), 749–759.CrossRefPubMed
go back to reference Feligioni, M., & Nistico, R. (2013). SUMO: a (oxidative) stressed protein. Neuromolecular Medicine, 15(4), 707–719.CrossRefPubMed Feligioni, M., & Nistico, R. (2013). SUMO: a (oxidative) stressed protein. Neuromolecular Medicine, 15(4), 707–719.CrossRefPubMed
go back to reference Fu, X., Choi, Y. K., Qu, D., Yu, Y., Cheung, N. S., & Qi, R. Z. (2006). Identification of nuclear import mechanisms for the neuronal Cdk5 activator. Journal of Biological Chemistry, 281(51), 39014–39021.CrossRefPubMed Fu, X., Choi, Y. K., Qu, D., Yu, Y., Cheung, N. S., & Qi, R. Z. (2006). Identification of nuclear import mechanisms for the neuronal Cdk5 activator. Journal of Biological Chemistry, 281(51), 39014–39021.CrossRefPubMed
go back to reference Gill, G. (2004). SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes & Development, 18(17), 2046–2059.CrossRef Gill, G. (2004). SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes & Development, 18(17), 2046–2059.CrossRef
go back to reference Golebiowski, F., Matic, I., Tatham, M. H., Cole, C., Yin, Y., Nakamura, A., et al. (2009). System-wide changes to SUMO modifications in response to heat shock. Science Signaling, 2(72), ra24. Golebiowski, F., Matic, I., Tatham, M. H., Cole, C., Yin, Y., Nakamura, A., et al. (2009). System-wide changes to SUMO modifications in response to heat shock. Science Signaling, 2(72), ra24.
go back to reference Gong, L., Millas, S., Maul, G. G., & Yeh, E. T. (2000). Differential regulation of sentrinized proteins by a novel sentrin-specific protease. Journal of Biological Chemistry, 275(5), 3355–3359.CrossRefPubMed Gong, L., Millas, S., Maul, G. G., & Yeh, E. T. (2000). Differential regulation of sentrinized proteins by a novel sentrin-specific protease. Journal of Biological Chemistry, 275(5), 3355–3359.CrossRefPubMed
go back to reference Halliwell, B., Clement, M. V., & Long, L. H. (2000). Hydrogen peroxide in the human body. FEBS Letters, 486(1), 10–13.CrossRefPubMed Halliwell, B., Clement, M. V., & Long, L. H. (2000). Hydrogen peroxide in the human body. FEBS Letters, 486(1), 10–13.CrossRefPubMed
go back to reference Hecker, C. M., Rabiller, M., Haglund, K., Bayer, P., & Dikic, I. (2006). Specification of SUMO1- and SUMO2-interacting motifs. Journal of Biological Chemistry, 281(23), 16117–16127.CrossRefPubMed Hecker, C. M., Rabiller, M., Haglund, K., Bayer, P., & Dikic, I. (2006). Specification of SUMO1- and SUMO2-interacting motifs. Journal of Biological Chemistry, 281(23), 16117–16127.CrossRefPubMed
go back to reference Hsiao, K., Bozdagi, O., & Benson, D. L. (2014). Axonal cap-dependent translation regulates presynaptic p35. Developmental Neurobiology, 74(3), 351–364.CrossRefPubMed Hsiao, K., Bozdagi, O., & Benson, D. L. (2014). Axonal cap-dependent translation regulates presynaptic p35. Developmental Neurobiology, 74(3), 351–364.CrossRefPubMed
go back to reference Jaffray, E. G., & Hay, R. T. (2006). Detection of modification by ubiquitin-like proteins. Methods, 38(1), 35–38.CrossRefPubMed Jaffray, E. G., & Hay, R. T. (2006). Detection of modification by ubiquitin-like proteins. Methods, 38(1), 35–38.CrossRefPubMed
