Skip to main content
Top
Published in: Clinical Reviews in Allergy & Immunology 1/2017

01-02-2017

Thymic Germinal Centers and Corticosteroids in Myasthenia Gravis: an Immunopathological Study in 1035 Cases and a Critical Review

Authors: Frédérique Truffault, Vincent de Montpreville, Bruno Eymard, Tarek Sharshar, Rozen Le Panse, Sonia Berrih-Aknin

Published in: Clinical Reviews in Allergy & Immunology | Issue 1/2017

Login to get access

Abstract

The most common form of Myasthenia gravis (MG) is due to anti-acetylcholine receptor (AChR) antibodies and is frequently associated with thymic pathology. In this review, we discuss the immunopathological characteristics and molecular mechanisms of thymic follicular hyperplasia, the effects of corticosteroids on this thymic pathology, and the role of thymic epithelial cells (TEC), a key player in the inflammatory thymic mechanisms. This review is based not only on the literature data but also on thymic transcriptome results and analyses of pathological and immunological correlations in a vast cohort of 1035 MG patients without thymoma. We show that among patients presenting a thymic hyperplasia with germinal centers (GC), 80 % are females, indicating that thymic follicular hyperplasia is mainly a disease of women. The presence of anti-AChR antibodies is correlated with the degree of follicular hyperplasia, suggesting that the thymus is a source of anti-AChR antibodies. The degree of hyperplasia is not dependent upon the time from the onset, implying that either the antigen is chronically expressed and/or that the mechanisms of the resolution of the GC are not efficiently controlled. Glucocorticoids, a conventional therapy in MG, induce a significant reduction in the GC number, together with changes in the expression of chemokines and angiogenesis. These changes are likely related to the acetylation molecular process, overrepresented in corticosteroid-treated patients, and essential for gene regulation. Altogether, based on the pathological and molecular thymic abnormalities found in MG patients, this review provides some explanations for the benefit of thymectomy in early-onset MG patients.
Literature
1.
go back to reference Berrih-Aknin S, Frenkian-Cuvelier M, Eymard B (2014) Diagnostic and clinical classification of autoimmune myasthenia gravis. J Autoimmun 48–49: 143–148. Berrih-Aknin S, Frenkian-Cuvelier M, Eymard B (2014) Diagnostic and clinical classification of autoimmune myasthenia gravis. J Autoimmun 48–49: 143–148.
2.
go back to reference Higuchi O, Hamuro J, Motomura M, Yamanashi Y (2011) Autoantibodies to low-density lipoprotein receptor-related protein 4 in myasthenia gravis. Ann Neurol 69:418–422PubMedCrossRef Higuchi O, Hamuro J, Motomura M, Yamanashi Y (2011) Autoantibodies to low-density lipoprotein receptor-related protein 4 in myasthenia gravis. Ann Neurol 69:418–422PubMedCrossRef
3.
go back to reference Zisimopoulou P, Evangelakou P, Tzartos J, Lazaridis K, Zouvelou V et al (2014) A comprehensive analysis of the epidemiology and clinical characteristics of anti-LRP4 in myasthenia gravis. J Autoimmun 52:139–145PubMedCrossRef Zisimopoulou P, Evangelakou P, Tzartos J, Lazaridis K, Zouvelou V et al (2014) A comprehensive analysis of the epidemiology and clinical characteristics of anti-LRP4 in myasthenia gravis. J Autoimmun 52:139–145PubMedCrossRef
4.
go back to reference Berrih-Aknin S (2014) Myasthenia Gravis: paradox versus paradigm in autoimmunity. J Autoimmun 52:1–28PubMedCrossRef Berrih-Aknin S (2014) Myasthenia Gravis: paradox versus paradigm in autoimmunity. J Autoimmun 52:1–28PubMedCrossRef
5.
go back to reference Berrih-Aknin S, Le Panse R (2014) Myasthenia gravis: a comprehensive review of immune dysregulation and etiological mechanisms. J Autoimmun 52:90–100PubMedCrossRef Berrih-Aknin S, Le Panse R (2014) Myasthenia gravis: a comprehensive review of immune dysregulation and etiological mechanisms. J Autoimmun 52:90–100PubMedCrossRef
6.
go back to reference Hogquist KA, Baldwin TA, Jameson SC (2005) Central tolerance: learning self-control in the thymus. Nat Rev Immunol 5:772–782PubMedCrossRef Hogquist KA, Baldwin TA, Jameson SC (2005) Central tolerance: learning self-control in the thymus. Nat Rev Immunol 5:772–782PubMedCrossRef
7.
8.
go back to reference Gupta S, Louis AG (2013) Tolerance and autoimmunity in primary immunodeficiency disease: a comprehensive review. Clin Rev Allergy Immunol 45:162–169PubMedCrossRef Gupta S, Louis AG (2013) Tolerance and autoimmunity in primary immunodeficiency disease: a comprehensive review. Clin Rev Allergy Immunol 45:162–169PubMedCrossRef
9.
go back to reference Klein L, Kyewski B, Allen PM, Hogquist KA (2014) Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t see). Nat Rev Immunol 14:377–391PubMedPubMedCentralCrossRef Klein L, Kyewski B, Allen PM, Hogquist KA (2014) Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t see). Nat Rev Immunol 14:377–391PubMedPubMedCentralCrossRef
11.
go back to reference Bertho JM, Demarquay C, Moulian N, Van Der Meeren A, Berrih-Aknin S et al (1997) Phenotypic and immunohistological analyses of the human adult thymus: evidence for an active thymus during adult life. Cell Immunol 179:30–40PubMedCrossRef Bertho JM, Demarquay C, Moulian N, Van Der Meeren A, Berrih-Aknin S et al (1997) Phenotypic and immunohistological analyses of the human adult thymus: evidence for an active thymus during adult life. Cell Immunol 179:30–40PubMedCrossRef
12.
13.
go back to reference Clarke AG, Kendall MD (1994) The thymus in pregnancy: the interplay of neural, endocrine and immune influences. Immunol Today 15:545–551PubMedCrossRef Clarke AG, Kendall MD (1994) The thymus in pregnancy: the interplay of neural, endocrine and immune influences. Immunol Today 15:545–551PubMedCrossRef
14.
go back to reference George AJ, Ritter MA (1996) Thymic involution with ageing: obsolescence or good housekeeping? Immunol Today 17:267–272PubMedCrossRef George AJ, Ritter MA (1996) Thymic involution with ageing: obsolescence or good housekeeping? Immunol Today 17:267–272PubMedCrossRef
15.
go back to reference Steinmann GG, Klaus B, Muller-Hermelink HK (1985) The involution of the ageing human thymic epithelium is independent of puberty. A morphometric study. Scand J Immunol 22:563–575PubMedCrossRef Steinmann GG, Klaus B, Muller-Hermelink HK (1985) The involution of the ageing human thymic epithelium is independent of puberty. A morphometric study. Scand J Immunol 22:563–575PubMedCrossRef
16.
go back to reference Thomas JA, Sloane JP, Imrie SF, Ritter MA, Schuurman HJ et al (1986) Immunohistology of the thymus in bone marrow transplant recipients. Am J Pathol 122:531–540PubMedPubMedCentral Thomas JA, Sloane JP, Imrie SF, Ritter MA, Schuurman HJ et al (1986) Immunohistology of the thymus in bone marrow transplant recipients. Am J Pathol 122:531–540PubMedPubMedCentral
17.
