Skip to main content
Top
Published in: Clinical Reviews in Allergy & Immunology 1/2022

21-08-2021 | Herpes Simplex Encephalitis

Defects of the Innate Immune System and Related Immune Deficiencies

Author: Nicole Akar-Ghibril

Published in: Clinical Reviews in Allergy & Immunology | Issue 1/2022

Login to get access

Abstract

The innate immune system is the host’s first line of defense against pathogens. Toll-like receptors (TLRs) are pattern recognition receptors that mediate recognition of pathogen-associated molecular patterns. TLRs also activate signaling transduction pathways involved in host defense, inflammation, development, and the production of inflammatory cytokines. Innate immunodeficiencies associated with defective TLR signaling include mutations in NEMO, IKBA, MyD88, and IRAK4. Other innate immune defects have been associated with susceptibility to herpes simplex encephalitis, viral infections, and mycobacterial disease, as well as chronic mucocutaneous candidiasis and epidermodysplasia verruciformis. Phagocytes and natural killer cells are essential members of the innate immune system and defects in number and/or function of these cells can lead to recurrent infections. Complement is another important part of the innate immune system. Complement deficiencies can lead to increased susceptibility to infections, autoimmunity, or impaired immune complex clearance. The innate immune system must work to quickly recognize and eliminate pathogens as well as coordinate an immune response and engage the adaptive immune system. Defects of the innate immune system can lead to failure to quickly identify pathogens and activate the immune response, resulting in susceptibility to severe or recurrent infections.
Literature
1.
go back to reference Gobin K et al (2017) IRAK4 deficiency in a patient with recurrent pneumococcal infections: case report and review of the literature. Front Pediatr 5:83CrossRef Gobin K et al (2017) IRAK4 deficiency in a patient with recurrent pneumococcal infections: case report and review of the literature. Front Pediatr 5:83CrossRef
2.
go back to reference Rosenzweig SD, Holland SM (2011) Recent insights into the pathobiology of innate immune deficiencies. Curr Allergy Asthma Rep 11(5):369–377CrossRef Rosenzweig SD, Holland SM (2011) Recent insights into the pathobiology of innate immune deficiencies. Curr Allergy Asthma Rep 11(5):369–377CrossRef
3.
go back to reference Iwasaki A, Medzhitov R (2010) Regulation of adaptive immunity by the innate immune system. Science 327(5963):291–295CrossRef Iwasaki A, Medzhitov R (2010) Regulation of adaptive immunity by the innate immune system. Science 327(5963):291–295CrossRef
4.
go back to reference Notarangelo LD (2010) Primary immunodeficiencies. J Allergy Clin Immunol 125(2 Suppl 2):S182–S194CrossRef Notarangelo LD (2010) Primary immunodeficiencies. J Allergy Clin Immunol 125(2 Suppl 2):S182–S194CrossRef
5.
go back to reference Picard C, Casanova JL, Puel A (2011) Infectious diseases in patients with IRAK-4, MyD88, NEMO, or IkappaBalpha deficiency. Clin Microbiol Rev 24(3):490–497CrossRef Picard C, Casanova JL, Puel A (2011) Infectious diseases in patients with IRAK-4, MyD88, NEMO, or IkappaBalpha deficiency. Clin Microbiol Rev 24(3):490–497CrossRef
6.
go back to reference Routes J et al (2014) ICON: the early diagnosis of congenital immunodeficiencies. J Clin Immunol 34(4):398–424CrossRef Routes J et al (2014) ICON: the early diagnosis of congenital immunodeficiencies. J Clin Immunol 34(4):398–424CrossRef
7.
go back to reference Al-Muhsen S, Casanova JL (2008) The genetic heterogeneity of mendelian susceptibility to mycobacterial diseases. J Allergy Clin Immunol 122(6):1043–1051; quiz 1052–3 Al-Muhsen S, Casanova JL (2008) The genetic heterogeneity of mendelian susceptibility to mycobacterial diseases. J Allergy Clin Immunol 122(6):1043–1051; quiz 1052–3
8.
go back to reference Smahi A et al (2000) Genomic rearrangement in NEMO impairs NF-kappaB activation and is a cause of incontinentia pigmenti. The International Incontinentia Pigmenti (IP) Consortium. Nature 405(6785):466–472 Smahi A et al (2000) Genomic rearrangement in NEMO impairs NF-kappaB activation and is a cause of incontinentia pigmenti. The International Incontinentia Pigmenti (IP) Consortium. Nature 405(6785):466–472
9.
go back to reference Courtois G et al (2003) A hypermorphic IkappaBalpha mutation is associated with autosomal dominant anhidrotic ectodermal dysplasia and T cell immunodeficiency. J Clin Invest 112(7):1108–1115CrossRef Courtois G et al (2003) A hypermorphic IkappaBalpha mutation is associated with autosomal dominant anhidrotic ectodermal dysplasia and T cell immunodeficiency. J Clin Invest 112(7):1108–1115CrossRef
10.
go back to reference Lopez-Granados E et al (2008) A novel mutation in NFKBIA/IKBA results in a degradation-resistant N-truncated protein and is associated with ectodermal dysplasia with immunodeficiency. Hum Mutat 29(6):861–868CrossRef Lopez-Granados E et al (2008) A novel mutation in NFKBIA/IKBA results in a degradation-resistant N-truncated protein and is associated with ectodermal dysplasia with immunodeficiency. Hum Mutat 29(6):861–868CrossRef
11.
