Skip to main content
Top
Published in: Clinical Reviews in Allergy & Immunology 3/2018

01-06-2018

Immunology of Bee Venom

Authors: Daniel Elieh Ali Komi, Farzaneh Shafaghat, Ricardo D. Zwiener

Published in: Clinical Reviews in Allergy & Immunology | Issue 3/2018

Login to get access

Abstract

Bee venom is a blend of biochemicals ranging from small peptides and enzymes to biogenic amines. It is capable of triggering severe immunologic reactions owing to its allergenic fraction. Venom components are presented to the T cells by antigen-presenting cells within the skin. These Th2 type T cells then release IL-4 and IL-13 which subsequently direct B cells to class switch to production of IgE. Generating venom-specific IgE and crosslinking FcεR1(s) on the surface of mast cells complete the sensitizing stage in allergic individuals who are most likely to experience severe and even fatal allergic reactions after being stung. Specific IgE for bee venom is a double-edged sword as it is a powerful mediator in triggering allergic events but is also applied successfully in diagnosis of the venom allergic patient. The healing capacity of bee venom has been rediscovered under laboratory-controlled conditions using animal models and cell cultures. The potential role of enzymatic fraction of bee venom including phospholipase A2 in the initiation and development of immune responses also has been studied in numerous research settings. Undoubtedly, having insights into immunologic interactions between bee venom components and innate/specific immune cells both locally and systematically will contribute to the development of immunologic strategies in specific and epitope-based immunotherapy especially in individuals with Hymenoptera venom allergy.
Literature
1.
go back to reference Vetter RS, Visscher PK (1998) Bites and stings of medically important venomous arthropods. Int J Dermatol 37(7):481–496CrossRefPubMed Vetter RS, Visscher PK (1998) Bites and stings of medically important venomous arthropods. Int J Dermatol 37(7):481–496CrossRefPubMed
2.
4.
5.
6.
go back to reference Nitecka-Buchta, A. and P. Buchta (2014) Myorelaxant effect of bee venom topical skin application in patients with RDC/TMD Ia and RDC/TMD Ib: a randomized, double blinded study. 2014: p. 296053 Nitecka-Buchta, A. and P. Buchta (2014) Myorelaxant effect of bee venom topical skin application in patients with RDC/TMD Ia and RDC/TMD Ib: a randomized, double blinded study. 2014: p. 296053
8.
go back to reference Silva J et al (2015) Pharmacological alternatives for the treatment of neurodegenerative disorders: wasp and bee venoms and their components as new neuroactive tools. Toxins (Basel) 7(8):3179–3209CrossRef Silva J et al (2015) Pharmacological alternatives for the treatment of neurodegenerative disorders: wasp and bee venoms and their components as new neuroactive tools. Toxins (Basel) 7(8):3179–3209CrossRef
9.
go back to reference Kim KH et al (2013) Bee venom ameliorates compound 48/80-induced atopic dermatitis-related symptoms. Int J Clin Exp Pathol 6(12):2896–2903PubMedPubMedCentral Kim KH et al (2013) Bee venom ameliorates compound 48/80-induced atopic dermatitis-related symptoms. Int J Clin Exp Pathol 6(12):2896–2903PubMedPubMedCentral
13.
14.
15.
go back to reference Dotimas EM et al (1987) Isolation and structure analysis of bee venom mast cell degranulating peptide. Biochim Biophys Acta 911(3):285–293CrossRefPubMed Dotimas EM et al (1987) Isolation and structure analysis of bee venom mast cell degranulating peptide. Biochim Biophys Acta 911(3):285–293CrossRefPubMed
16.
go back to reference Abd-Elhakim YM et al (2014) Combined cytogenotoxic effects of bee venom and bleomycin on rat lymphocytes: an in vitro study. Biomed Res Int 2014:173903CrossRefPubMedPubMedCentral Abd-Elhakim YM et al (2014) Combined cytogenotoxic effects of bee venom and bleomycin on rat lymphocytes: an in vitro study. Biomed Res Int 2014:173903CrossRefPubMedPubMedCentral
18.