go back to reference Douek DC, McFarland RD, Keiser PH, Gage EA, Massey JM et al (1998) Changes in thymic function with age and during the treatment of HIV infection. Nature 396:690–695PubMedCrossRef Douek DC, McFarland RD, Keiser PH, Gage EA, Massey JM et al (1998) Changes in thymic function with age and during the treatment of HIV infection. Nature 396:690–695PubMedCrossRef
18.
go back to reference Pido-Lopez J, Imami N, Aspinall R (2001) Both age and gender affect thymic output: more recent thymic migrants in females than males as they age. Clin Exp Immunol 125:409–413PubMedPubMedCentralCrossRef Pido-Lopez J, Imami N, Aspinall R (2001) Both age and gender affect thymic output: more recent thymic migrants in females than males as they age. Clin Exp Immunol 125:409–413PubMedPubMedCentralCrossRef
20.
go back to reference Gui J, Mustachio LM, Su DM, Craig RW (2012) Thymus Size and Age-related Thymic Involution: Early Programming, Sexual Dimorphism, Progenitors and Stroma. Aging Dis 3:280–290PubMedPubMedCentral Gui J, Mustachio LM, Su DM, Craig RW (2012) Thymus Size and Age-related Thymic Involution: Early Programming, Sexual Dimorphism, Progenitors and Stroma. Aging Dis 3:280–290PubMedPubMedCentral
21.
22.
go back to reference Zairat’iants OV, Vetshev PS, Ippolitov I, Shkrob LO, Belokrinitskii DV et al (1991) The morphological and clinico-immunological characteristics of 2 types of myasthenia. Arkh Patol 53:22–27PubMed Zairat’iants OV, Vetshev PS, Ippolitov I, Shkrob LO, Belokrinitskii DV et al (1991) The morphological and clinico-immunological characteristics of 2 types of myasthenia. Arkh Patol 53:22–27PubMed
23.
go back to reference Liu Z, Feng H, Yeung SC, Zheng Z, Liu W et al (2011) Extended transsternal thymectomy for the treatment of ocular myasthenia gravis. Ann Thorac Surg 92:1993–1999PubMedCrossRef Liu Z, Feng H, Yeung SC, Zheng Z, Liu W et al (2011) Extended transsternal thymectomy for the treatment of ocular myasthenia gravis. Ann Thorac Surg 92:1993–1999PubMedCrossRef
24.
go back to reference Meraouna A, Cizeron-Clairac G, Panse RL, Bismuth J, Truffault F et al (2006) The chemokine CXCL13 is a key molecule in autoimmune myasthenia gravis. Blood 108:432–440PubMedPubMedCentralCrossRef Meraouna A, Cizeron-Clairac G, Panse RL, Bismuth J, Truffault F et al (2006) The chemokine CXCL13 is a key molecule in autoimmune myasthenia gravis. Blood 108:432–440PubMedPubMedCentralCrossRef
25.
go back to reference Kanda N, Tamaki K (1999) Estrogen enhances immunoglobulin production by human PBMCs. J Allergy Clin Immunol 103:282–288PubMedCrossRef Kanda N, Tamaki K (1999) Estrogen enhances immunoglobulin production by human PBMCs. J Allergy Clin Immunol 103:282–288PubMedCrossRef
26.
28.
go back to reference Panchanathan R, Choubey D (2013) Murine BAFF expression is up-regulated by estrogen and interferons: implications for sex bias in the development of autoimmunity. Mol Immunol 53:15–23PubMedCrossRef Panchanathan R, Choubey D (2013) Murine BAFF expression is up-regulated by estrogen and interferons: implications for sex bias in the development of autoimmunity. Mol Immunol 53:15–23PubMedCrossRef
29.
30.
go back to reference Whitacre CC, Reingold SC, O’Looney PA (1999) A gender gap in autoimmunity. Science 283:1277–1278PubMedCrossRef Whitacre CC, Reingold SC, O’Looney PA (1999) A gender gap in autoimmunity. Science 283:1277–1278PubMedCrossRef
31.
go back to reference Grimaldi CM, Cleary J, Dagtas AS, Moussai D, Diamond B (2002) Estrogen alters thresholds for B cell apoptosis and activation. J Clin Invest 109:1625–1633PubMedPubMedCentralCrossRef Grimaldi CM, Cleary J, Dagtas AS, Moussai D, Diamond B (2002) Estrogen alters thresholds for B cell apoptosis and activation. J Clin Invest 109:1625–1633PubMedPubMedCentralCrossRef
32.
go back to reference Medina KL, Strasser A, Kincade PW (2000) Estrogen influences the differentiation, proliferation, and survival of early B-lineage precursors. Blood 95:2059–2067PubMed Medina KL, Strasser A, Kincade PW (2000) Estrogen influences the differentiation, proliferation, and survival of early B-lineage precursors. Blood 95:2059–2067PubMed
34.
go back to reference Shim GJ, Kis LL, Warner M, Gustafsson JA (2004) Autoimmune glomerulonephritis with spontaneous formation of splenic germinal centers in mice lacking the estrogen receptor alpha gene. Proc Natl Acad Sci U S A 101:1720–1724PubMedPubMedCentralCrossRef Shim GJ, Kis LL, Warner M, Gustafsson JA (2004) Autoimmune glomerulonephritis with spontaneous formation of splenic germinal centers in mice lacking the estrogen receptor alpha gene. Proc Natl Acad Sci U S A 101:1720–1724PubMedPubMedCentralCrossRef
35.
go back to reference Trigunaite A, Khan A, Der E, Song A, Varikuti S et al (2013) Gr-1(high) CD11b + cells suppress B cell differentiation and lupus-like disease in lupus-prone male mice. Arthritis Rheum 65:2392–2402PubMedCrossRef Trigunaite A, Khan A, Der E, Song A, Varikuti S et al (2013) Gr-1(high) CD11b + cells suppress B cell differentiation and lupus-like disease in lupus-prone male mice. Arthritis Rheum 65:2392–2402PubMedCrossRef
36.
go back to reference Baggi F, Antozzi C, Toscani C, Cordiglieri C (2012) Acetylcholine receptor-induced experimental myasthenia gravis: what have we learned from animal models after three decades? Arch Immunol Ther Exp (Warsz) 60:19–30CrossRef Baggi F, Antozzi C, Toscani C, Cordiglieri C (2012) Acetylcholine receptor-induced experimental myasthenia gravis: what have we learned from animal models after three decades? Arch Immunol Ther Exp (Warsz) 60:19–30CrossRef
37.
go back to reference Berrih S, Morel E, Gaud C, Raimond F, Le Brigand H et al (1984) Anti-AChR antibodies, thymic histology, and T cell subsets in myasthenia gravis. Neurology 34:66–71PubMedCrossRef Berrih S, Morel E, Gaud C, Raimond F, Le Brigand H et al (1984) Anti-AChR antibodies, thymic histology, and T cell subsets in myasthenia gravis. Neurology 34:66–71PubMedCrossRef
38.
go back to reference Willcox HN, Newsom-Davis J, Calder LR (1983) Greatly increased autoantibody production in myasthenia gravis by thymocyte suspensions prepared with proteolytic enzymes. Clin Exp Immunol 54:378–386PubMedPubMedCentral Willcox HN, Newsom-Davis J, Calder LR (1983) Greatly increased autoantibody production in myasthenia gravis by thymocyte suspensions prepared with proteolytic enzymes. Clin Exp Immunol 54:378–386PubMedPubMedCentral
39.
