Skip to main content
Top
Published in: Clinical Reviews in Allergy & Immunology 3/2016

01-06-2016

The Bach Family of Transcription Factors: A Comprehensive Review

Authors: Yin Zhou, Haijing Wu, Ming Zhao, Christopher Chang, Qianjin Lu

Published in: Clinical Reviews in Allergy & Immunology | Issue 3/2016

Login to get access

Abstract

The transcription factors Bach1 and Bach2, which belong to a basic region-leucine zipper (bZip) family, repress target gene expression by forming heterodimers with small Maf proteins. With the ability to bind to heme, Bach1 and Bach2 are important in maintaining heme homeostasis in response to oxidative stress, which is characterized by high levels of reactive oxygen species (ROS) in cells and thereby induces cellular damage and senescence. The inactivation of Bach1 exerts an antioxidant effect. Thus, Bach1 may be a potential therapeutic target of oxidative stress-related diseases. Bach2 participates in oxidative stress-mediated apoptosis and is involved in macrophage-mediated innate immunity as well as the adaptive immune response. Bach1 and Bach2 promote the differentiation of common lymphoid progenitors to B cells by repressing myeloid-related genes. Bach2 is able to regulate class-switch recombination and plasma cell differentiation by altering the concentration of mitochondrial ROS during B cell differentiation. Furthermore, Bach2 maintains T cell homeostasis, influences the function of macrophages, and plays a role in autoimmunity. Bach2-controlling genes with super enhancers in T cells play a key role in immune regulation. However, in spite of new research, the role of Bach1 and Bach2 in immune cells and immune response is not completely clear, nor are their respective roles of in oxidative stress and the immune response, in particular with regard to the clinical phenotypes of autoimmune diseases. The anti-immunosenescence action of Bach and the role of epigenetic modifications of these transcription factors may be important in the mechanism of Bach transcription factors in mediating oxidative stress and cellular immunity.
Literature
1.
go back to reference Oyake T, Itoh K, Motohashi H, Hayashi N, Hoshino H, Nishizawa M et al (1996) Bach proteins belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK and regulate transcription through the NF-E2 site. Molecular and cellular biology 16:6083–95PubMedPubMedCentralCrossRef Oyake T, Itoh K, Motohashi H, Hayashi N, Hoshino H, Nishizawa M et al (1996) Bach proteins belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK and regulate transcription through the NF-E2 site. Molecular and cellular biology 16:6083–95PubMedPubMedCentralCrossRef
2.
go back to reference Amoutzias GD, Veron AS, Weiner J 3rd, Robinson-Rechavi M, Bornberg-Bauer E, Oliver SG et al (2007) One billion years of bZIP transcription factor evolution: conservation and change in dimerization and DNA-binding site specificity. Molecular biology and evolution 24:827–35PubMedCrossRef Amoutzias GD, Veron AS, Weiner J 3rd, Robinson-Rechavi M, Bornberg-Bauer E, Oliver SG et al (2007) One billion years of bZIP transcription factor evolution: conservation and change in dimerization and DNA-binding site specificity. Molecular biology and evolution 24:827–35PubMedCrossRef
3.
go back to reference Albagli O, Dhordain P, Deweindt C, Lecocq G, Leprince D (1995) The BTB/POZ domain: a new protein-protein interaction motif common to DNA- and actin-binding proteins. Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research 6:1193–8 Albagli O, Dhordain P, Deweindt C, Lecocq G, Leprince D (1995) The BTB/POZ domain: a new protein-protein interaction motif common to DNA- and actin-binding proteins. Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research 6:1193–8
4.