go back to reference Kim, E. T., Kim, K. K., Matunis, M. J., & Ahn, J. H. (2009). Enhanced SUMOylation of proteins containing a SUMO-interacting motif by SUMO-Ubc9 fusion. Biochemical and Biophysical Research Communications, 388(1), 41–45.CrossRefPubMed Kim, E. T., Kim, K. K., Matunis, M. J., & Ahn, J. H. (2009). Enhanced SUMOylation of proteins containing a SUMO-interacting motif by SUMO-Ubc9 fusion. Biochemical and Biophysical Research Communications, 388(1), 41–45.CrossRefPubMed
go back to reference Krumova, P., Meulmeester, E., Garrido, M., Tirard, M., Hsiao, H. H., Bossis, G., et al. (2011). Sumoylation inhibits alpha-synuclein aggregation and toxicity. Journal of Cell Biology, 194(1), 49–60.CrossRefPubMedCentralPubMed Krumova, P., Meulmeester, E., Garrido, M., Tirard, M., Hsiao, H. H., Bossis, G., et al. (2011). Sumoylation inhibits alpha-synuclein aggregation and toxicity. Journal of Cell Biology, 194(1), 49–60.CrossRefPubMedCentralPubMed
go back to reference Krumova, P., & Weishaupt, J. H. (2013). Sumoylation in neurodegenerative diseases. Cellular and Molecular Life Sciences, 70(12), 2123–2138.CrossRefPubMed Krumova, P., & Weishaupt, J. H. (2013). Sumoylation in neurodegenerative diseases. Cellular and Molecular Life Sciences, 70(12), 2123–2138.CrossRefPubMed
go back to reference Li, Z., David, G., Hung, K. W., DePinho, R. A., Fu, A. K., & Ip, N. Y. (2004). Cdk5/p35 phosphorylates mSds3 and regulates mSds3-mediated repression of transcription. Journal of Biological Chemistry, 279(52), 54438–54444.CrossRefPubMed Li, Z., David, G., Hung, K. W., DePinho, R. A., Fu, A. K., & Ip, N. Y. (2004). Cdk5/p35 phosphorylates mSds3 and regulates mSds3-mediated repression of transcription. Journal of Biological Chemistry, 279(52), 54438–54444.CrossRefPubMed
go back to reference Macauley, M. S., Errington, W. J., Scharpf, M., Mackereth, C. D., Blaszczak, A. G., Graves, B. J., et al. (2006). Beads-on-a-string, characterization of ETS-1 sumoylated within its flexible N-terminal sequence. Journal of Biological Chemistry, 281(7), 4164–4172.CrossRefPubMed Macauley, M. S., Errington, W. J., Scharpf, M., Mackereth, C. D., Blaszczak, A. G., Graves, B. J., et al. (2006). Beads-on-a-string, characterization of ETS-1 sumoylated within its flexible N-terminal sequence. Journal of Biological Chemistry, 281(7), 4164–4172.CrossRefPubMed
go back to reference Mahajan, R., Delphin, C., Guan, T., Gerace, L., & Melchior, F. (1997). A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell, 88(1), 97–107.CrossRefPubMed Mahajan, R., Delphin, C., Guan, T., Gerace, L., & Melchior, F. (1997). A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell, 88(1), 97–107.CrossRefPubMed
go back to reference Matunis, M. J., Coutavas, E., & Blobel, G. (1996). A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. Journal of Cell Biology, 135(6 Pt 1), 1457–1470.CrossRefPubMed Matunis, M. J., Coutavas, E., & Blobel, G. (1996). A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. Journal of Cell Biology, 135(6 Pt 1), 1457–1470.CrossRefPubMed
go back to reference Mukhopadhyay, D., & Dasso, M. (2007). Modification in reverse: the SUMO proteases. Trends in Biochemical Sciences, 32(6), 286–295.CrossRefPubMed Mukhopadhyay, D., & Dasso, M. (2007). Modification in reverse: the SUMO proteases. Trends in Biochemical Sciences, 32(6), 286–295.CrossRefPubMed