go back to reference Flach CR, Prendergast FG, Mendelsohn R (1996) Infrared reflection-absorption of melittin interaction with phospholipid monolayers at the air/water interface. Biophys J 70(1):539–546CrossRefPubMedPubMedCentral Flach CR, Prendergast FG, Mendelsohn R (1996) Infrared reflection-absorption of melittin interaction with phospholipid monolayers at the air/water interface. Biophys J 70(1):539–546CrossRefPubMedPubMedCentral
19.
go back to reference Zolfagharian H, Mohajeri M, Babaie M (2015) Honey bee venom (Apis mellifera) contains anticoagulation factors and increases the blood-clotting time. J Pharmacopuncture 18(4):7–11CrossRefPubMedPubMedCentral Zolfagharian H, Mohajeri M, Babaie M (2015) Honey bee venom (Apis mellifera) contains anticoagulation factors and increases the blood-clotting time. J Pharmacopuncture 18(4):7–11CrossRefPubMedPubMedCentral
20.
go back to reference Petroianu G et al (2000) Phospholipase A2-induced coagulation abnormalities after bee sting. Am J Emerg Med 18(1):22–27CrossRefPubMed Petroianu G et al (2000) Phospholipase A2-induced coagulation abnormalities after bee sting. Am J Emerg Med 18(1):22–27CrossRefPubMed
21.
go back to reference Banks BE et al (1979) Apamin blocks certain neurotransmitter-induced increases in potassium permeability. Nature 282(5737):415–417CrossRefPubMed Banks BE et al (1979) Apamin blocks certain neurotransmitter-induced increases in potassium permeability. Nature 282(5737):415–417CrossRefPubMed
22.
go back to reference Lazdunski M (1983) Apamin, a neurotoxin specific for one class of Ca2+−dependent K+ channels. Cell Calcium 4(5–6):421–428CrossRefPubMed Lazdunski M (1983) Apamin, a neurotoxin specific for one class of Ca2+−dependent K+ channels. Cell Calcium 4(5–6):421–428CrossRefPubMed
23.
go back to reference Six DA, Dennis EA (2000) The expanding superfamily of phospholipase a(2) enzymes: classification and characterization. Biochim Biophys Acta 1488(1–2):1–19PubMed Six DA, Dennis EA (2000) The expanding superfamily of phospholipase a(2) enzymes: classification and characterization. Biochim Biophys Acta 1488(1–2):1–19PubMed
24.
go back to reference Park S et al (2015) Bee venom phospholipase A2 suppresses allergic airway inflammation in an ovalbumin-induced asthma model through the induction of regulatory T cells. Immun Inflamm Dis 3(4):386–397CrossRefPubMedPubMedCentral Park S et al (2015) Bee venom phospholipase A2 suppresses allergic airway inflammation in an ovalbumin-induced asthma model through the induction of regulatory T cells. Immun Inflamm Dis 3(4):386–397CrossRefPubMedPubMedCentral
25.
go back to reference Urasaki T et al (2000) Induction of the activation-related antigen CD69 on human eosinophils by type IIA phospholipase A2. Inflamm Res 49(4):177–183CrossRefPubMed Urasaki T et al (2000) Induction of the activation-related antigen CD69 on human eosinophils by type IIA phospholipase A2. Inflamm Res 49(4):177–183CrossRefPubMed
26.
go back to reference Moreno M, Giralt E (2015) Three valuable peptides from bee and wasp venoms for therapeutic and biotechnological use: melittin, apamin and mastoparan. Toxins (Basel) 7(4):1126–1150CrossRef Moreno M, Giralt E (2015) Three valuable peptides from bee and wasp venoms for therapeutic and biotechnological use: melittin, apamin and mastoparan. Toxins (Basel) 7(4):1126–1150CrossRef
27.