go back to reference Lisak RP, Levinson AI, Zweiman B, Kornstein MJ (1986) Antibodies to acetylcholine receptor and tetanus toxoid: in vitro synthesis by thymic lymphocytes. J Immunol 137:1221–1225PubMed Lisak RP, Levinson AI, Zweiman B, Kornstein MJ (1986) Antibodies to acetylcholine receptor and tetanus toxoid: in vitro synthesis by thymic lymphocytes. J Immunol 137:1221–1225PubMed
40.
go back to reference Leprince C, Cohen-Kaminsky S, Berrih-Aknin S, Vernet-Der Garabedian B, Treton D et al (1990) Thymic B cells from myasthenia gravis patients are activated B cells. Phenotypic and functional analysis. J Immunol 145:2115–2122PubMed Leprince C, Cohen-Kaminsky S, Berrih-Aknin S, Vernet-Der Garabedian B, Treton D et al (1990) Thymic B cells from myasthenia gravis patients are activated B cells. Phenotypic and functional analysis. J Immunol 145:2115–2122PubMed
41.
go back to reference Fujii Y, Hashimoto J, Monden Y, Ito T, Nakahara K et al (1986) Specific activation of lymphocytes against acetylcholine receptor in the thymus in myasthenia gravis. J Immunol 136:887–891PubMed Fujii Y, Hashimoto J, Monden Y, Ito T, Nakahara K et al (1986) Specific activation of lymphocytes against acetylcholine receptor in the thymus in myasthenia gravis. J Immunol 136:887–891PubMed
42.
go back to reference Yoshikawa H, Satoh K, Yasukawa Y, Yamada M (2001) Analysis of immunoglobulin secretion by lymph organs with myasthenia gravis. Acta Neurol Scand 103:53–58PubMedCrossRef Yoshikawa H, Satoh K, Yasukawa Y, Yamada M (2001) Analysis of immunoglobulin secretion by lymph organs with myasthenia gravis. Acta Neurol Scand 103:53–58PubMedCrossRef
43.
go back to reference Schonbeck S, Padberg F, Hohlfeld R, Wekerle H (1992) Transplantation of thymic autoimmune microenvironment to severe combined immunodeficiency mice. A new model of myasthenia gravis. J Clin Invest 90:245–250PubMedPubMedCentralCrossRef Schonbeck S, Padberg F, Hohlfeld R, Wekerle H (1992) Transplantation of thymic autoimmune microenvironment to severe combined immunodeficiency mice. A new model of myasthenia gravis. J Clin Invest 90:245–250PubMedPubMedCentralCrossRef
44.
go back to reference Aissaoui A, Klingel-Schmitt I, Couderc J, Chateau D, Romagne F et al (1999) Prevention of autoimmune attack by targeting specific T-cell receptors in a severe combined immunodeficiency mouse model of myasthenia gravis. Ann Neurol 46:559–567PubMedCrossRef Aissaoui A, Klingel-Schmitt I, Couderc J, Chateau D, Romagne F et al (1999) Prevention of autoimmune attack by targeting specific T-cell receptors in a severe combined immunodeficiency mouse model of myasthenia gravis. Ann Neurol 46:559–567PubMedCrossRef
45.
go back to reference Vincent A, Newsom-Davis J, Newton P, Beck N (1983) Acetylcholine receptor antibody and clinical response to thymectomy in myasthenia gravis. Neurology 33:1276–1282PubMedCrossRef Vincent A, Newsom-Davis J, Newton P, Beck N (1983) Acetylcholine receptor antibody and clinical response to thymectomy in myasthenia gravis. Neurology 33:1276–1282PubMedCrossRef
46.
go back to reference Oosterhuis HJ, Limburg PC, Hummel-Tappel E, Van den Burg W, The TH (1985) Anti-acetylcholine receptor antibodies in myasthenia gravis. Part 3. The effect of thymectomy. J Neurol Sci 69:335–343PubMedCrossRef Oosterhuis HJ, Limburg PC, Hummel-Tappel E, Van den Burg W, The TH (1985) Anti-acetylcholine receptor antibodies in myasthenia gravis. Part 3. The effect of thymectomy. J Neurol Sci 69:335–343PubMedCrossRef
47.
go back to reference Kosco-Vilbois MH, Bonnefoy JY, Chvatchko Y (1997) The physiology of murine germinal center reactions. Immunol Rev 156:127–136PubMedCrossRef Kosco-Vilbois MH, Bonnefoy JY, Chvatchko Y (1997) The physiology of murine germinal center reactions. Immunol Rev 156:127–136PubMedCrossRef
48.
go back to reference Baumjohann D, Preite S, Reboldi A, Ronchi F, Ansel KM et al (2013) Persistent antigen and germinal center B cells sustain T follicular helper cell responses and phenotype. Immunity 38:596–605PubMedCrossRef Baumjohann D, Preite S, Reboldi A, Ronchi F, Ansel KM et al (2013) Persistent antigen and germinal center B cells sustain T follicular helper cell responses and phenotype. Immunity 38:596–605PubMedCrossRef
49.
go back to reference Wakkach A, Guyon T, Bruand C, Tzartos S, Cohen-Kaminsky S et al (1996) Expression of acetylcholine receptor genes in human thymic epithelial cells: implications for myasthenia gravis. J Immunol 157:3752–3760PubMed Wakkach A, Guyon T, Bruand C, Tzartos S, Cohen-Kaminsky S et al (1996) Expression of acetylcholine receptor genes in human thymic epithelial cells: implications for myasthenia gravis. J Immunol 157:3752–3760PubMed
50.
go back to reference Wakkach A, Poea S, Chastre E, Gespach C, Lecerf F et al (1999) Establishment of a human thymic myoid cell line. Phenotypic and functional characteristics. Am J Pathol 155:1229–1240PubMedPubMedCentralCrossRef Wakkach A, Poea S, Chastre E, Gespach C, Lecerf F et al (1999) Establishment of a human thymic myoid cell line. Phenotypic and functional characteristics. Am J Pathol 155:1229–1240PubMedPubMedCentralCrossRef
51.
go back to reference Wittenbrink N, Klein A, Weiser AA, Schuchhardt J, Or-Guil M (2011) Is There a Typical Germinal Center? A Large-Scale Immunohistological Study on the Cellular Composition of Germinal Centers during the Hapten-Carrier-Driven Primary Immune Response in Mice. J Immunol 187:6185–6196PubMedCrossRef Wittenbrink N, Klein A, Weiser AA, Schuchhardt J, Or-Guil M (2011) Is There a Typical Germinal Center? A Large-Scale Immunohistological Study on the Cellular Composition of Germinal Centers during the Hapten-Carrier-Driven Primary Immune Response in Mice. J Immunol 187:6185–6196PubMedCrossRef
52.
go back to reference Shiono H, Fujii Y, Okumura M, Takeuchi Y, Inoue M et al (1997) Failure to down-regulate Bcl-2 protein in thymic germinal center B cells in myasthenia gravis. Eur J Immunol 27:805–809PubMedCrossRef Shiono H, Fujii Y, Okumura M, Takeuchi Y, Inoue M et al (1997) Failure to down-regulate Bcl-2 protein in thymic germinal center B cells in myasthenia gravis. Eur J Immunol 27:805–809PubMedCrossRef
53.