go back to reference Nagai, T., Ibata, K., Park, E. S., Kubota, M., Mikoshiba, K., & Miyawaki, A. (2002). A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nature Biotechnology, 20(1), 87–90.CrossRefPubMed Nagai, T., Ibata, K., Park, E. S., Kubota, M., Mikoshiba, K., & Miyawaki, A. (2002). A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nature Biotechnology, 20(1), 87–90.CrossRefPubMed
go back to reference Nguyen, M. D., Lariviere, R. C., & Julien, J. P. (2001). Deregulation of Cdk5 in a mouse model of ALS: toxicity alleviated by perikaryal neurofilament inclusions. Neuron, 30(1), 135–147.CrossRefPubMed Nguyen, M. D., Lariviere, R. C., & Julien, J. P. (2001). Deregulation of Cdk5 in a mouse model of ALS: toxicity alleviated by perikaryal neurofilament inclusions. Neuron, 30(1), 135–147.CrossRefPubMed
go back to reference Nikolic, M., Dudek, H., Kwon, Y. T., Ramos, Y. F., & Tsai, L. H. (1996). The cdk5/p35 kinase is essential for neurite outgrowth during neuronal differentiation. Genes & Development, 10(7), 816–825.CrossRef Nikolic, M., Dudek, H., Kwon, Y. T., Ramos, Y. F., & Tsai, L. H. (1996). The cdk5/p35 kinase is essential for neurite outgrowth during neuronal differentiation. Genes & Development, 10(7), 816–825.CrossRef
go back to reference O’Hare, M. J., Kushwaha, N., Zhang, Y., Aleyasin, H., Callaghan, S. M., Slack, R. S., et al. (2005). Differential roles of nuclear and cytoplasmic cyclin-dependent kinase 5 in apoptotic and excitotoxic neuronal death. Journal of Neuroscience, 25(39), 8954–8966.CrossRefPubMed O’Hare, M. J., Kushwaha, N., Zhang, Y., Aleyasin, H., Callaghan, S. M., Slack, R. S., et al. (2005). Differential roles of nuclear and cytoplasmic cyclin-dependent kinase 5 in apoptotic and excitotoxic neuronal death. Journal of Neuroscience, 25(39), 8954–8966.CrossRefPubMed
go back to reference Osuga, H., Osuga, S., Wang, F., Fetni, R., Hogan, M. J., Slack, R. S., et al. (2000). Cyclin-dependent kinases as a therapeutic target for stroke. Proceedings of the National Academy of Sciences USA, 97(18), 10254–10259.CrossRef Osuga, H., Osuga, S., Wang, F., Fetni, R., Hogan, M. J., Slack, R. S., et al. (2000). Cyclin-dependent kinases as a therapeutic target for stroke. Proceedings of the National Academy of Sciences USA, 97(18), 10254–10259.CrossRef
go back to reference Patrick, G. N., Zhou, P., Kwon, Y. T., Howley, P. M., & Tsai, L. H. (1998). p35, the neuronal-specific activator of cyclin-dependent kinase 5 (Cdk5) is degraded by the ubiquitin-proteasome pathway. Journal of Biological Chemistry, 273(37), 24057–24064.CrossRefPubMed Patrick, G. N., Zhou, P., Kwon, Y. T., Howley, P. M., & Tsai, L. H. (1998). p35, the neuronal-specific activator of cyclin-dependent kinase 5 (Cdk5) is degraded by the ubiquitin-proteasome pathway. Journal of Biological Chemistry, 273(37), 24057–24064.CrossRefPubMed
go back to reference Patrick, G. N., Zukerberg, L., Nikolic, M., de la Monte, S., Dikkes, P., & Tsai, L. H. (1999). Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature, 402(6762), 615–622.CrossRefPubMed Patrick, G. N., Zukerberg, L., Nikolic, M., de la Monte, S., Dikkes, P., & Tsai, L. H. (1999). Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature, 402(6762), 615–622.CrossRefPubMed