go back to reference Ye M et al (2016) Neuroprotective effects of bee venom phospholipase A2 in the 3xTg AD mouse model of Alzheimer's disease. J Neuroinflammation 13(1):10CrossRefPubMedPubMedCentral Ye M et al (2016) Neuroprotective effects of bee venom phospholipase A2 in the 3xTg AD mouse model of Alzheimer's disease. J Neuroinflammation 13(1):10CrossRefPubMedPubMedCentral
28.
go back to reference Choo YM et al (2010) Dual function of a bee venom serine protease: prophenoloxidase-activating factor in arthropods and fibrin(ogen)olytic enzyme in mammals. PLoS One 5(5):e10393CrossRefPubMedPubMedCentral Choo YM et al (2010) Dual function of a bee venom serine protease: prophenoloxidase-activating factor in arthropods and fibrin(ogen)olytic enzyme in mammals. PLoS One 5(5):e10393CrossRefPubMedPubMedCentral
29.
go back to reference Markovic-Housley Z et al (2000) Crystal structure of hyaluronidase, a major allergen of bee venom. Structure 8(10):1025–1035CrossRefPubMed Markovic-Housley Z et al (2000) Crystal structure of hyaluronidase, a major allergen of bee venom. Structure 8(10):1025–1035CrossRefPubMed
30.
31.
32.
go back to reference Hider RC (1988) Honeybee venom: a rich source of pharmacologically active peptides. Endeavour 12(2):60–65CrossRefPubMed Hider RC (1988) Honeybee venom: a rich source of pharmacologically active peptides. Endeavour 12(2):60–65CrossRefPubMed
33.
go back to reference Sharma JN (2014) Basic and clinical aspects of bradykinin receptor antagonists. Prog Drug Res 69:1–14PubMed Sharma JN (2014) Basic and clinical aspects of bradykinin receptor antagonists. Prog Drug Res 69:1–14PubMed
34.
go back to reference Buku A, Price JA (2001) Further studies on the structural requirements for mast cell degranulating (MCD) peptide-mediated histamine release. Peptides 22(12):1987–1991CrossRefPubMed Buku A, Price JA (2001) Further studies on the structural requirements for mast cell degranulating (MCD) peptide-mediated histamine release. Peptides 22(12):1987–1991CrossRefPubMed
35.
go back to reference Chen J, Lariviere WR (2010) The nociceptive and anti-nociceptive effects of bee venom injection and therapy: a double-edged sword. Prog Neurobiol 92(2):151–183CrossRefPubMedPubMedCentral Chen J, Lariviere WR (2010) The nociceptive and anti-nociceptive effects of bee venom injection and therapy: a double-edged sword. Prog Neurobiol 92(2):151–183CrossRefPubMedPubMedCentral
36.
go back to reference Tiffany CW, Burch RM (1989) Bradykinin stimulates tumor necrosis factor and interleukin-1 release from macrophages. FEBS Lett 247(2):189–192CrossRefPubMed Tiffany CW, Burch RM (1989) Bradykinin stimulates tumor necrosis factor and interleukin-1 release from macrophages. FEBS Lett 247(2):189–192CrossRefPubMed
37.
go back to reference Danneels EL et al (2015) Honeybee venom proteome profile of queens and winter bees as determined by a mass spectrometric approach. Toxins (Basel) 7(11):4468–4483CrossRef Danneels EL et al (2015) Honeybee venom proteome profile of queens and winter bees as determined by a mass spectrometric approach. Toxins (Basel) 7(11):4468–4483CrossRef
38.
go back to reference Teoh AC, KH Ryu and EG Lee (2016) One-Step Purification of Melittin Derived from Apis mellifera Bee Venom. J Microbiol Biotechnol Teoh AC, KH Ryu and EG Lee (2016) One-Step Purification of Melittin Derived from Apis mellifera Bee Venom. J Microbiol Biotechnol
39.
go back to reference Ramalingam K, Snyder GH (1993) Selective disulfide formation in truncated apamin and sarafotoxin. Biochemistry 32(41):11155–11161CrossRefPubMed Ramalingam K, Snyder GH (1993) Selective disulfide formation in truncated apamin and sarafotoxin. Biochemistry 32(41):11155–11161CrossRefPubMed
40.