go back to reference Alexander CM, Tygrett LT, Boyden AW, Wolniak KL, Legge KL et al (2011) T regulatory cells participate in the control of germinal centre reactions. Immunology 133:452–468PubMedPubMedCentralCrossRef Alexander CM, Tygrett LT, Boyden AW, Wolniak KL, Legge KL et al (2011) T regulatory cells participate in the control of germinal centre reactions. Immunology 133:452–468PubMedPubMedCentralCrossRef
54.
go back to reference Aloisi F, Pujol-Borrell R (2006) Lymphoid neogenesis in chronic inflammatory diseases. Nat Rev Immunol 6:205–217PubMedCrossRef Aloisi F, Pujol-Borrell R (2006) Lymphoid neogenesis in chronic inflammatory diseases. Nat Rev Immunol 6:205–217PubMedCrossRef
55.
go back to reference Armengol MP, Juan M, Lucas-Martin A, Fernandez-Figueras MT, Jaraquemada D et al (2001) Thyroid autoimmune disease: demonstration of thyroid antigen-specific B cells and recombination-activating gene expression in chemokine-containing active intrathyroidal germinal centers. Am J Pathol 159:861–873PubMedPubMedCentralCrossRef Armengol MP, Juan M, Lucas-Martin A, Fernandez-Figueras MT, Jaraquemada D et al (2001) Thyroid autoimmune disease: demonstration of thyroid antigen-specific B cells and recombination-activating gene expression in chemokine-containing active intrathyroidal germinal centers. Am J Pathol 159:861–873PubMedPubMedCentralCrossRef
56.
go back to reference Salomonsson S, Jonsson MV, Skarstein K, Brokstad KA, Hjelmstrom P et al (2003) Cellular basis of ectopic germinal center formation and autoantibody production in the target organ of patients with Sjogren’s syndrome. Arthritis Rheum 48:3187–3201PubMedCrossRef Salomonsson S, Jonsson MV, Skarstein K, Brokstad KA, Hjelmstrom P et al (2003) Cellular basis of ectopic germinal center formation and autoantibody production in the target organ of patients with Sjogren’s syndrome. Arthritis Rheum 48:3187–3201PubMedCrossRef
57.
go back to reference Randen I, Mellbye OJ, Forre O, Natvig JB (1995) The identification of germinal centres and follicular dendritic cell networks in rheumatoid synovial tissue. Scand J Immunol 41:481–486PubMedCrossRef Randen I, Mellbye OJ, Forre O, Natvig JB (1995) The identification of germinal centres and follicular dendritic cell networks in rheumatoid synovial tissue. Scand J Immunol 41:481–486PubMedCrossRef
58.
go back to reference Serafini B, Rosicarelli B, Magliozzi R, Stigliano E, Aloisi F (2004) Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol 14:164–174PubMedCrossRef Serafini B, Rosicarelli B, Magliozzi R, Stigliano E, Aloisi F (2004) Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol 14:164–174PubMedCrossRef
59.
go back to reference Sugimura T, Shiokawa S, Haraoka S, Fujimoto K, Ohshima K et al (2003) Local antigen-driven oligoclonal expansion of B cells in the liver portal areas of patients with primary biliary cirrhosis. Liver Int 23:323–328PubMedCrossRef Sugimura T, Shiokawa S, Haraoka S, Fujimoto K, Ohshima K et al (2003) Local antigen-driven oligoclonal expansion of B cells in the liver portal areas of patients with primary biliary cirrhosis. Liver Int 23:323–328PubMedCrossRef
60.
go back to reference Bradshaw EM, Orihuela A, McArdel SL, Salajegheh M, Amato AA et al (2007) A local antigen-driven humoral response is present in the inflammatory myopathies. J Immunol 178:547–556PubMedCrossRef Bradshaw EM, Orihuela A, McArdel SL, Salajegheh M, Amato AA et al (2007) A local antigen-driven humoral response is present in the inflammatory myopathies. J Immunol 178:547–556PubMedCrossRef
61.
go back to reference Sfikakis PP, Karali V, Lilakos K, Georgiou G, Panayiotidis P (2009) Clonal expansion of B-cells in human systemic lupus erythematosus: evidence from studies before and after therapeutic B-cell depletion. Clin Immunol 132:19–31PubMedCrossRef Sfikakis PP, Karali V, Lilakos K, Georgiou G, Panayiotidis P (2009) Clonal expansion of B-cells in human systemic lupus erythematosus: evidence from studies before and after therapeutic B-cell depletion. Clin Immunol 132:19–31PubMedCrossRef
62.
go back to reference Berrih-Aknin S, Ragheb S, Le Panse R, Lisak RP (2013) Ectopic germinal centers, BAFF and anti-B-cell therapy in myasthenia gravis. Autoimmun Rev 12:885–893PubMedCrossRef Berrih-Aknin S, Ragheb S, Le Panse R, Lisak RP (2013) Ectopic germinal centers, BAFF and anti-B-cell therapy in myasthenia gravis. Autoimmun Rev 12:885–893PubMedCrossRef
63.
go back to reference Maecker HT, Lindstrom TM, Robinson WH, Utz PJ, Hale M et al (2012) New tools for classification and monitoring of autoimmune diseases. Nat Rev Rheumatol 8:317–328PubMedPubMedCentralCrossRef Maecker HT, Lindstrom TM, Robinson WH, Utz PJ, Hale M et al (2012) New tools for classification and monitoring of autoimmune diseases. Nat Rev Rheumatol 8:317–328PubMedPubMedCentralCrossRef
64.
65.
go back to reference Le Panse R, Cizeron-Clairac G, Bismuth J, Berrih-Aknin S (2006) Microarrays reveal distinct gene signatures in the thymus of seropositive and seronegative myasthenia gravis patients and the role of CC chemokine ligand 21 in thymic hyperplasia. J Immunol 177:7868–7879PubMedPubMedCentralCrossRef Le Panse R, Cizeron-Clairac G, Bismuth J, Berrih-Aknin S (2006) Microarrays reveal distinct gene signatures in the thymus of seropositive and seronegative myasthenia gravis patients and the role of CC chemokine ligand 21 in thymic hyperplasia. J Immunol 177:7868–7879PubMedPubMedCentralCrossRef
66.
go back to reference Cizeron-Clairac G, Le Panse R, Frenkian-Cuvelier M, Meraouna A, Truffault F et al (2008) Thymus and Myasthenia Gravis: what can we learn from DNA microarrays? J Neuroimmunol 201–202:57–63PubMedCrossRef Cizeron-Clairac G, Le Panse R, Frenkian-Cuvelier M, Meraouna A, Truffault F et al (2008) Thymus and Myasthenia Gravis: what can we learn from DNA microarrays? J Neuroimmunol 201–202:57–63PubMedCrossRef
67.
go back to reference Le Panse R, Berrih-Aknin S (2005) Thymic myoid cells protect thymocytes from apoptosis and modulate their differentiation: implication of the ERK and Akt signaling pathways. Cell Death Differ 12:463–472PubMedPubMedCentralCrossRef Le Panse R, Berrih-Aknin S (2005) Thymic myoid cells protect thymocytes from apoptosis and modulate their differentiation: implication of the ERK and Akt signaling pathways. Cell Death Differ 12:463–472PubMedPubMedCentralCrossRef
68.
go back to reference Mesnard-Rouiller L, Bismuth J, Wakkach A, Poea-Guyon S, Berrih-Aknin S (2004) Thymic myoid cells express high levels of muscle genes. J Neuroimmunol 148:97–105PubMedCrossRef Mesnard-Rouiller L, Bismuth J, Wakkach A, Poea-Guyon S, Berrih-Aknin S (2004) Thymic myoid cells express high levels of muscle genes. J Neuroimmunol 148:97–105PubMedCrossRef
69.