go back to reference Igarashi K, Watanabe-Matsui M (2014) Wearing red for signaling: the heme-Bach axis in heme metabolism, oxidative stress response and iron immunology. The Tohoku journal of experimental medicine 232:229–53PubMedCrossRef Igarashi K, Watanabe-Matsui M (2014) Wearing red for signaling: the heme-Bach axis in heme metabolism, oxidative stress response and iron immunology. The Tohoku journal of experimental medicine 232:229–53PubMedCrossRef
5.
go back to reference Rosbrook GO, Stead MA, Carr SB, Wright SC (2012) The structure of the Bach2 POZ-domain dimer reveals an intersubunit disulfide bond. Acta crystallographica Section D, Biological crystallography 68:26–34PubMedCrossRef Rosbrook GO, Stead MA, Carr SB, Wright SC (2012) The structure of the Bach2 POZ-domain dimer reveals an intersubunit disulfide bond. Acta crystallographica Section D, Biological crystallography 68:26–34PubMedCrossRef
6.
go back to reference Ogawa K, Sun J, Taketani S, Nakajima O, Nishitani C, Sassa S et al (2001) Heme mediates derepression of Maf recognition element through direct binding to transcription repressor Bach1. The EMBO journal 20:2835–43PubMedPubMedCentralCrossRef Ogawa K, Sun J, Taketani S, Nakajima O, Nishitani C, Sassa S et al (2001) Heme mediates derepression of Maf recognition element through direct binding to transcription repressor Bach1. The EMBO journal 20:2835–43PubMedPubMedCentralCrossRef
7.
go back to reference Watanabe-Matsui M, Muto A, Matsui T, Itoh-Nakadai A, Nakajima O, Murayama K et al (2011) Heme regulates B-cell differentiation, antibody class switch, and heme oxygenase-1 expression in B cells as a ligand of Bach2. Blood 117:5438–48PubMedCrossRef Watanabe-Matsui M, Muto A, Matsui T, Itoh-Nakadai A, Nakajima O, Murayama K et al (2011) Heme regulates B-cell differentiation, antibody class switch, and heme oxygenase-1 expression in B cells as a ligand of Bach2. Blood 117:5438–48PubMedCrossRef
8.
go back to reference Watanabe-Matsui M, Matsumoto T, Matsui T, Ikeda-Saito M, Muto A, Murayama K et al (2015) Heme binds to an intrinsically disordered region of Bach2 and alters its conformation. Archives of biochemistry and biophysics 565:25–31PubMedCrossRef Watanabe-Matsui M, Matsumoto T, Matsui T, Ikeda-Saito M, Muto A, Murayama K et al (2015) Heme binds to an intrinsically disordered region of Bach2 and alters its conformation. Archives of biochemistry and biophysics 565:25–31PubMedCrossRef
9.
go back to reference Igarashi K, Hoshino H, Muto A, Suwabe N, Nishikawa S, Nakauchi H et al (1998) Multivalent DNA binding complex generated by small Maf and Bach1 as a possible biochemical basis for beta-globin locus control region complex. The Journal of biological chemistry 273:11783–90PubMedCrossRef Igarashi K, Hoshino H, Muto A, Suwabe N, Nishikawa S, Nakauchi H et al (1998) Multivalent DNA binding complex generated by small Maf and Bach1 as a possible biochemical basis for beta-globin locus control region complex. The Journal of biological chemistry 273:11783–90PubMedCrossRef
10.
go back to reference Hoshino H, Igarashi K (2002) Expression of the oxidative stress-regulated transcription factor bach2 in differentiating neuronal cells. Journal of biochemistry 132:427–31PubMedCrossRef Hoshino H, Igarashi K (2002) Expression of the oxidative stress-regulated transcription factor bach2 in differentiating neuronal cells. Journal of biochemistry 132:427–31PubMedCrossRef
11.
go back to reference Andrews NC, Erdjument-Bromage H, Davidson MB, Tempst P, Orkin SH (1993) Erythroid transcription factor NF-E2 is a haematopoietic-specific basic-leucine zipper protein. Nature 362:722–8PubMedCrossRef Andrews NC, Erdjument-Bromage H, Davidson MB, Tempst P, Orkin SH (1993) Erythroid transcription factor NF-E2 is a haematopoietic-specific basic-leucine zipper protein. Nature 362:722–8PubMedCrossRef
12.