go back to reference Buku A (1999) Mast cell degranulating (MCD) peptide: a prototypic peptide in allergy and inflammation. Peptides 20(3):415–420CrossRefPubMed Buku A (1999) Mast cell degranulating (MCD) peptide: a prototypic peptide in allergy and inflammation. Peptides 20(3):415–420CrossRefPubMed
41.
go back to reference Jones S, Howl J (2006) Biological applications of the receptor mimetic peptide mastoparan. Curr Protein Pept Sci 7(6):501–508CrossRefPubMed Jones S, Howl J (2006) Biological applications of the receptor mimetic peptide mastoparan. Curr Protein Pept Sci 7(6):501–508CrossRefPubMed
42.
go back to reference Yamamoto T et al (2014) Mastoparan peptide causes mitochondrial permeability transition not by interacting with specific membrane proteins but by interacting with the phospholipid phase. FEBS J 281(17):3933–3944CrossRefPubMed Yamamoto T et al (2014) Mastoparan peptide causes mitochondrial permeability transition not by interacting with specific membrane proteins but by interacting with the phospholipid phase. FEBS J 281(17):3933–3944CrossRefPubMed
43.
go back to reference Konno K, Kazuma K, Nihei K (2016) Peptide toxins in solitary wasp venoms. Toxins (Basel) 8(4):114CrossRef Konno K, Kazuma K, Nihei K (2016) Peptide toxins in solitary wasp venoms. Toxins (Basel) 8(4):114CrossRef
44.
go back to reference Konno K et al (2002) Identification of bradykinins in solitary wasp venoms. Toxicon 40(3):309–312CrossRefPubMed Konno K et al (2002) Identification of bradykinins in solitary wasp venoms. Toxicon 40(3):309–312CrossRefPubMed
45.
46.
go back to reference Baek YH et al (2006) Antinociceptive effect and the mechanism of bee venom acupuncture (Apipuncture) on inflammatory pain in the rat model of collagen-induced arthritis: mediation by alpha2-adrenoceptors. Brain Res 1073-1074:305–310CrossRefPubMed Baek YH et al (2006) Antinociceptive effect and the mechanism of bee venom acupuncture (Apipuncture) on inflammatory pain in the rat model of collagen-induced arthritis: mediation by alpha2-adrenoceptors. Brain Res 1073-1074:305–310CrossRefPubMed
47.
go back to reference Yang EJ et al (2010) Bee venom attenuates neuroinflammatory events and extends survival in amyotrophic lateral sclerosis models. J Neuroinflammation 7:69CrossRefPubMedPubMedCentral Yang EJ et al (2010) Bee venom attenuates neuroinflammatory events and extends survival in amyotrophic lateral sclerosis models. J Neuroinflammation 7:69CrossRefPubMedPubMedCentral
48.
go back to reference Baghian A et al (1997) An amphipathic alpha-helical synthetic peptide analogue of melittin inhibits herpes simplex virus-1 (HSV-1)-induced cell fusion and virus spread. Peptides 18(2):177–183CrossRefPubMed Baghian A et al (1997) An amphipathic alpha-helical synthetic peptide analogue of melittin inhibits herpes simplex virus-1 (HSV-1)-induced cell fusion and virus spread. Peptides 18(2):177–183CrossRefPubMed
49.
go back to reference Wade D et al (1992) Antibacterial peptides designed as analogs or hybrids of cecropins and melittin. Int J Pept Protein Res 40(5):429–436CrossRefPubMed Wade D et al (1992) Antibacterial peptides designed as analogs or hybrids of cecropins and melittin. Int J Pept Protein Res 40(5):429–436CrossRefPubMed
50.
go back to reference Tragust, D.B.a.S. (2015) Venom as a component of external immune defense in Hymenoptera. Springer Science+Business Media Dordrecht Tragust, D.B.a.S. (2015) Venom as a component of external immune defense in Hymenoptera. Springer Science+Business Media Dordrecht
51.