go back to reference Nunes-Alves C, Nobrega C, Behar SM, Correia-Neves M (2013) Tolerance has its limits: how the thymus copes with infection. Trends Immunol 34:502–510PubMedCrossRef Nunes-Alves C, Nobrega C, Behar SM, Correia-Neves M (2013) Tolerance has its limits: how the thymus copes with infection. Trends Immunol 34:502–510PubMedCrossRef
70.
go back to reference Cufi P, Dragin N, Weiss JM, Martinez-Martinez P, De Baets MH et al (2013) Implication of double-stranded RNA signaling in the etiology of autoimmune myasthenia gravis. Ann Neurol 73:281–293PubMedCrossRef Cufi P, Dragin N, Weiss JM, Martinez-Martinez P, De Baets MH et al (2013) Implication of double-stranded RNA signaling in the etiology of autoimmune myasthenia gravis. Ann Neurol 73:281–293PubMedCrossRef
71.
go back to reference Honey K, Rudensky AY (2003) Lysosomal cysteine proteases regulate antigen presentation. Nat Rev Immunol 3:472–482PubMedCrossRef Honey K, Rudensky AY (2003) Lysosomal cysteine proteases regulate antigen presentation. Nat Rev Immunol 3:472–482PubMedCrossRef
72.
go back to reference Tolosa E, Li W, Yasuda Y, Wienhold W, Denzin LK et al (2003) Cathepsin V is involved in the degradation of invariant chain in human thymus and is overexpressed in myasthenia gravis. J Clin Invest 112:517–526PubMedPubMedCentralCrossRef Tolosa E, Li W, Yasuda Y, Wienhold W, Denzin LK et al (2003) Cathepsin V is involved in the degradation of invariant chain in human thymus and is overexpressed in myasthenia gravis. J Clin Invest 112:517–526PubMedPubMedCentralCrossRef
73.
go back to reference Weiss JM, Cufi P, Bismuth J, Eymard B, Fadel E et al (2013) SDF-1/CXCL12 recruits B cells and antigen-presenting cells to the thymus of autoimmune myasthenia gravis patients. Immunobiology 218:373–381PubMedCrossRef Weiss JM, Cufi P, Bismuth J, Eymard B, Fadel E et al (2013) SDF-1/CXCL12 recruits B cells and antigen-presenting cells to the thymus of autoimmune myasthenia gravis patients. Immunobiology 218:373–381PubMedCrossRef
74.
go back to reference Avidan N, Le Panse R, Berrih-Aknin S, Miller A (2014) Genetic basis of myasthenia gravis - a comprehensive review. J Autoimmun 52:146–153PubMedCrossRef Avidan N, Le Panse R, Berrih-Aknin S, Miller A (2014) Genetic basis of myasthenia gravis - a comprehensive review. J Autoimmun 52:146–153PubMedCrossRef
75.
go back to reference Burn GL, Svensson L, Sanchez-Blanco C, Saini M, Cope AP (2011) Why is PTPN22 a good candidate susceptibility gene for autoimmune disease? FEBS Lett 585:3689–3698PubMedCrossRef Burn GL, Svensson L, Sanchez-Blanco C, Saini M, Cope AP (2011) Why is PTPN22 a good candidate susceptibility gene for autoimmune disease? FEBS Lett 585:3689–3698PubMedCrossRef
76.
go back to reference Menard L, Saadoun D, Isnardi I, Ng YS, Meyers G et al (2011) The PTPN22 allele encoding an R620W variant interferes with the removal of developing autoreactive B cells in humans. J Clin Invest 121:3635–3644PubMedPubMedCentralCrossRef Menard L, Saadoun D, Isnardi I, Ng YS, Meyers G et al (2011) The PTPN22 allele encoding an R620W variant interferes with the removal of developing autoreactive B cells in humans. J Clin Invest 121:3635–3644PubMedPubMedCentralCrossRef
78.
go back to reference Lefvert AK, Zhao Y, Ramanujam R, Yu S, Pirskanen R et al (2008) PTPN22 R620W promotes production of anti-AChR autoantibodies and IL-2 in myasthenia gravis. J Neuroimmunol 197:110–113PubMedCrossRef Lefvert AK, Zhao Y, Ramanujam R, Yu S, Pirskanen R et al (2008) PTPN22 R620W promotes production of anti-AChR autoantibodies and IL-2 in myasthenia gravis. J Neuroimmunol 197:110–113PubMedCrossRef
79.
go back to reference Wu J, Katrekar A, Honigberg LA, Smith AM, Conn MT et al (2006) Identification of substrates of human protein-tyrosine phosphatase PTPN22. J Biol Chem 281:11002–11010PubMedCrossRef Wu J, Katrekar A, Honigberg LA, Smith AM, Conn MT et al (2006) Identification of substrates of human protein-tyrosine phosphatase PTPN22. J Biol Chem 281:11002–11010PubMedCrossRef
80.
go back to reference Hasegawa K, Martin F, Huang G, Tumas D, Diehl L et al (2004) PEST domain-enriched tyrosine phosphatase (PEP) regulation of effector/memory T cells. Science 303:685–689PubMedCrossRef Hasegawa K, Martin F, Huang G, Tumas D, Diehl L et al (2004) PEST domain-enriched tyrosine phosphatase (PEP) regulation of effector/memory T cells. Science 303:685–689PubMedCrossRef
81.
go back to reference Rhee I, Veillette A (2012) Protein tyrosine phosphatases in lymphocyte activation and autoimmunity. Nat Immunol 13:439–447PubMedCrossRef Rhee I, Veillette A (2012) Protein tyrosine phosphatases in lymphocyte activation and autoimmunity. Nat Immunol 13:439–447PubMedCrossRef
82.
go back to reference Maine CJ, Marquardt K, Cheung J, La S (2014) PTPN22 controls the germinal center by influencing the numbers and activity of T follicular helper cells. J Immunol 192:1415–1424PubMedPubMedCentralCrossRef Maine CJ, Marquardt K, Cheung J, La S (2014) PTPN22 controls the germinal center by influencing the numbers and activity of T follicular helper cells. J Immunol 192:1415–1424PubMedPubMedCentralCrossRef
83.
go back to reference Gradolatto A, Nazzal D, Truffault F, Bismuth J, Fadel E et al (2014) Both Treg cells and Tconv cells are defective in the Myasthenia gravis thymus: roles of IL-17 and TNF-alpha. J Autoimmun 52:53–63PubMedCrossRef Gradolatto A, Nazzal D, Truffault F, Bismuth J, Fadel E et al (2014) Both Treg cells and Tconv cells are defective in the Myasthenia gravis thymus: roles of IL-17 and TNF-alpha. J Autoimmun 52:53–63PubMedCrossRef
84.
go back to reference Zhang X, Liu S, Chang T, Xu J, Zhang C et al (2016) Intrathymic Tfh/B Cells Interaction Leads to Ectopic GCs Formation and Anti-AChR Antibody Production: Central Role in Triggering MG Occurrence. Mol Neurobiol 53:120–131PubMedCrossRef Zhang X, Liu S, Chang T, Xu J, Zhang C et al (2016) Intrathymic Tfh/B Cells Interaction Leads to Ectopic GCs Formation and Anti-AChR Antibody Production: Central Role in Triggering MG Occurrence. Mol Neurobiol 53:120–131PubMedCrossRef
85.