go back to reference Miller DM, Wang JA, Buchanan AK, Hall ED (2014) Temporal and spatial dynamics of nrf2-antioxidant response elements mediated gene targets in cortex and hippocampus after controlled cortical impact traumatic brain injury in mice. Journal of neurotrauma 31:1194–201PubMedPubMedCentralCrossRef Miller DM, Wang JA, Buchanan AK, Hall ED (2014) Temporal and spatial dynamics of nrf2-antioxidant response elements mediated gene targets in cortex and hippocampus after controlled cortical impact traumatic brain injury in mice. Journal of neurotrauma 31:1194–201PubMedPubMedCentralCrossRef
13.
go back to reference Taguchi K, Motohashi H, Yamamoto M (2011) Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes to cells : devoted to molecular & cellular mechanisms 16:123–40CrossRef Taguchi K, Motohashi H, Yamamoto M (2011) Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes to cells : devoted to molecular & cellular mechanisms 16:123–40CrossRef
14.
go back to reference Jyrkkanen HK, Kuosmanen S, Heinaniemi M, Laitinen H, Kansanen E, Mella-Aho E et al (2011) Novel insights into the regulation of antioxidant-response-element-mediated gene expression by electrophiles: induction of the transcriptional repressor BACH1 by Nrf2. The Biochemical journal 440:167–74PubMedCrossRef Jyrkkanen HK, Kuosmanen S, Heinaniemi M, Laitinen H, Kansanen E, Mella-Aho E et al (2011) Novel insights into the regulation of antioxidant-response-element-mediated gene expression by electrophiles: induction of the transcriptional repressor BACH1 by Nrf2. The Biochemical journal 440:167–74PubMedCrossRef
15.
go back to reference Hoshino H, Kobayashi A, Yoshida M, Kudo N, Oyake T, Motohashi H et al (2000) Oxidative stress abolishes leptomycin B-sensitive nuclear export of transcription repressor Bach2 that counteracts activation of Maf recognition element. The Journal of biological chemistry 275:15370–6PubMedCrossRef Hoshino H, Kobayashi A, Yoshida M, Kudo N, Oyake T, Motohashi H et al (2000) Oxidative stress abolishes leptomycin B-sensitive nuclear export of transcription repressor Bach2 that counteracts activation of Maf recognition element. The Journal of biological chemistry 275:15370–6PubMedCrossRef
16.
go back to reference Suzuki H, Tashiro S, Hira S, Sun J, Yamazaki C, Zenke Y et al (2004) Heme regulates gene expression by triggering Crm1-dependent nuclear export of Bach1. The EMBO journal 23:2544–53PubMedPubMedCentralCrossRef Suzuki H, Tashiro S, Hira S, Sun J, Yamazaki C, Zenke Y et al (2004) Heme regulates gene expression by triggering Crm1-dependent nuclear export of Bach1. The EMBO journal 23:2544–53PubMedPubMedCentralCrossRef
17.
go back to reference Suzuki H, Tashiro S, Sun J, Doi H, Satomi S, Igarashi K (2003) Cadmium induces nuclear export of Bach1, a transcriptional repressor of heme oxygenase-1 gene. The Journal of biological chemistry 278:49246–53PubMedCrossRef Suzuki H, Tashiro S, Sun J, Doi H, Satomi S, Igarashi K (2003) Cadmium induces nuclear export of Bach1, a transcriptional repressor of heme oxygenase-1 gene. The Journal of biological chemistry 278:49246–53PubMedCrossRef
18.
go back to reference Igarashi K, Ochiai K, Itoh-Nakadai A, Muto A (2014) Orchestration of plasma cell differentiation by Bach2 and its gene regulatory network. Immunological reviews 261:116–25PubMedCrossRef Igarashi K, Ochiai K, Itoh-Nakadai A, Muto A (2014) Orchestration of plasma cell differentiation by Bach2 and its gene regulatory network. Immunological reviews 261:116–25PubMedCrossRef
19.
go back to reference Ryter SW, Tyrrell RM (2000) The heme synthesis and degradation pathways: role in oxidant sensitivity. Heme oxygenase has both pro- and antioxidant properties. Free radical biology & medicine 28:289–309CrossRef Ryter SW, Tyrrell RM (2000) The heme synthesis and degradation pathways: role in oxidant sensitivity. Heme oxygenase has both pro- and antioxidant properties. Free radical biology & medicine 28:289–309CrossRef
20.
go back to reference Shibahara S (2003) The heme oxygenase dilemma in cellular homeostasis: new insights for the feedback regulation of heme catabolism. The Tohoku journal of experimental medicine 200:167–86PubMedCrossRef Shibahara S (2003) The heme oxygenase dilemma in cellular homeostasis: new insights for the feedback regulation of heme catabolism. The Tohoku journal of experimental medicine 200:167–86PubMedCrossRef