go back to reference Wachinger M et al (1998) Antimicrobial peptides melittin and cecropin inhibit replication of human immunodeficiency virus 1 by suppressing viral gene expression. J Gen Virol 79(Pt 4):731–740CrossRefPubMed Wachinger M et al (1998) Antimicrobial peptides melittin and cecropin inhibit replication of human immunodeficiency virus 1 by suppressing viral gene expression. J Gen Virol 79(Pt 4):731–740CrossRefPubMed
52.
go back to reference Liu X et al (2002) Effect of honey bee venom on proliferation of K1735M2 mouse melanoma cells in-vitro and growth of murine B16 melanomas in-vivo. J Pharm Pharmacol 54(8):1083–1089CrossRefPubMed Liu X et al (2002) Effect of honey bee venom on proliferation of K1735M2 mouse melanoma cells in-vitro and growth of murine B16 melanomas in-vivo. J Pharm Pharmacol 54(8):1083–1089CrossRefPubMed
53.
go back to reference Matysiak J et al (2011) Characterization of honeybee venom by MALDI-TOF and nanoESI-QqTOF mass spectrometry. J Pharm Biomed Anal 54(2):273–278CrossRefPubMed Matysiak J et al (2011) Characterization of honeybee venom by MALDI-TOF and nanoESI-QqTOF mass spectrometry. J Pharm Biomed Anal 54(2):273–278CrossRefPubMed
54.
go back to reference Peiren N et al (2005) The protein composition of honeybee venom reconsidered by a proteomic approach. Biochim Biophys Acta 1752(1):1–5CrossRefPubMed Peiren N et al (2005) The protein composition of honeybee venom reconsidered by a proteomic approach. Biochim Biophys Acta 1752(1):1–5CrossRefPubMed
55.
go back to reference Blank S et al (2013) Vitellogenins are new high molecular weight components and allergens (Api m 12 and Ves v 6) of Apis mellifera and Vespula Vulgaris venom. PLoS One 8(4):e62009CrossRefPubMedPubMedCentral Blank S et al (2013) Vitellogenins are new high molecular weight components and allergens (Api m 12 and Ves v 6) of Apis mellifera and Vespula Vulgaris venom. PLoS One 8(4):e62009CrossRefPubMedPubMedCentral
56.
go back to reference Blank S et al (2010) Identification, recombinant expression, and characterization of the 100 kDa high molecular weight hymenoptera venom allergens Api m 5 and Ves v 3. J Immunol 184(9):5403–5413CrossRefPubMed Blank S et al (2010) Identification, recombinant expression, and characterization of the 100 kDa high molecular weight hymenoptera venom allergens Api m 5 and Ves v 3. J Immunol 184(9):5403–5413CrossRefPubMed
59.
go back to reference Seismann H et al (2010) Dissecting cross-reactivity in hymenoptera venom allergy by circumvention of alpha-1,3-core fucosylation. Mol Immunol 47(4):799–808CrossRefPubMed Seismann H et al (2010) Dissecting cross-reactivity in hymenoptera venom allergy by circumvention of alpha-1,3-core fucosylation. Mol Immunol 47(4):799–808CrossRefPubMed
60.
go back to reference de Graaf DC et al (2009) Bee, wasp and ant venomics pave the way for a component-resolved diagnosis of sting allergy. J Proteome 72(2):145–154CrossRef de Graaf DC et al (2009) Bee, wasp and ant venomics pave the way for a component-resolved diagnosis of sting allergy. J Proteome 72(2):145–154CrossRef
61.
go back to reference Muller UR (1993) Epidemiology of insect sting allergy. Monogr Allergy 31:131–146PubMed Muller UR (1993) Epidemiology of insect sting allergy. Monogr Allergy 31:131–146PubMed
62.
go back to reference Shin YS et al (2012) Clinical features and the diagnostic value of component allergen-specific IgE in hymenoptera venom allergy. Allergy Asthma Immunol Res 4(5):284–289CrossRefPubMedPubMedCentral Shin YS et al (2012) Clinical features and the diagnostic value of component allergen-specific IgE in hymenoptera venom allergy. Allergy Asthma Immunol Res 4(5):284–289CrossRefPubMedPubMedCentral
63.