go back to reference Orange JS et al (2004) The presentation and natural history of immunodeficiency caused by nuclear factor kappaB essential modulator mutation. J Allergy Clin Immunol 113(4):725–733CrossRef Orange JS et al (2004) The presentation and natural history of immunodeficiency caused by nuclear factor kappaB essential modulator mutation. J Allergy Clin Immunol 113(4):725–733CrossRef
12.
go back to reference Heller S et al (2020) T cell impairment is predictive for a severe clinical course in NEMO deficiency. J Clin Immunol 40(3):421–434CrossRef Heller S et al (2020) T cell impairment is predictive for a severe clinical course in NEMO deficiency. J Clin Immunol 40(3):421–434CrossRef
13.
go back to reference Hanson EP et al (2008) Hypomorphic nuclear factor-kappaB essential modulator mutation database and reconstitution system identifies phenotypic and immunologic diversity. J Allergy Clin Immunol 122(6):1169–1177 e16 Hanson EP et al (2008) Hypomorphic nuclear factor-kappaB essential modulator mutation database and reconstitution system identifies phenotypic and immunologic diversity. J Allergy Clin Immunol 122(6):1169–1177 e16
14.
go back to reference Cheng LE et al (2009) Persistent systemic inflammation and atypical enterocolitis in patients with NEMO syndrome. Clin Immunol 132(1):124–131CrossRef Cheng LE et al (2009) Persistent systemic inflammation and atypical enterocolitis in patients with NEMO syndrome. Clin Immunol 132(1):124–131CrossRef
15.
go back to reference Bonilla FA et al (2005) Practice parameter for the diagnosis and management of primary immunodeficiency. Ann Allergy Asthma Immunol 94(5 Suppl 1):S1-63CrossRef Bonilla FA et al (2005) Practice parameter for the diagnosis and management of primary immunodeficiency. Ann Allergy Asthma Immunol 94(5 Suppl 1):S1-63CrossRef
16.
go back to reference Miot C et al (2017) Hematopoietic stem cell transplantation in 29 patients hemizygous for hypomorphic IKBKG/NEMO mutations. Blood 130(12):1456–1467CrossRef Miot C et al (2017) Hematopoietic stem cell transplantation in 29 patients hemizygous for hypomorphic IKBKG/NEMO mutations. Blood 130(12):1456–1467CrossRef
17.
go back to reference Picard C et al (2010) Clinical features and outcome of patients with IRAK-4 and MyD88 deficiency. Medicine (Baltimore) 89(6):403–425CrossRef Picard C et al (2010) Clinical features and outcome of patients with IRAK-4 and MyD88 deficiency. Medicine (Baltimore) 89(6):403–425CrossRef
18.
go back to reference Platt CD et al (2019) A novel truncating mutation in MYD88 in a patient with BCG adenitis, neutropenia and delayed umbilical cord separation. Clin Immunol 207:40–42CrossRef Platt CD et al (2019) A novel truncating mutation in MYD88 in a patient with BCG adenitis, neutropenia and delayed umbilical cord separation. Clin Immunol 207:40–42CrossRef
19.
go back to reference Israel L et al (2017) Human adaptive immunity rescues an inborn error of innate immunity. Cell 168(5):789–800 e10 Israel L et al (2017) Human adaptive immunity rescues an inborn error of innate immunity. Cell 168(5):789–800 e10
20.
go back to reference Herman M et al (2012) Heterozygous TBK1 mutations impair TLR3 immunity and underlie herpes simplex encephalitis of childhood. J Exp Med 209(9):1567–1582CrossRef Herman M et al (2012) Heterozygous TBK1 mutations impair TLR3 immunity and underlie herpes simplex encephalitis of childhood. J Exp Med 209(9):1567–1582CrossRef
21.
go back to reference Zhang SY et al (2007) TLR3 deficiency in patients with herpes simplex encephalitis. Science 317(5844):1522–1527CrossRef Zhang SY et al (2007) TLR3 deficiency in patients with herpes simplex encephalitis. Science 317(5844):1522–1527CrossRef
22.
go back to reference Guo Y et al (2011) Herpes simplex virus encephalitis in a patient with complete TLR3 deficiency: TLR3 is otherwise redundant in protective immunity. J Exp Med 208(10):2083–2098CrossRef Guo Y et al (2011) Herpes simplex virus encephalitis in a patient with complete TLR3 deficiency: TLR3 is otherwise redundant in protective immunity. J Exp Med 208(10):2083–2098CrossRef
23.
go back to reference Gorbea C et al (2010) A role for Toll-like receptor 3 variants in host susceptibility to enteroviral myocarditis and dilated cardiomyopathy. J Biol Chem 285(30):23208–23223CrossRef Gorbea C et al (2010) A role for Toll-like receptor 3 variants in host susceptibility to enteroviral myocarditis and dilated cardiomyopathy. J Biol Chem 285(30):23208–23223CrossRef
24.
go back to reference Casrouge A et al (2006) Herpes simplex virus encephalitis in human UNC-93B deficiency. Science 314(5797):308–312CrossRef Casrouge A et al (2006) Herpes simplex virus encephalitis in human UNC-93B deficiency. Science 314(5797):308–312CrossRef
25.
go back to reference Perez de Diego R et al (2010) Human TRAF3 adaptor molecule deficiency leads to impaired Toll-like receptor 3 response and susceptibility to herpes simplex encephalitis. Immunity 33(3):400–411 Perez de Diego R et al (2010) Human TRAF3 adaptor molecule deficiency leads to impaired Toll-like receptor 3 response and susceptibility to herpes simplex encephalitis. Immunity 33(3):400–411
26.