go back to reference Gilhus NE, Verschuuren JJ (2015) Myasthenia gravis: subgroup classification and therapeutic strategies. Lancet Neurol 14:1023–1036PubMedCrossRef Gilhus NE, Verschuuren JJ (2015) Myasthenia gravis: subgroup classification and therapeutic strategies. Lancet Neurol 14:1023–1036PubMedCrossRef
87.
go back to reference Holder MJ, Knox K, Gordon J (1992) Factors modifying survival pathways of germinal center B cells. Glucocorticoids and transforming growth factor-beta, but not cyclosporin A or anti-CD19, block surface immunoglobulin-mediated rescue from apoptosis. Eur J Immunol 22:2725–2728PubMedCrossRef Holder MJ, Knox K, Gordon J (1992) Factors modifying survival pathways of germinal center B cells. Glucocorticoids and transforming growth factor-beta, but not cyclosporin A or anti-CD19, block surface immunoglobulin-mediated rescue from apoptosis. Eur J Immunol 22:2725–2728PubMedCrossRef
88.
go back to reference Stenzel-Poore MP, Cameron VA, Vaughan J, Sawchenko PE, Vale W (1992) Development of Cushing’s syndrome in corticotropin-releasing factor transgenic mice. Endocrinology 130:3378–3386PubMed Stenzel-Poore MP, Cameron VA, Vaughan J, Sawchenko PE, Vale W (1992) Development of Cushing’s syndrome in corticotropin-releasing factor transgenic mice. Endocrinology 130:3378–3386PubMed
89.
go back to reference Murray SE, Lallman HR, Heard AD, Rittenberg MB, Stenzel-Poore MP (2001) A genetic model of stress displays decreased lymphocytes and impaired antibody responses without altered susceptibility to Streptococcus pneumoniae. J Immunol 167:691–698PubMedCrossRef Murray SE, Lallman HR, Heard AD, Rittenberg MB, Stenzel-Poore MP (2001) A genetic model of stress displays decreased lymphocytes and impaired antibody responses without altered susceptibility to Streptococcus pneumoniae. J Immunol 167:691–698PubMedCrossRef
90.
go back to reference Murray SE, Rosenzweig HL, Johnson M, Huising MO, Sawicki K et al (2004) Overproduction of corticotropin-releasing hormone blocks germinal center formation: role of corticosterone and impaired follicular dendritic cell networks. J Neuroimmunol 156:31–41PubMedCrossRef Murray SE, Rosenzweig HL, Johnson M, Huising MO, Sawicki K et al (2004) Overproduction of corticotropin-releasing hormone blocks germinal center formation: role of corticosterone and impaired follicular dendritic cell networks. J Neuroimmunol 156:31–41PubMedCrossRef
91.
go back to reference Gomez AM, Van Den Broeck J, Vrolix K, Janssen SP, Lemmens MA et al (2010) Antibody effector mechanisms in myasthenia gravis-pathogenesis at the neuromuscular junction. Autoimmunity 43:353–370PubMedCrossRef Gomez AM, Van Den Broeck J, Vrolix K, Janssen SP, Lemmens MA et al (2010) Antibody effector mechanisms in myasthenia gravis-pathogenesis at the neuromuscular junction. Autoimmunity 43:353–370PubMedCrossRef
92.
go back to reference Berrih S, Safar D, Levasseur P, Gaud C, Bach JF (1984) The in vivo effects of corticosteroids on thymocyte subsets in myasthenia gravis. J Clin Immunol 4:92–97PubMedCrossRef Berrih S, Safar D, Levasseur P, Gaud C, Bach JF (1984) The in vivo effects of corticosteroids on thymocyte subsets in myasthenia gravis. J Clin Immunol 4:92–97PubMedCrossRef
93.
go back to reference London J, Berrih S, Bach JF (1978) Peanut agglutinin. I. A new tool for studying T lymphocyte subpopulations. J Immunol 121:438–443PubMed London J, Berrih S, Bach JF (1978) Peanut agglutinin. I. A new tool for studying T lymphocyte subpopulations. J Immunol 121:438–443PubMed
95.
go back to reference Poea-Guyon S, Christadoss P, Le Panse R, Guyon T, De Baets M et al (2005) Effects of cytokines on acetylcholine receptor expression: implications for myasthenia gravis. J Immunol 174:5941–5949PubMedCrossRef Poea-Guyon S, Christadoss P, Le Panse R, Guyon T, De Baets M et al (2005) Effects of cytokines on acetylcholine receptor expression: implications for myasthenia gravis. J Immunol 174:5941–5949PubMedCrossRef
96.
go back to reference Braun D, Caramalho I, Demengeot J (2002) IFN-alpha/beta enhances BCR-dependent B cell responses. Int Immunol 14:411–419PubMedCrossRef Braun D, Caramalho I, Demengeot J (2002) IFN-alpha/beta enhances BCR-dependent B cell responses. Int Immunol 14:411–419PubMedCrossRef
97.
go back to reference Le Bon A, Lucas B, Vasseur F, Penit C, Papiernik M (1996) In vivo T cell response to viral superantigen. Selective migration rather than proliferation. J Immunol 156:4602–4608PubMed Le Bon A, Lucas B, Vasseur F, Penit C, Papiernik M (1996) In vivo T cell response to viral superantigen. Selective migration rather than proliferation. J Immunol 156:4602–4608PubMed
98.
99.
go back to reference Kalra N, Ishmael FT (2014) Cross-talk between vitamin D, estrogen and corticosteroids in glucocorticoid resistant asthma. OA inflammation 2:2–10 Kalra N, Ishmael FT (2014) Cross-talk between vitamin D, estrogen and corticosteroids in glucocorticoid resistant asthma. OA inflammation 2:2–10
100.
go back to reference Ito K, Yamamura S, Essilfie-Quaye S, Cosio B, Ito M et al (2006) Histone deacetylase 2-mediated deacetylation of the glucocorticoid receptor enables NF-kappaB suppression. J Exp Med 203:7–13PubMedPubMedCentralCrossRef Ito K, Yamamura S, Essilfie-Quaye S, Cosio B, Ito M et al (2006) Histone deacetylase 2-mediated deacetylation of the glucocorticoid receptor enables NF-kappaB suppression. J Exp Med 203:7–13PubMedPubMedCentralCrossRef
101.
go back to reference Barnes PJ, Ito K, Adcock IM (2004) Corticosteroid resistance in chronic obstructive pulmonary disease: inactivation of histone deacetylase. Lancet 363:731–733PubMedCrossRef Barnes PJ, Ito K, Adcock IM (2004) Corticosteroid resistance in chronic obstructive pulmonary disease: inactivation of histone deacetylase. Lancet 363:731–733PubMedCrossRef
102.
go back to reference Miller AH, Spencer RL, Pearce BD, Pisell TL, Azrieli Y et al (1998) Glucocorticoid receptors are differentially expressed in the cells and tissues of the immune system. Cell Immunol 186:45–54PubMedCrossRef Miller AH, Spencer RL, Pearce BD, Pisell TL, Azrieli Y et al (1998) Glucocorticoid receptors are differentially expressed in the cells and tissues of the immune system. Cell Immunol 186:45–54PubMedCrossRef
103.