go back to reference Ludman SW, Boyle RJ (2015) Stinging insect allergy: current perspectives on venom immunotherapy. J Asthma Allergy 8:75–86PubMedPubMedCentral Ludman SW, Boyle RJ (2015) Stinging insect allergy: current perspectives on venom immunotherapy. J Asthma Allergy 8:75–86PubMedPubMedCentral
64.
go back to reference Savi E et al (2016) Comparing the ability of molecular diagnosis and CAP-inhibition in identifying the really causative venom in patients with positive tests to Vespula and Polistes species. Clin Mol Allergy 14:3CrossRefPubMedPubMedCentral Savi E et al (2016) Comparing the ability of molecular diagnosis and CAP-inhibition in identifying the really causative venom in patients with positive tests to Vespula and Polistes species. Clin Mol Allergy 14:3CrossRefPubMedPubMedCentral
65.
go back to reference Selb J et al (2016) Improved recombinant Api m 1- and Ves v 5-based IgE testing to dissect bee and yellow jacket allergy and their correlation with the severity of the sting reaction. Clin Exp Allergy 46(4):621–630CrossRefPubMed Selb J et al (2016) Improved recombinant Api m 1- and Ves v 5-based IgE testing to dissect bee and yellow jacket allergy and their correlation with the severity of the sting reaction. Clin Exp Allergy 46(4):621–630CrossRefPubMed
66.
go back to reference Rueff F, Placzek M, Przybilla B (2006) Mastocytosis and Hymenoptera venom allergy. Curr Opin Allergy Clin Immunol 6(4):284–288CrossRefPubMed Rueff F, Placzek M, Przybilla B (2006) Mastocytosis and Hymenoptera venom allergy. Curr Opin Allergy Clin Immunol 6(4):284–288CrossRefPubMed
67.
go back to reference Carter MC, Metcalfe DD, Komarow HD (2014) Mastocytosis. Immunol Allergy Clin N Am 34(1):181–196CrossRef Carter MC, Metcalfe DD, Komarow HD (2014) Mastocytosis. Immunol Allergy Clin N Am 34(1):181–196CrossRef
68.
go back to reference Bonadonna P et al (2016) Hymenoptera allergy and mast cell activation syndromes. Curr Allergy Asthma Rep 16(1):5CrossRefPubMed Bonadonna P et al (2016) Hymenoptera allergy and mast cell activation syndromes. Curr Allergy Asthma Rep 16(1):5CrossRefPubMed
69.
go back to reference Rueff F, Dugas-Breit S, Przybilla B (2009) Stinging hymenoptera and mastocytosis. Curr Opin Allergy Clin Immunol 9(4):338–342CrossRefPubMed Rueff F, Dugas-Breit S, Przybilla B (2009) Stinging hymenoptera and mastocytosis. Curr Opin Allergy Clin Immunol 9(4):338–342CrossRefPubMed
70.
go back to reference Niedoszytko M et al (2009) Mastocytosis and insect venom allergy: diagnosis, safety and efficacy of venom immunotherapy. Allergy 64(9):1237–1245CrossRefPubMed Niedoszytko M et al (2009) Mastocytosis and insect venom allergy: diagnosis, safety and efficacy of venom immunotherapy. Allergy 64(9):1237–1245CrossRefPubMed
71.
go back to reference Ozdemir C et al (2011) Mechanisms of immunotherapy to wasp and bee venom. Clin Exp Allergy 41(9):1226–1234CrossRefPubMed Ozdemir C et al (2011) Mechanisms of immunotherapy to wasp and bee venom. Clin Exp Allergy 41(9):1226–1234CrossRefPubMed
72.