go back to reference Sancho-Shimizu V et al (2011) Herpes simplex encephalitis in children with autosomal recessive and dominant TRIF deficiency. J Clin Invest 121(12):4889–4902CrossRef Sancho-Shimizu V et al (2011) Herpes simplex encephalitis in children with autosomal recessive and dominant TRIF deficiency. J Clin Invest 121(12):4889–4902CrossRef
27.
go back to reference Andersen LL et al (2015) Functional IRF3 deficiency in a patient with herpes simplex encephalitis. J Exp Med 212(9):1371–1379CrossRef Andersen LL et al (2015) Functional IRF3 deficiency in a patient with herpes simplex encephalitis. J Exp Med 212(9):1371–1379CrossRef
28.
go back to reference Hambleton S et al (2013) STAT2 deficiency and susceptibility to viral illness in humans. Proc Natl Acad Sci USA 110(8):3053–3058CrossRef Hambleton S et al (2013) STAT2 deficiency and susceptibility to viral illness in humans. Proc Natl Acad Sci USA 110(8):3053–3058CrossRef
29.
go back to reference Picard C et al (2018) International Union of Immunological Societies: 2017 Primary Immunodeficiency Diseases Committee Report on Inborn Errors of Immunity. J Clin Immunol 38(1):96–128CrossRef Picard C et al (2018) International Union of Immunological Societies: 2017 Primary Immunodeficiency Diseases Committee Report on Inborn Errors of Immunity. J Clin Immunol 38(1):96–128CrossRef
30.
go back to reference Lee-Kirsch MA, Wolf C, Gunther C (2014) Aicardi-Goutieres syndrome: a model disease for systemic autoimmunity. Clin Exp Immunol 175(1):17–24CrossRef Lee-Kirsch MA, Wolf C, Gunther C (2014) Aicardi-Goutieres syndrome: a model disease for systemic autoimmunity. Clin Exp Immunol 175(1):17–24CrossRef
31.
go back to reference Meesilpavikkai K et al (2019) Efficacy of baricitinib in the treatment of chilblains associated with Aicardi-Goutieres syndrome, a type I interferonopathy. Arthritis Rheumatol 71(5):829–831CrossRef Meesilpavikkai K et al (2019) Efficacy of baricitinib in the treatment of chilblains associated with Aicardi-Goutieres syndrome, a type I interferonopathy. Arthritis Rheumatol 71(5):829–831CrossRef
32.
go back to reference Fazzi E et al (2013) Aicardi-Goutieres syndrome, a rare neurological disease in children: a new autoimmune disorder? Autoimmun Rev 12(4):506–509CrossRef Fazzi E et al (2013) Aicardi-Goutieres syndrome, a rare neurological disease in children: a new autoimmune disorder? Autoimmun Rev 12(4):506–509CrossRef
33.
go back to reference Briggs TA et al (2016) Spondyloenchondrodysplasia due to mutations in ACP5: a comprehensive survey. J Clin Immunol 36(3):220–234CrossRef Briggs TA et al (2016) Spondyloenchondrodysplasia due to mutations in ACP5: a comprehensive survey. J Clin Immunol 36(3):220–234CrossRef
34.
go back to reference Mahdaviani SA et al (2020) Mendelian susceptibility to mycobacterial disease (MSMD): clinical and genetic features of 32 Iranian patients. J Clin Immunol 40(6):872–882CrossRef Mahdaviani SA et al (2020) Mendelian susceptibility to mycobacterial disease (MSMD): clinical and genetic features of 32 Iranian patients. J Clin Immunol 40(6):872–882CrossRef
35.
go back to reference Bustamante J (2020) Mendelian susceptibility to mycobacterial disease: recent discoveries. Hum Genet 139(6–7):993–1000CrossRef Bustamante J (2020) Mendelian susceptibility to mycobacterial disease: recent discoveries. Hum Genet 139(6–7):993–1000CrossRef
36.
go back to reference Lee WI et al (2013) Patients with inhibitory and neutralizing auto-antibodies to interferon-gamma resemble the sporadic adult-onset phenotype of Mendelian Susceptibility to Mycobacterial Disease (MSMD) lacking Bacille Calmette-Guerin (BCG)-induced diseases. Immunobiology 218(5):762–771CrossRef Lee WI et al (2013) Patients with inhibitory and neutralizing auto-antibodies to interferon-gamma resemble the sporadic adult-onset phenotype of Mendelian Susceptibility to Mycobacterial Disease (MSMD) lacking Bacille Calmette-Guerin (BCG)-induced diseases. Immunobiology 218(5):762–771CrossRef
37.
go back to reference de Beaucoudrey L et al (2010) Revisiting human IL-12Rbeta1 deficiency: a survey of 141 patients from 30 countries. Medicine (Baltimore) 89(6):381–402CrossRef de Beaucoudrey L et al (2010) Revisiting human IL-12Rbeta1 deficiency: a survey of 141 patients from 30 countries. Medicine (Baltimore) 89(6):381–402CrossRef
38.
go back to reference Chapgier A et al (2009) A partial form of recessive STAT1 deficiency in humans. J Clin Invest 119(6):1502–1514CrossRef Chapgier A et al (2009) A partial form of recessive STAT1 deficiency in humans. J Clin Invest 119(6):1502–1514CrossRef
39.
go back to reference Dupuis S et al (2003) Impaired response to interferon-alpha/beta and lethal viral disease in human STAT1 deficiency. Nat Genet 33(3):388–391CrossRef Dupuis S et al (2003) Impaired response to interferon-alpha/beta and lethal viral disease in human STAT1 deficiency. Nat Genet 33(3):388–391CrossRef
40.