go back to reference Patzke, H., & Tsai, L. H. (2002). Calpain-mediated cleavage of the cyclin-dependent kinase-5 activator p39 to p29. Journal of Biological Chemistry, 277(10), 8054–8060.CrossRefPubMed Patzke, H., & Tsai, L. H. (2002). Calpain-mediated cleavage of the cyclin-dependent kinase-5 activator p39 to p29. Journal of Biological Chemistry, 277(10), 8054–8060.CrossRefPubMed
go back to reference Poon, R. Y., Lew, J., & Hunter, T. (1997). Identification of functional domains in the neuronal Cdk5 activator protein. Journal of Biological Chemistry, 272(9), 5703–5708.CrossRefPubMed Poon, R. Y., Lew, J., & Hunter, T. (1997). Identification of functional domains in the neuronal Cdk5 activator protein. Journal of Biological Chemistry, 272(9), 5703–5708.CrossRefPubMed
go back to reference Sahlgren, C. M., Pallari, H. M., He, T., Chou, Y. H., Goldman, R. D., & Eriksson, J. E. (2006). A nestin scaffold links Cdk5/p35 signaling to oxidant-induced cell death. EMBO Journal, 25(20), 4808–4819.CrossRefPubMedCentralPubMed Sahlgren, C. M., Pallari, H. M., He, T., Chou, Y. H., Goldman, R. D., & Eriksson, J. E. (2006). A nestin scaffold links Cdk5/p35 signaling to oxidant-induced cell death. EMBO Journal, 25(20), 4808–4819.CrossRefPubMedCentralPubMed
go back to reference Saitoh, H., & Hinchey, J. (2000). Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. Journal of Biological Chemistry, 275(9), 6252–6258.CrossRefPubMed Saitoh, H., & Hinchey, J. (2000). Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. Journal of Biological Chemistry, 275(9), 6252–6258.CrossRefPubMed
go back to reference Sapetschnig, A., Rischitor, G., Braun, H., Doll, A., Schergaut, M., Melchior, F., et al. (2002). Transcription factor Sp3 is silenced through SUMO modification by PIAS1. EMBO Journal, 21(19), 5206–5215.CrossRefPubMedCentralPubMed Sapetschnig, A., Rischitor, G., Braun, H., Doll, A., Schergaut, M., Melchior, F., et al. (2002). Transcription factor Sp3 is silenced through SUMO modification by PIAS1. EMBO Journal, 21(19), 5206–5215.CrossRefPubMedCentralPubMed
go back to reference Shea, T. B., Zheng, Y. L., Ortiz, D., & Pant, H. C. (2004). Cyclin-dependent kinase 5 increases perikaryal neurofilament phosphorylation and inhibits neurofilament axonal transport in response to oxidative stress. Journal of Neuroscience Research, 76(6), 795–800.CrossRefPubMed Shea, T. B., Zheng, Y. L., Ortiz, D., & Pant, H. C. (2004). Cyclin-dependent kinase 5 increases perikaryal neurofilament phosphorylation and inhibits neurofilament axonal transport in response to oxidative stress. Journal of Neuroscience Research, 76(6), 795–800.CrossRefPubMed
go back to reference Shin, E. J., Shin, H. M., Nam, E., Kim, W. S., Kim, J. H., Oh, B. H., et al. (2012). DeSUMOylating isopeptidase: a second class of SUMO protease. EMBO Reports, 13(4), 339–346.CrossRefPubMedCentralPubMed Shin, E. J., Shin, H. M., Nam, E., Kim, W. S., Kim, J. H., Oh, B. H., et al. (2012). DeSUMOylating isopeptidase: a second class of SUMO protease. EMBO Reports, 13(4), 339–346.CrossRefPubMedCentralPubMed
go back to reference Shukla, V., Mishra, S. K., & Pant, H. C. (2011). Oxidative stress in neurodegeneration. Advance Pharmacology Science, 2011, 572634. Shukla, V., Mishra, S. K., & Pant, H. C. (2011). Oxidative stress in neurodegeneration. Advance Pharmacology Science, 2011, 572634.