73.
go back to reference Karimi A et al (2012) Effect of honey bee venom on Lewis rats with experimental allergic encephalomyelitis, a model for multiple sclerosis. Iran J Pharm Res 11(2):671–678PubMedPubMedCentral Karimi A et al (2012) Effect of honey bee venom on Lewis rats with experimental allergic encephalomyelitis, a model for multiple sclerosis. Iran J Pharm Res 11(2):671–678PubMedPubMedCentral
74.
go back to reference Hamedani M et al (2005) Bee venom, immunostimulant or immunosuppressor? Insight into the effect on matrix metalloproteinases and interferons. Immunopharmacol Immunotoxicol 27(4):671–681CrossRefPubMed Hamedani M et al (2005) Bee venom, immunostimulant or immunosuppressor? Insight into the effect on matrix metalloproteinases and interferons. Immunopharmacol Immunotoxicol 27(4):671–681CrossRefPubMed
75.
go back to reference Sur B et al (2016) Bee venom acupuncture alleviates trimellitic anhydride-induced atopic dermatitis-like skin lesions in mice. BMC Complement Altern Med 16(1):38CrossRefPubMedPubMedCentral Sur B et al (2016) Bee venom acupuncture alleviates trimellitic anhydride-induced atopic dermatitis-like skin lesions in mice. BMC Complement Altern Med 16(1):38CrossRefPubMedPubMedCentral
76.
go back to reference Subramaniam S et al (2016) Elevated and cross-responsive CD1a-reactive T cells in bee and wasp venom allergic individuals. Eur J Immunol 46(1):242–252CrossRefPubMed Subramaniam S et al (2016) Elevated and cross-responsive CD1a-reactive T cells in bee and wasp venom allergic individuals. Eur J Immunol 46(1):242–252CrossRefPubMed
77.
go back to reference Dhami S et al (2015) Allergen immunotherapy for insect venom allergy: protocol for a systematic review. Clin Transl Allergy 6:6CrossRefPubMed Dhami S et al (2015) Allergen immunotherapy for insect venom allergy: protocol for a systematic review. Clin Transl Allergy 6:6CrossRefPubMed
78.
79.
go back to reference Goldberg A, Yogev A, Confino-Cohen R (2011) Three days rush venom immunotherapy in bee allergy: safe, inexpensive and instantaneously effective. Int Arch Allergy Immunol 156(1):90–98CrossRefPubMed Goldberg A, Yogev A, Confino-Cohen R (2011) Three days rush venom immunotherapy in bee allergy: safe, inexpensive and instantaneously effective. Int Arch Allergy Immunol 156(1):90–98CrossRefPubMed
80.
go back to reference Sturm G et al (2002) Rush hymenoptera venom immunotherapy: a safe and practical protocol for high-risk patients. J Allergy Clin Immunol 110(6):928–933CrossRefPubMed Sturm G et al (2002) Rush hymenoptera venom immunotherapy: a safe and practical protocol for high-risk patients. J Allergy Clin Immunol 110(6):928–933CrossRefPubMed
81.
82.
go back to reference Goldberg A, Confino-Cohen R (2010) Bee venom immunotherapy—how early is it effective? Allergy 65(3):391–395CrossRefPubMed Goldberg A, Confino-Cohen R (2010) Bee venom immunotherapy—how early is it effective? Allergy 65(3):391–395CrossRefPubMed
83.
85.
go back to reference Sicherer SH, Leung DY (2012) Advances in allergic skin disease, anaphylaxis, and hypersensitivity reactions to foods, drugs, and insects in 2011. J Allergy Clin Immunol 129(1):76–85CrossRefPubMed Sicherer SH, Leung DY (2012) Advances in allergic skin disease, anaphylaxis, and hypersensitivity reactions to foods, drugs, and insects in 2011. J Allergy Clin Immunol 129(1):76–85CrossRefPubMed
Metadata
Title
Immunology of Bee Venom
Authors
Daniel Elieh Ali Komi
Farzaneh Shafaghat
Ricardo D. Zwiener
Publication date
01-06-2018
Publisher
Springer US
Published in
Clinical Reviews in Allergy & Immunology / Issue 3/2018
Print ISSN: 1080-0549
Electronic ISSN: 1559-0267
DOI
https://doi.org/10.1007/s12016-017-8597-4

Other articles of this Issue 3/2018

Clinical Reviews in Allergy & Immunology 3/2018 Go to the issue