go back to reference Bogunovic D et al (2012) Mycobacterial disease and impaired IFN-gamma immunity in humans with inherited ISG15 deficiency. Science 337(6102):1684–1688CrossRef Bogunovic D et al (2012) Mycobacterial disease and impaired IFN-gamma immunity in humans with inherited ISG15 deficiency. Science 337(6102):1684–1688CrossRef
41.
go back to reference Roesler J et al (2004) Hematopoietic stem cell transplantation for complete IFN-gamma receptor 1 deficiency: a multi-institutional survey. J Pediatr 145(6):806–812CrossRef Roesler J et al (2004) Hematopoietic stem cell transplantation for complete IFN-gamma receptor 1 deficiency: a multi-institutional survey. J Pediatr 145(6):806–812CrossRef
42.
go back to reference Toubiana J et al (2016) Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype. Blood 127(25):3154–3164CrossRef Toubiana J et al (2016) Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype. Blood 127(25):3154–3164CrossRef
43.
go back to reference Engelhardt KR, Grimbacher B (2012) Mendelian traits causing susceptibility to mucocutaneous fungal infections in human subjects. J Allergy Clin Immunol 129(2):294–305; quiz 306–7 Engelhardt KR, Grimbacher B (2012) Mendelian traits causing susceptibility to mucocutaneous fungal infections in human subjects. J Allergy Clin Immunol 129(2):294–305; quiz 306–7
44.
go back to reference Glocker EO et al (2009) A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N Engl J Med 361(18):1727–1735CrossRef Glocker EO et al (2009) A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N Engl J Med 361(18):1727–1735CrossRef
45.
go back to reference Drewniak A et al (2013) Invasive fungal infection and impaired neutrophil killing in human CARD9 deficiency. Blood 121(13):2385–2392CrossRef Drewniak A et al (2013) Invasive fungal infection and impaired neutrophil killing in human CARD9 deficiency. Blood 121(13):2385–2392CrossRef
46.
go back to reference Queiroz-Telles F et al (2019) Successful allogenic stem cell transplantation in patients with inherited CARD9 deficiency. J Clin Immunol 39(5):462–469CrossRef Queiroz-Telles F et al (2019) Successful allogenic stem cell transplantation in patients with inherited CARD9 deficiency. J Clin Immunol 39(5):462–469CrossRef
47.
go back to reference de Medeiros AK et al (2016) Erratum to: Chronic and invasive fungal infections in a family with CARD9 deficiency. J Clin Immunol 36(5):528CrossRef de Medeiros AK et al (2016) Erratum to: Chronic and invasive fungal infections in a family with CARD9 deficiency. J Clin Immunol 36(5):528CrossRef
48.
go back to reference Ferwerda B et al (2009) Human dectin-1 deficiency and mucocutaneous fungal infections. N Engl J Med 361(18):1760–1767CrossRef Ferwerda B et al (2009) Human dectin-1 deficiency and mucocutaneous fungal infections. N Engl J Med 361(18):1760–1767CrossRef
49.
go back to reference Shamriz O et al (2020) Chronic mucocutaneous candidiasis in early life: insights into immune mechanisms and novel targeted therapies. Front Immunol 11:593289 Shamriz O et al (2020) Chronic mucocutaneous candidiasis in early life: insights into immune mechanisms and novel targeted therapies. Front Immunol 11:593289
50.
go back to reference Gavino C et al (2014) CARD9 deficiency and spontaneous central nervous system candidiasis: complete clinical remission with GM-CSF therapy. Clin Infect Dis 59(1):81–84CrossRef Gavino C et al (2014) CARD9 deficiency and spontaneous central nervous system candidiasis: complete clinical remission with GM-CSF therapy. Clin Infect Dis 59(1):81–84CrossRef
51.
go back to reference Orth G (2006) Genetics of epidermodysplasia verruciformis: insights into host defense against papillomaviruses. Semin Immunol 18(6):362–374CrossRef Orth G (2006) Genetics of epidermodysplasia verruciformis: insights into host defense against papillomaviruses. Semin Immunol 18(6):362–374CrossRef
52.
go back to reference Crequer A et al (2013) EVER2 deficiency is associated with mild T-cell abnormalities. J Clin Immunol 33(1):14–21CrossRef Crequer A et al (2013) EVER2 deficiency is associated with mild T-cell abnormalities. J Clin Immunol 33(1):14–21CrossRef
53.
go back to reference Akgul B et al (2007) A distinct variant of Epidermodysplasia verruciformis in a Turkish family lacking EVER1 and EVER2 mutations. J Dermatol Sci 46(3):214–216CrossRef Akgul B et al (2007) A distinct variant of Epidermodysplasia verruciformis in a Turkish family lacking EVER1 and EVER2 mutations. J Dermatol Sci 46(3):214–216CrossRef
54.
go back to reference de Jong SJ et al (2018) Epidermodysplasia verruciformis: inborn errors of immunity to human beta-papillomaviruses. Front Microbiol 9:1222CrossRef de Jong SJ et al (2018) Epidermodysplasia verruciformis: inborn errors of immunity to human beta-papillomaviruses. Front Microbiol 9:1222CrossRef
55.
go back to reference Ramoz N et al (2002) Mutations in two adjacent novel genes are associated with epidermodysplasia verruciformis. Nat Genet 32(4):579–581CrossRef Ramoz N et al (2002) Mutations in two adjacent novel genes are associated with epidermodysplasia verruciformis. Nat Genet 32(4):579–581CrossRef
56.