go back to reference Endres DB, Milholland RJ, Rosen F (1979) Sex differences in the concentrations of glucocorticoid receptors in rat liver and thymus. J Endocrinol 80:21–26PubMedCrossRef Endres DB, Milholland RJ, Rosen F (1979) Sex differences in the concentrations of glucocorticoid receptors in rat liver and thymus. J Endocrinol 80:21–26PubMedCrossRef
104.
go back to reference Wilder RL (1995) Neuroendocrine-immune system interactions and autoimmunity. Annu Rev Immunol 13:307–338PubMedCrossRef Wilder RL (1995) Neuroendocrine-immune system interactions and autoimmunity. Annu Rev Immunol 13:307–338PubMedCrossRef
105.
go back to reference Fletcher AL, Lowen TE, Sakkal S, Reiseger JJ, Hammett MV et al (2009) Ablation and regeneration of tolerance-inducing medullary thymic epithelial cells after cyclosporine, cyclophosphamide, and dexamethasone treatment. J Immunol 183:823–831PubMedCrossRef Fletcher AL, Lowen TE, Sakkal S, Reiseger JJ, Hammett MV et al (2009) Ablation and regeneration of tolerance-inducing medullary thymic epithelial cells after cyclosporine, cyclophosphamide, and dexamethasone treatment. J Immunol 183:823–831PubMedCrossRef
106.
go back to reference Dragin N, Bismuth J, Cizeron-Clairac G, Biferi MG, Berthault C, et al. (2016) Estrogen-mediated downregulation of AIRE influences sexual dimorphism in autoimmune diseases. J Clin Invest. Dragin N, Bismuth J, Cizeron-Clairac G, Biferi MG, Berthault C, et al. (2016) Estrogen-mediated downregulation of AIRE influences sexual dimorphism in autoimmune diseases. J Clin Invest.
108.
go back to reference Matsui N, Ohigashi I, Tanaka K, Sakata M, Furukawa T et al (2014) Increased number of Hassall’s corpuscles in myasthenia gravis patients with thymic hyperplasia. J Neuroimmunol 269:56–61PubMedCrossRef Matsui N, Ohigashi I, Tanaka K, Sakata M, Furukawa T et al (2014) Increased number of Hassall’s corpuscles in myasthenia gravis patients with thymic hyperplasia. J Neuroimmunol 269:56–61PubMedCrossRef
109.
go back to reference Aime C, Cohen-Kaminsky S, Berrih-Aknin S (1991) In vitro interleukin-1 (IL-1) production in thymic hyperplasia and thymoma from patients with myasthenia gravis. J Clin Immunol 11:268–278PubMedCrossRef Aime C, Cohen-Kaminsky S, Berrih-Aknin S (1991) In vitro interleukin-1 (IL-1) production in thymic hyperplasia and thymoma from patients with myasthenia gravis. J Clin Immunol 11:268–278PubMedCrossRef
110.
go back to reference Cohen-Kaminsky S, Devergne O, Delattre RM, Klingel-Schmitt I, Emilie D et al (1993) Interleukin-6 overproduction by cultured thymic epithelial cells from patients with myasthenia gravis is potentially involved in thymic hyperplasia. Eur Cytokine Netw 4:121–132PubMed Cohen-Kaminsky S, Devergne O, Delattre RM, Klingel-Schmitt I, Emilie D et al (1993) Interleukin-6 overproduction by cultured thymic epithelial cells from patients with myasthenia gravis is potentially involved in thymic hyperplasia. Eur Cytokine Netw 4:121–132PubMed
111.
go back to reference Colombara M, Antonini V, Riviera AP, Mainiero F, Strippoli R et al (2005) Constitutive activation of p38 and ERK1/2 MAPKs in epithelial cells of myasthenic thymus leads to IL-6 and RANTES overexpression: effects on survival and migration of peripheral T and B cells. J Immunol 175:7021–7028PubMedCrossRef Colombara M, Antonini V, Riviera AP, Mainiero F, Strippoli R et al (2005) Constitutive activation of p38 and ERK1/2 MAPKs in epithelial cells of myasthenic thymus leads to IL-6 and RANTES overexpression: effects on survival and migration of peripheral T and B cells. J Immunol 175:7021–7028PubMedCrossRef
112.
go back to reference Liston A, Nutsch KM, Farr AG, Lund JM, Rasmussen JP et al (2008) Differentiation of regulatory Foxp3+ T cells in the thymic cortex. Proc Natl Acad Sci U S A 105:11903–11908PubMedPubMedCentralCrossRef Liston A, Nutsch KM, Farr AG, Lund JM, Rasmussen JP et al (2008) Differentiation of regulatory Foxp3+ T cells in the thymic cortex. Proc Natl Acad Sci U S A 105:11903–11908PubMedPubMedCentralCrossRef
113.
go back to reference Martin-Gayo E, Sierra-Filardi E, Corbi AL, Toribio ML (2010) Plasmacytoid dendritic cells resident in human thymus drive natural Treg cell development. Blood 115:5366–5375PubMedCrossRef Martin-Gayo E, Sierra-Filardi E, Corbi AL, Toribio ML (2010) Plasmacytoid dendritic cells resident in human thymus drive natural Treg cell development. Blood 115:5366–5375PubMedCrossRef
114.
go back to reference Watanabe N, Wang YH, Lee HK, Ito T, Wang YH et al (2005) Hassall’s corpuscles instruct dendritic cells to induce CD4 + CD25+ regulatory T cells in human thymus. Nature 436:1181–1185PubMedCrossRef Watanabe N, Wang YH, Lee HK, Ito T, Wang YH et al (2005) Hassall’s corpuscles instruct dendritic cells to induce CD4 + CD25+ regulatory T cells in human thymus. Nature 436:1181–1185PubMedCrossRef
115.
go back to reference Hanabuchi S, Ito T, Park WR, Watanabe N, Shaw JL et al (2010) Thymic stromal lymphopoietin-activated plasmacytoid dendritic cells induce the generation of FOXP3+ regulatory T cells in human thymus. J Immunol 184:2999–3007PubMedPubMedCentralCrossRef Hanabuchi S, Ito T, Park WR, Watanabe N, Shaw JL et al (2010) Thymic stromal lymphopoietin-activated plasmacytoid dendritic cells induce the generation of FOXP3+ regulatory T cells in human thymus. J Immunol 184:2999–3007PubMedPubMedCentralCrossRef
116.
go back to reference Aschenbrenner K, D’Cruz LM, Vollmann EH, Hinterberger M, Emmerich J et al (2007) Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire + medullary thymic epithelial cells. Nat Immunol 8:351–358PubMedCrossRef Aschenbrenner K, D’Cruz LM, Vollmann EH, Hinterberger M, Emmerich J et al (2007) Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire + medullary thymic epithelial cells. Nat Immunol 8:351–358PubMedCrossRef
117.
go back to reference Nazzal D, Gradolatto A, Truffault F, Bismuth J, Berrih-Aknin S (2014) Human thymus medullary epithelial cells promote regulatory T-cell generation by stimulating interleukin-2 production via ICOS ligand. Cell Death Dis 5:e1420PubMedPubMedCentralCrossRef Nazzal D, Gradolatto A, Truffault F, Bismuth J, Berrih-Aknin S (2014) Human thymus medullary epithelial cells promote regulatory T-cell generation by stimulating interleukin-2 production via ICOS ligand. Cell Death Dis 5:e1420PubMedPubMedCentralCrossRef
118.