go back to reference Smith, P. D., Crocker, S. J., Jackson-Lewis, V., Jordan-Sciutto, K. L., Hayley, S., Mount, M. P., et al. (2003). Cyclin-dependent kinase 5 is a mediator of dopaminergic neuron loss in a mouse model of Parkinson’s disease. Proceedings of the National Academy of Sciences USA, 100(23), 13650–13655.CrossRef Smith, P. D., Crocker, S. J., Jackson-Lewis, V., Jordan-Sciutto, K. L., Hayley, S., Mount, M. P., et al. (2003). Cyclin-dependent kinase 5 is a mediator of dopaminergic neuron loss in a mouse model of Parkinson’s disease. Proceedings of the National Academy of Sciences USA, 100(23), 13650–13655.CrossRef
go back to reference Su, S. C., & Tsai, L. H. (2011). Cyclin-dependent kinases in brain development and disease. Annual Review of Cell and Developmental Biology, 27, 465–491.CrossRefPubMed Su, S. C., & Tsai, L. H. (2011). Cyclin-dependent kinases in brain development and disease. Annual Review of Cell and Developmental Biology, 27, 465–491.CrossRefPubMed
go back to reference Sun, K. H., Chang, K. H., Clawson, S., Ghosh, S., Mirzaei, H., Regnier, F., et al. (2011). Glutathione-S-transferase P1 is a critical regulator of Cdk5 kinase activity. Journal of Neurochemistry, 118(5), 902–914.CrossRefPubMed Sun, K. H., Chang, K. H., Clawson, S., Ghosh, S., Mirzaei, H., Regnier, F., et al. (2011). Glutathione-S-transferase P1 is a critical regulator of Cdk5 kinase activity. Journal of Neurochemistry, 118(5), 902–914.CrossRefPubMed
go back to reference Tan, T. C., Valova, V. A., Malladi, C. S., Graham, M. E., Berven, L. A., Jupp, O. J., et al. (2003). Cdk5 is essential for synaptic vesicle endocytosis. Nature Cell Biology, 5(8), 701–710.CrossRefPubMed Tan, T. C., Valova, V. A., Malladi, C. S., Graham, M. E., Berven, L. A., Jupp, O. J., et al. (2003). Cdk5 is essential for synaptic vesicle endocytosis. Nature Cell Biology, 5(8), 701–710.CrossRefPubMed
go back to reference Tang, D., Chun, A. C., Zhang, M., & Wang, J. H. (1997). Cyclin-dependent kinase 5 (Cdk5) activation domain of neuronal Cdk5 activator. Evidence of the existence of cyclin fold in neuronal Cdk5a activator. Journal of Biological Chemistry, 272(19), 12318–12327.CrossRefPubMed Tang, D., Chun, A. C., Zhang, M., & Wang, J. H. (1997). Cyclin-dependent kinase 5 (Cdk5) activation domain of neuronal Cdk5 activator. Evidence of the existence of cyclin fold in neuronal Cdk5a activator. Journal of Biological Chemistry, 272(19), 12318–12327.CrossRefPubMed
go back to reference Tang, D., Yeung, J., Lee, K. Y., Matsushita, M., Matsui, H., Tomizawa, K., et al. (1995). An isoform of the neuronal cyclin-dependent kinase 5 (Cdk5) activator. Journal of Biological Chemistry, 270(45), 26897–26903.CrossRefPubMed Tang, D., Yeung, J., Lee, K. Y., Matsushita, M., Matsui, H., Tomizawa, K., et al. (1995). An isoform of the neuronal cyclin-dependent kinase 5 (Cdk5) activator. Journal of Biological Chemistry, 270(45), 26897–26903.CrossRefPubMed
go back to reference Tarricone, C., Dhavan, R., Peng, J., Areces, L. B., Tsai, L. H., & Musacchio, A. (2001). Structure and regulation of the CDK5-p25(nck5a) complex. Molecular Cell, 8(3), 657–669.CrossRefPubMed Tarricone, C., Dhavan, R., Peng, J., Areces, L. B., Tsai, L. H., & Musacchio, A. (2001). Structure and regulation of the CDK5-p25(nck5a) complex. Molecular Cell, 8(3), 657–669.CrossRefPubMed
go back to reference Tatham, M. H., Jaffray, E., Vaughan, O. A., Desterro, J. M., Botting, C. H., Naismith, J. H., et al. (2001). Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. Journal of Biological Chemistry, 276(38), 35368–35374.CrossRefPubMed Tatham, M. H., Jaffray, E., Vaughan, O. A., Desterro, J. M., Botting, C. H., Naismith, J. H., et al. (2001). Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. Journal of Biological Chemistry, 276(38), 35368–35374.CrossRefPubMed