go back to reference Lazarczyk M et al (2012) EVER proteins, key elements of the natural anti-human papillomavirus barrier, are regulated upon T-cell activation. PLoS One 7(6):e39995 Lazarczyk M et al (2012) EVER proteins, key elements of the natural anti-human papillomavirus barrier, are regulated upon T-cell activation. PLoS One 7(6):e39995
57.
go back to reference Crequer A et al (2012) Inherited MST1 deficiency underlies susceptibility to EV-HPV infections. PLoS One 7(8):e44010 Crequer A et al (2012) Inherited MST1 deficiency underlies susceptibility to EV-HPV infections. PLoS One 7(8):e44010
58.
go back to reference de Jong SJ et al (2018) The human CIB1-EVER1-EVER2 complex governs keratinocyte-intrinsic immunity to beta-papillomaviruses. J Exp Med 215(9):2289–2310CrossRef de Jong SJ et al (2018) The human CIB1-EVER1-EVER2 complex governs keratinocyte-intrinsic immunity to beta-papillomaviruses. J Exp Med 215(9):2289–2310CrossRef
59.
go back to reference Nehme NT et al (2012) MST1 mutations in autosomal recessive primary immunodeficiency characterized by defective naive T-cell survival. Blood 119(15):3458–3468CrossRef Nehme NT et al (2012) MST1 mutations in autosomal recessive primary immunodeficiency characterized by defective naive T-cell survival. Blood 119(15):3458–3468CrossRef
60.
go back to reference Platt CD et al (2017) Combined immunodeficiency with EBV positive B cell lymphoma and epidermodysplasia verruciformis due to a novel homozygous mutation in RASGRP1. Clin Immunol 183:142–144CrossRef Platt CD et al (2017) Combined immunodeficiency with EBV positive B cell lymphoma and epidermodysplasia verruciformis due to a novel homozygous mutation in RASGRP1. Clin Immunol 183:142–144CrossRef
61.
go back to reference Youssefian L et al (2019) Inherited Interleukin 2-Inducible T-Cell (ITK) Kinase deficiency in siblings with Epidermodysplasia Verruciformis and Hodgkin Lymphoma. Clin Infect Dis 68(11):1938–1941CrossRef Youssefian L et al (2019) Inherited Interleukin 2-Inducible T-Cell (ITK) Kinase deficiency in siblings with Epidermodysplasia Verruciformis and Hodgkin Lymphoma. Clin Infect Dis 68(11):1938–1941CrossRef
62.
go back to reference Lawrence T et al (2005) Autosomal-dominant primary immunodeficiencies. Curr Opin Hematol 12(1):22–30CrossRef Lawrence T et al (2005) Autosomal-dominant primary immunodeficiencies. Curr Opin Hematol 12(1):22–30CrossRef
63.
go back to reference Bolze A et al (2013) Ribosomal protein SA haploinsufficiency in humans with isolated congenital asplenia. Science 340(6135):976–978CrossRef Bolze A et al (2013) Ribosomal protein SA haploinsufficiency in humans with isolated congenital asplenia. Science 340(6135):976–978CrossRef
64.
go back to reference Dinauer MC (2019) Inflammatory consequences of inherited disorders affecting neutrophil function. Blood 133(20):2130–2139CrossRef Dinauer MC (2019) Inflammatory consequences of inherited disorders affecting neutrophil function. Blood 133(20):2130–2139CrossRef
65.
go back to reference Boztug K et al (2009) A syndrome with congenital neutropenia and mutations in G6PC3. N Engl J Med 360(1):32–43CrossRef Boztug K et al (2009) A syndrome with congenital neutropenia and mutations in G6PC3. N Engl J Med 360(1):32–43CrossRef
66.
go back to reference Skokowa J et al (2017) Severe congenital neutropenias. Nat Rev Dis Primers 3:17032CrossRef Skokowa J et al (2017) Severe congenital neutropenias. Nat Rev Dis Primers 3:17032CrossRef
67.
go back to reference Venugopal P et al (2020) Two monogenic disorders masquerading as one: severe congenital neutropenia with monocytosis and non-syndromic sensorineural hearing loss. BMC Med Genet 21(1):35CrossRef Venugopal P et al (2020) Two monogenic disorders masquerading as one: severe congenital neutropenia with monocytosis and non-syndromic sensorineural hearing loss. BMC Med Genet 21(1):35CrossRef
68.
go back to reference Person RE et al (2003) Mutations in proto-oncogene GFI1 cause human neutropenia and target ELA2. Nat Genet 34(3):308–312CrossRef Person RE et al (2003) Mutations in proto-oncogene GFI1 cause human neutropenia and target ELA2. Nat Genet 34(3):308–312CrossRef
69.
go back to reference Lyu B, Lyu W, Zhang X (2020) Kostmann syndrome with neurological abnormalities: a case report and literature review. Front Pediatr 8:586859 Lyu B, Lyu W, Zhang X (2020) Kostmann syndrome with neurological abnormalities: a case report and literature review. Front Pediatr 8:586859
70.
go back to reference Shah RK et al (2017) A novel homozygous VPS45 p.P468L mutation leading to severe congenital neutropenia with myelofibrosis. Pediatr Blood Cancer 64(9) Shah RK et al (2017) A novel homozygous VPS45 p.P468L mutation leading to severe congenital neutropenia with myelofibrosis. Pediatr Blood Cancer 64(9)
71.