go back to reference Kont V, Laan M, Kisand K, Merits A, Scott HS et al (2008) Modulation of Aire regulates the expression of tissue-restricted antigens. Mol Immunol 45:25–33PubMedPubMedCentralCrossRef Kont V, Laan M, Kisand K, Merits A, Scott HS et al (2008) Modulation of Aire regulates the expression of tissue-restricted antigens. Mol Immunol 45:25–33PubMedPubMedCentralCrossRef
119.
go back to reference Liston A, Gray DH, Lesage S, Fletcher AL, Wilson J et al (2004) Gene dosage--limiting role of Aire in thymic expression, clonal deletion, and organ-specific autoimmunity. J Exp Med 200:1015–1026PubMedPubMedCentralCrossRef Liston A, Gray DH, Lesage S, Fletcher AL, Wilson J et al (2004) Gene dosage--limiting role of Aire in thymic expression, clonal deletion, and organ-specific autoimmunity. J Exp Med 200:1015–1026PubMedPubMedCentralCrossRef
120.
go back to reference Kurisaki H, Nagao Y, Nagafuchi S, Mitsuyama M (2013) Autoimmune gastro-pancreatitis with anti-protein disulfide isomerase-associated 2 autoantibody in Aire-deficient BALB/cAnN mice. PLoS One 8:e73862PubMedPubMedCentralCrossRef Kurisaki H, Nagao Y, Nagafuchi S, Mitsuyama M (2013) Autoimmune gastro-pancreatitis with anti-protein disulfide isomerase-associated 2 autoantibody in Aire-deficient BALB/cAnN mice. PLoS One 8:e73862PubMedPubMedCentralCrossRef
121.
go back to reference Aharoni R, Aricha R, Eilam R, From I, Mizrahi K et al (2013) Age dependent course of EAE in Aire−/− mice. J Neuroimmunol 262:27–34PubMedCrossRef Aharoni R, Aricha R, Eilam R, From I, Mizrahi K et al (2013) Age dependent course of EAE in Aire−/− mice. J Neuroimmunol 262:27–34PubMedCrossRef
122.
go back to reference Pomie C, Vicente R, Vuddamalay Y, Lundgren BA, van der Hoek M et al (2011) Autoimmune regulator (AIRE)-deficient CD8 + CD28low regulatory T lymphocytes fail to control experimental colitis. Proc Natl Acad Sci U S A 108:12437–12442PubMedPubMedCentralCrossRef Pomie C, Vicente R, Vuddamalay Y, Lundgren BA, van der Hoek M et al (2011) Autoimmune regulator (AIRE)-deficient CD8 + CD28low regulatory T lymphocytes fail to control experimental colitis. Proc Natl Acad Sci U S A 108:12437–12442PubMedPubMedCentralCrossRef
123.
go back to reference Aricha R, Feferman T, Scott HS, Souroujon MC, Berrih-Aknin S et al (2011) The susceptibility of Aire(−/−) mice to experimental myasthenia gravis involves alterations in regulatory T cells. J Autoimmun 36:16–24PubMedCrossRef Aricha R, Feferman T, Scott HS, Souroujon MC, Berrih-Aknin S et al (2011) The susceptibility of Aire(−/−) mice to experimental myasthenia gravis involves alterations in regulatory T cells. J Autoimmun 36:16–24PubMedCrossRef
124.
go back to reference Liu Y, Zhang H, Zhang P, Meng F, Chen Y et al (2014) Autoimmune regulator expression in thymomas with or without autoimmune disease. Immunol Lett 161:50–56PubMedCrossRef Liu Y, Zhang H, Zhang P, Meng F, Chen Y et al (2014) Autoimmune regulator expression in thymomas with or without autoimmune disease. Immunol Lett 161:50–56PubMedCrossRef
125.
go back to reference Goldacre MJ, Wotton CJ, Seagroatt V, Yeates D (2004) Cancers and immune related diseases associated with Down’s syndrome: a record linkage study. Arch Dis Child 89:1014–1017PubMedPubMedCentralCrossRef Goldacre MJ, Wotton CJ, Seagroatt V, Yeates D (2004) Cancers and immune related diseases associated with Down’s syndrome: a record linkage study. Arch Dis Child 89:1014–1017PubMedPubMedCentralCrossRef
126.
go back to reference Lima FA, Moreira-Filho CA, Ramos PL, Brentani H, Lima Lde A et al (2011) Decreased AIRE expression and global thymic hypofunction in Down syndrome. J Immunol 187:3422–3430PubMedCrossRef Lima FA, Moreira-Filho CA, Ramos PL, Brentani H, Lima Lde A et al (2011) Decreased AIRE expression and global thymic hypofunction in Down syndrome. J Immunol 187:3422–3430PubMedCrossRef
127.
go back to reference Greer JM, Csurhes PA, Pender MP, McCombe PA (2004) Effect of gender on T-cell proliferative responses to myelin proteolipid protein antigens in patients with multiple sclerosis and controls. J Autoimmun 22:345–352PubMedCrossRef Greer JM, Csurhes PA, Pender MP, McCombe PA (2004) Effect of gender on T-cell proliferative responses to myelin proteolipid protein antigens in patients with multiple sclerosis and controls. J Autoimmun 22:345–352PubMedCrossRef
128.
go back to reference Mantegazza R, Baggi F, Bernasconi P, Antozzi C, Confalonieri P et al (2003) Video-assisted thoracoscopic extended thymectomy and extended transsternal thymectomy (T-3b) in non-thymomatous myasthenia gravis patients: remission after 6 years of follow-up. J Neurol Sci 212:31–36PubMedCrossRef Mantegazza R, Baggi F, Bernasconi P, Antozzi C, Confalonieri P et al (2003) Video-assisted thoracoscopic extended thymectomy and extended transsternal thymectomy (T-3b) in non-thymomatous myasthenia gravis patients: remission after 6 years of follow-up. J Neurol Sci 212:31–36PubMedCrossRef
129.
go back to reference Diaz A, Black E, Dunning J (2014) Is thymectomy in non-thymomatous myasthenia gravis of any benefit? Interact Cardiovasc Thorac Surg 18:381–389PubMedCrossRef Diaz A, Black E, Dunning J (2014) Is thymectomy in non-thymomatous myasthenia gravis of any benefit? Interact Cardiovasc Thorac Surg 18:381–389PubMedCrossRef
130.
go back to reference Masaoka A, Yamakawa Y, Niwa H, Fukai I, Kondo S et al (1996) Extended thymectomy for myasthenia gravis patients: a 20-year review. Ann Thorac Surg 62:853–859PubMedCrossRef Masaoka A, Yamakawa Y, Niwa H, Fukai I, Kondo S et al (1996) Extended thymectomy for myasthenia gravis patients: a 20-year review. Ann Thorac Surg 62:853–859PubMedCrossRef
Metadata
Title
Thymic Germinal Centers and Corticosteroids in Myasthenia Gravis: an Immunopathological Study in 1035 Cases and a Critical Review
Authors
Frédérique Truffault
Vincent de Montpreville
Bruno Eymard
Tarek Sharshar
Rozen Le Panse
Sonia Berrih-Aknin
Publication date
01-02-2017
Publisher
Springer US
Published in
Clinical Reviews in Allergy & Immunology / Issue 1/2017
Print ISSN: 1080-0549
Electronic ISSN: 1559-0267
DOI
https://doi.org/10.1007/s12016-016-8558-3

Other articles of this Issue 1/2017

Clinical Reviews in Allergy & Immunology 1/2017 Go to the issue