go back to reference Tsai, L. H., Delalle, I., Caviness, V. S, Jr, Chae, T., & Harlow, E. (1994). p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature, 371(6496), 419–423.CrossRefPubMed Tsai, L. H., Delalle, I., Caviness, V. S, Jr, Chae, T., & Harlow, E. (1994). p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature, 371(6496), 419–423.CrossRefPubMed
go back to reference van den Heuvel, S., & Harlow, E. (1993). Distinct roles for cyclin-dependent kinases in cell cycle control. Science, 262(5142), 2050–2054.CrossRefPubMed van den Heuvel, S., & Harlow, E. (1993). Distinct roles for cyclin-dependent kinases in cell cycle control. Science, 262(5142), 2050–2054.CrossRefPubMed
go back to reference Verstegen, A. M., Tagliatti, E., Lignani, G., Marte, A., Stolero, T., Atias, M., et al. (2014). Phosphorylation of synapsin I by cyclin-dependent kinase-5 sets the ratio between the resting and recycling pools of synaptic vesicles at hippocampal synapses. Journal of Neuroscience, 34(21), 7266–7280.CrossRefPubMed Verstegen, A. M., Tagliatti, E., Lignani, G., Marte, A., Stolero, T., Atias, M., et al. (2014). Phosphorylation of synapsin I by cyclin-dependent kinase-5 sets the ratio between the resting and recycling pools of synaptic vesicles at hippocampal synapses. Journal of Neuroscience, 34(21), 7266–7280.CrossRefPubMed
go back to reference Weishaupt, J. H., Kussmaul, L., Grotsch, P., Heckel, A., Rohde, G., Romig, H., et al. (2003). Inhibition of CDK5 is protective in necrotic and apoptotic paradigms of neuronal cell death and prevents mitochondrial dysfunction. Molecular and Cellular Neuroscience, 24(2), 489–502.CrossRefPubMed Weishaupt, J. H., Kussmaul, L., Grotsch, P., Heckel, A., Rohde, G., Romig, H., et al. (2003). Inhibition of CDK5 is protective in necrotic and apoptotic paradigms of neuronal cell death and prevents mitochondrial dysfunction. Molecular and Cellular Neuroscience, 24(2), 489–502.CrossRefPubMed
go back to reference Wittmann, C., Chockley, P., Singh, S. K., Pase, L., Lieschke, G. J., & Grabher, C. (2012). Hydrogen peroxide in inflammation: messenger, guide, and assassin. Advances in Hematology, 2012, 541471.CrossRefPubMedCentralPubMed Wittmann, C., Chockley, P., Singh, S. K., Pase, L., Lieschke, G. J., & Grabher, C. (2012). Hydrogen peroxide in inflammation: messenger, guide, and assassin. Advances in Hematology, 2012, 541471.CrossRefPubMedCentralPubMed
go back to reference Zukerberg, L. R., Patrick, G. N., Nikolic, M., Humbert, S., Wu, C. L., Lanier, L. M., et al. (2000). Cables links Cdk5 and c-Abl and facilitates Cdk5 tyrosine phosphorylation, kinase upregulation, and neurite outgrowth. Neuron, 26(3), 633–646.CrossRefPubMed Zukerberg, L. R., Patrick, G. N., Nikolic, M., Humbert, S., Wu, C. L., Lanier, L. M., et al. (2000). Cables links Cdk5 and c-Abl and facilitates Cdk5 tyrosine phosphorylation, kinase upregulation, and neurite outgrowth. Neuron, 26(3), 633–646.CrossRefPubMed
Metadata
Title
Sumoylation of p35 Modulates p35/Cyclin-Dependent Kinase (Cdk) 5 Complex Activity
Authors
Anja Büchner
Petranka Krumova
Sundar Ganesan
Mathias Bähr
Katrin Eckermann
Jochen H. Weishaupt
Publication date
01-03-2015
Publisher
Springer US
Published in
NeuroMolecular Medicine / Issue 1/2015
Print ISSN: 1535-1084
Electronic ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-014-8336-4

Other articles of this Issue 1/2015

NeuroMolecular Medicine 1/2015 Go to the issue