go back to reference Bellanne-Chantelot C et al (2018) Mutations in the SRP54 gene cause severe congenital neutropenia as well as Shwachman-Diamond-like syndrome. Blood 132(12):1318–1331CrossRef Bellanne-Chantelot C et al (2018) Mutations in the SRP54 gene cause severe congenital neutropenia as well as Shwachman-Diamond-like syndrome. Blood 132(12):1318–1331CrossRef
72.
go back to reference Khandagale A et al (2021) Severe congenital neutropenia-associated JAGN1 mutations unleash a calpain-dependent cell death programme in myeloid cells. Br J Haematol 192(1):200–211CrossRef Khandagale A et al (2021) Severe congenital neutropenia-associated JAGN1 mutations unleash a calpain-dependent cell death programme in myeloid cells. Br J Haematol 192(1):200–211CrossRef
73.
go back to reference Dong F et al (1995) Mutations in the gene for the granulocyte colony-stimulating-factor receptor in patients with acute myeloid leukemia preceded by severe congenital neutropenia. N Engl J Med 333(8):487–493CrossRef Dong F et al (1995) Mutations in the gene for the granulocyte colony-stimulating-factor receptor in patients with acute myeloid leukemia preceded by severe congenital neutropenia. N Engl J Med 333(8):487–493CrossRef
74.
go back to reference Makaryan V et al (2014) TCIRG1-associated congenital neutropenia. Hum Mutat 35(7):824–827CrossRef Makaryan V et al (2014) TCIRG1-associated congenital neutropenia. Hum Mutat 35(7):824–827CrossRef
75.
go back to reference Dale DC et al (1993) A randomized controlled phase III trial of recombinant human granulocyte colony-stimulating factor (filgrastim) for treatment of severe chronic neutropenia. Blood 81(10):2496–2502CrossRef Dale DC et al (1993) A randomized controlled phase III trial of recombinant human granulocyte colony-stimulating factor (filgrastim) for treatment of severe chronic neutropenia. Blood 81(10):2496–2502CrossRef
76.
go back to reference Fagerholm SC et al (2019) Beta2-Integrins and interacting proteins in Leukocyte trafficking, immune suppression, and immunodeficiency disease. Front Immunol 10:254CrossRef Fagerholm SC et al (2019) Beta2-Integrins and interacting proteins in Leukocyte trafficking, immune suppression, and immunodeficiency disease. Front Immunol 10:254CrossRef
77.
go back to reference Moutsopoulos NM et al (2017) Interleukin-12 and Interleukin-23 Blockade in Leukocyte Adhesion Deficiency Type 1. N Engl J Med 376(12):1141–1146CrossRef Moutsopoulos NM et al (2017) Interleukin-12 and Interleukin-23 Blockade in Leukocyte Adhesion Deficiency Type 1. N Engl J Med 376(12):1141–1146CrossRef
78.
go back to reference Wolach B et al (2019) Leucocyte adhesion deficiency-A multicentre national experience. Eur J Clin Invest 49(2):e13047 Wolach B et al (2019) Leucocyte adhesion deficiency-A multicentre national experience. Eur J Clin Invest 49(2):e13047
79.
go back to reference Gazit Y et al (2010) Leukocyte adhesion deficiency type II: long-term follow-up and review of the literature. J Clin Immunol 30(2):308–313CrossRef Gazit Y et al (2010) Leukocyte adhesion deficiency type II: long-term follow-up and review of the literature. J Clin Immunol 30(2):308–313CrossRef
80.
go back to reference Etzioni A (2010) Defects in the leukocyte adhesion cascade. Clin Rev Allergy Immunol 38(1):54–60CrossRef Etzioni A (2010) Defects in the leukocyte adhesion cascade. Clin Rev Allergy Immunol 38(1):54–60CrossRef
81.
go back to reference Svensson L et al (2009) Leukocyte adhesion deficiency-III is caused by mutations in KINDLIN3 affecting integrin activation. Nat Med 15(3):306–312CrossRef Svensson L et al (2009) Leukocyte adhesion deficiency-III is caused by mutations in KINDLIN3 affecting integrin activation. Nat Med 15(3):306–312CrossRef
82.
go back to reference Essa MF et al (2020) Successful hematopoietic stem cell transplant in leukocyte adhesion deficiency type III presenting primarily as malignant infantile osteopetrosis. Clin Immunol 213:108365 Essa MF et al (2020) Successful hematopoietic stem cell transplant in leukocyte adhesion deficiency type III presenting primarily as malignant infantile osteopetrosis. Clin Immunol 213:108365
83.
go back to reference Heusinkveld LE et al (2019) WHIM Syndrome: from Pathogenesis Towards Personalized Medicine and Cure. J Clin Immunol 39(6):532–556CrossRef Heusinkveld LE et al (2019) WHIM Syndrome: from Pathogenesis Towards Personalized Medicine and Cure. J Clin Immunol 39(6):532–556CrossRef
84.
go back to reference Badolato R et al (2012) Tetralogy of fallot is an uncommon manifestation of warts, hypogammaglobulinemia, infections, and myelokathexis syndrome. J Pediatr 161(4):763–765CrossRef Badolato R et al (2012) Tetralogy of fallot is an uncommon manifestation of warts, hypogammaglobulinemia, infections, and myelokathexis syndrome. J Pediatr 161(4):763–765CrossRef
85.
go back to reference McDermott DH et al (2011) The CXCR4 antagonist plerixafor corrects panleukopenia in patients with WHIM syndrome. Blood 118(18):4957–4962CrossRef McDermott DH et al (2011) The CXCR4 antagonist plerixafor corrects panleukopenia in patients with WHIM syndrome. Blood 118(18):4957–4962CrossRef
86.
go back to reference McDermott DH et al (2019) Plerixafor for the treatment of WHIM syndrome. N Engl J Med 380(2):163–170CrossRef McDermott DH et al (2019) Plerixafor for the treatment of WHIM syndrome. N Engl J Med 380(2):163–170CrossRef
87.
go back to reference Dale DC et al (2020) Results of a phase 2 trial of an oral CXCR4 antagonist, mavorixafor, for treatment of WHIM syndrome. Blood 136(26):2994–3003CrossRef Dale DC et al (2020) Results of a phase 2 trial of an oral CXCR4 antagonist, mavorixafor, for treatment of WHIM syndrome. Blood 136(26):2994–3003CrossRef
88.
go back to reference Krivan G et al (2010) Successful umbilical cord blood stem cell transplantation in a child with WHIM syndrome. Eur J Haematol 84(3):274–275CrossRef Krivan G et al (2010) Successful umbilical cord blood stem cell transplantation in a child with WHIM syndrome. Eur J Haematol 84(3):274–275CrossRef
89.
go back to reference Moens L et al (2016) Successful hematopoietic stem cell transplantation for myelofibrosis in an adult with warts-hypogammaglobulinemia-immunodeficiency-myelokathexis syndrome. J Allergy Clin Immunol 138(5):1485–1489 e2 Moens L et al (2016) Successful hematopoietic stem cell transplantation for myelofibrosis in an adult with warts-hypogammaglobulinemia-immunodeficiency-myelokathexis syndrome. J Allergy Clin Immunol 138(5):1485–1489 e2
90.
go back to reference Yu HH, Yang YH, Chiang BL (2020) Chronic granulomatous disease: a comprehensive review. Clin Rev Allergy Immunol Yu HH, Yang YH, Chiang BL (2020) Chronic granulomatous disease: a comprehensive review. Clin Rev Allergy Immunol
91.
go back to reference Gennery AR (2021) Progress in treating chronic granulomatous disease. Br J Haematol 192(2):251–264CrossRef Gennery AR (2021) Progress in treating chronic granulomatous disease. Br J Haematol 192(2):251–264CrossRef
92.
go back to reference Marciano BE et al (2015) Common severe infections in chronic granulomatous disease. Clin Infect Dis 60(8):1176–1183CrossRef Marciano BE et al (2015) Common severe infections in chronic granulomatous disease. Clin Infect Dis 60(8):1176–1183CrossRef
93.
go back to reference van de Geer A et al (2018) Inherited p40phox deficiency differs from classic chronic granulomatous disease. J Clin Invest 128(9):3957–3975CrossRef van de Geer A et al (2018) Inherited p40phox deficiency differs from classic chronic granulomatous disease. J Clin Invest 128(9):3957–3975CrossRef
94.
go back to reference Ambruso DR et al (2000) Human neutrophil immunodeficiency syndrome is associated with an inhibitory Rac2 mutation. Proc Natl Acad Sci USA 97(9):4654–4659CrossRef Ambruso DR et al (2000) Human neutrophil immunodeficiency syndrome is associated with an inhibitory Rac2 mutation. Proc Natl Acad Sci USA 97(9):4654–4659CrossRef
95.
go back to reference Marciano BE et al (2018) X-linked carriers of chronic granulomatous disease: Illness, lyonization, and stability. J Allergy Clin Immunol 141(1):365–371CrossRef Marciano BE et al (2018) X-linked carriers of chronic granulomatous disease: Illness, lyonization, and stability. J Allergy Clin Immunol 141(1):365–371CrossRef
96.
go back to reference Blancas-Galicia L et al (2020) Genetic, immunological, and clinical features of the first Mexican cohort of patients with chronic granulomatous disease. J Clin Immunol 40(3):475–493CrossRef Blancas-Galicia L et al (2020) Genetic, immunological, and clinical features of the first Mexican cohort of patients with chronic granulomatous disease. J Clin Immunol 40(3):475–493CrossRef
97.
go back to reference Seidel MG et al (2019) The European Society for Immunodeficiencies (ESID) registry working definitions for the clinical diagnosis of inborn errors of immunity. J Allergy Clin Immunol Pract 7(6):1763–1770CrossRef Seidel MG et al (2019) The European Society for Immunodeficiencies (ESID) registry working definitions for the clinical diagnosis of inborn errors of immunity. J Allergy Clin Immunol Pract 7(6):1763–1770CrossRef
98.
go back to reference Kuhns DB et al (2010) Residual NADPH oxidase and survival in chronic granulomatous disease. N Engl J Med 363(27):2600–2610CrossRef Kuhns DB et al (2010) Residual NADPH oxidase and survival in chronic granulomatous disease. N Engl J Med 363(27):2600–2610CrossRef
99.
go back to reference The International Chronic Granulomatous Disease Cooperative Study Group (1991) A controlled trial of interferon gamma to prevent infection in chronic granulomatous disease. N Engl J Med 324(8):509–516 The International Chronic Granulomatous Disease Cooperative Study Group (1991) A controlled trial of interferon gamma to prevent infection in chronic granulomatous disease. N Engl J Med 324(8):509–516
100.
go back to reference Martire B et al (2008) Clinical features, long-term follow-up and outcome of a large cohort of patients with chronic granulomatous disease: an Italian multicenter study. Clin Immunol 126(2):155–164CrossRef Martire B et al (2008) Clinical features, long-term follow-up and outcome of a large cohort of patients with chronic granulomatous disease: an Italian multicenter study. Clin Immunol 126(2):155–164CrossRef
101.
go back to reference Dedieu C et al (2020) Outcome of chronic granulomatous disease - conventional treatment vs stem cell transplantation. Pediatr Allergy Immunol Dedieu C et al (2020) Outcome of chronic granulomatous disease - conventional treatment vs stem cell transplantation. Pediatr Allergy Immunol
102.
go back to reference Chiesa R et al (2020) Hematopoietic cell transplantation in chronic granulomatous disease: a study of 712 children and adults. Blood 136(10):1201–1211CrossRef Chiesa R et al (2020) Hematopoietic cell transplantation in chronic granulomatous disease: a study of 712 children and adults. Blood 136(10):1201–1211CrossRef
103.
go back to reference Kohn DB et al (2020) Lentiviral gene therapy for X-linked chronic granulomatous disease. Nat Med 26(2):200–206CrossRef Kohn DB et al (2020) Lentiviral gene therapy for X-linked chronic granulomatous disease. Nat Med 26(2):200–206CrossRef
104.
go back to reference Orange JS (2013) Natural killer cell deficiency. J Allergy Clin Immunol 132(3):515–525CrossRef Orange JS (2013) Natural killer cell deficiency. J Allergy Clin Immunol 132(3):515–525CrossRef
105.
go back to reference Vargas-Hernandez A, Forbes LR (2019) The impact of immunodeficiency on NK cell maturation and function. Curr Allergy Asthma Rep 19(1):2CrossRef Vargas-Hernandez A, Forbes LR (2019) The impact of immunodeficiency on NK cell maturation and function. Curr Allergy Asthma Rep 19(1):2CrossRef
106.
go back to reference Spinner MA et al (2014) GATA2 deficiency: a protean disorder of hematopoiesis, lymphatics, and immunity. Blood 123(6):809–821CrossRef Spinner MA et al (2014) GATA2 deficiency: a protean disorder of hematopoiesis, lymphatics, and immunity. Blood 123(6):809–821CrossRef
107.
go back to reference Bogaert DJ et al (2020) GATA2 deficiency and haematopoietic stem cell transplantation: challenges for the clinical practitioner. Br J Haematol 188(5):768–773CrossRef Bogaert DJ et al (2020) GATA2 deficiency and haematopoietic stem cell transplantation: challenges for the clinical practitioner. Br J Haematol 188(5):768–773CrossRef
108.
go back to reference Hughes CR et al (2012) MCM4 mutation causes adrenal failure, short stature, and natural killer cell deficiency in humans. J Clin Invest 122(3):814–820CrossRef Hughes CR et al (2012) MCM4 mutation causes adrenal failure, short stature, and natural killer cell deficiency in humans. J Clin Invest 122(3):814–820CrossRef
109.
go back to reference Gineau L et al (2012) Partial MCM4 deficiency in patients with growth retardation, adrenal insufficiency, and natural killer cell deficiency. J Clin Invest 122(3):821–832CrossRef Gineau L et al (2012) Partial MCM4 deficiency in patients with growth retardation, adrenal insufficiency, and natural killer cell deficiency. J Clin Invest 122(3):821–832CrossRef
110.
go back to reference Mace EM et al (2017) Biallelic mutations in IRF8 impair human NK cell maturation and function. J Clin Invest 127(1):306–320CrossRef Mace EM et al (2017) Biallelic mutations in IRF8 impair human NK cell maturation and function. J Clin Invest 127(1):306–320CrossRef
111.
go back to reference Cottineau J et al (2017) Inherited GINS1 deficiency underlies growth retardation along with neutropenia and NK cell deficiency. J Clin Invest 127(5):1991–2006CrossRef Cottineau J et al (2017) Inherited GINS1 deficiency underlies growth retardation along with neutropenia and NK cell deficiency. J Clin Invest 127(5):1991–2006CrossRef
112.
go back to reference Grier JT et al (2012) Human immunodeficiency-causing mutation defines CD16 in spontaneous NK cell cytotoxicity. J Clin Invest 122(10):3769–3780CrossRef Grier JT et al (2012) Human immunodeficiency-causing mutation defines CD16 in spontaneous NK cell cytotoxicity. J Clin Invest 122(10):3769–3780CrossRef
113.
go back to reference Diana J, Lehuen A (2009) NKT cells: friend or foe during viral infections? Eur J Immunol 39(12):3283–3291CrossRef Diana J, Lehuen A (2009) NKT cells: friend or foe during viral infections? Eur J Immunol 39(12):3283–3291CrossRef
114.
go back to reference Grumach AS, Kirschfink M (2014) Are complement deficiencies really rare? Overview on prevalence, clinical importance and modern diagnostic approach. Mol Immunol 61(2):110–117CrossRef Grumach AS, Kirschfink M (2014) Are complement deficiencies really rare? Overview on prevalence, clinical importance and modern diagnostic approach. Mol Immunol 61(2):110–117CrossRef
115.
go back to reference Kirschfink M, Mollnes TE (2003) Modern complement analysis. Clin Diagn Lab Immunol 10(6):982–989 Kirschfink M, Mollnes TE (2003) Modern complement analysis. Clin Diagn Lab Immunol 10(6):982–989
Metadata
Title
Defects of the Innate Immune System and Related Immune Deficiencies
Author
Nicole Akar-Ghibril
Publication date
21-08-2021
Publisher
Springer US
Published in
Clinical Reviews in Allergy & Immunology / Issue 1/2022
Print ISSN: 1080-0549
Electronic ISSN: 1559-0267
DOI
https://doi.org/10.1007/s12016-021-08885-y

Other articles of this Issue 1/2022

Clinical Reviews in Allergy & Immunology 1/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.