21.
go back to reference Sun J, Brand M, Zenke Y, Tashiro S, Groudine M, Igarashi K (2004) Heme regulates the dynamic exchange of Bach1 and NF-E2-related factors in the Maf transcription factor network. Proceedings of the National Academy of Sciences of the United States of America 101:1461–6PubMedPubMedCentralCrossRef Sun J, Brand M, Zenke Y, Tashiro S, Groudine M, Igarashi K (2004) Heme regulates the dynamic exchange of Bach1 and NF-E2-related factors in the Maf transcription factor network. Proceedings of the National Academy of Sciences of the United States of America 101:1461–6PubMedPubMedCentralCrossRef
22.
go back to reference Tanimura N, Miller E, Igarashi K, Yang D, Burstyn JN, Dewey CN et al (2016) Mechanism governing heme synthesis reveals a GATA factor/heme circuit that controls differentiation. EMBO reports 17:249–65PubMedCrossRef Tanimura N, Miller E, Igarashi K, Yang D, Burstyn JN, Dewey CN et al (2016) Mechanism governing heme synthesis reveals a GATA factor/heme circuit that controls differentiation. EMBO reports 17:249–65PubMedCrossRef
23.
go back to reference Sun J, Hoshino H, Takaku K, Nakajima O, Muto A, Suzuki H et al (2002) Hemoprotein Bach1 regulates enhancer availability of heme oxygenase-1 gene. The EMBO journal 21:5216–24PubMedPubMedCentralCrossRef Sun J, Hoshino H, Takaku K, Nakajima O, Muto A, Suzuki H et al (2002) Hemoprotein Bach1 regulates enhancer availability of heme oxygenase-1 gene. The EMBO journal 21:5216–24PubMedPubMedCentralCrossRef
24.
go back to reference Furuyama K, Kaneko K, Vargas PD (2007) Heme as a magnificent molecule with multiple missions: heme determines its own fate and governs cellular homeostasis. The Tohoku journal of experimental medicine 213:1–16PubMedCrossRef Furuyama K, Kaneko K, Vargas PD (2007) Heme as a magnificent molecule with multiple missions: heme determines its own fate and governs cellular homeostasis. The Tohoku journal of experimental medicine 213:1–16PubMedCrossRef
25.
go back to reference Kitamuro T, Takahashi K, Ogawa K, Udono-Fujimori R, Takeda K, Furuyama K et al (2003) Bach1 functions as a hypoxia-inducible repressor for the heme oxygenase-1 gene in human cells. The Journal of biological chemistry 278:9125–33PubMedCrossRef Kitamuro T, Takahashi K, Ogawa K, Udono-Fujimori R, Takeda K, Furuyama K et al (2003) Bach1 functions as a hypoxia-inducible repressor for the heme oxygenase-1 gene in human cells. The Journal of biological chemistry 278:9125–33PubMedCrossRef
26.
go back to reference Hira S, Tomita T, Matsui T, Igarashi K, Ikeda-Saito M (2007) Bach1, a heme-dependent transcription factor, reveals presence of multiple heme binding sites with distinct coordination structure. IUBMB life 59:542–51PubMedCrossRef Hira S, Tomita T, Matsui T, Igarashi K, Ikeda-Saito M (2007) Bach1, a heme-dependent transcription factor, reveals presence of multiple heme binding sites with distinct coordination structure. IUBMB life 59:542–51PubMedCrossRef
27.
go back to reference Zenke-Kawasaki Y, Dohi Y, Katoh Y, Ikura T, Ikura M, Asahara T et al (2007) Heme induces ubiquitination and degradation of the transcription factor Bach1. Molecular and cellular biology 27:6962–71PubMedPubMedCentralCrossRef Zenke-Kawasaki Y, Dohi Y, Katoh Y, Ikura T, Ikura M, Asahara T et al (2007) Heme induces ubiquitination and degradation of the transcription factor Bach1. Molecular and cellular biology 27:6962–71PubMedPubMedCentralCrossRef
28.
go back to reference Warnatz HJ, Schmidt D, Manke T, Piccini I, Sultan M, Borodina T et al (2011) The BTB and CNC homology 1 (BACH1) target genes are involved in the oxidative stress response and in control of the cell cycle. The Journal of biological chemistry 286:23521–32PubMedPubMedCentralCrossRef Warnatz HJ, Schmidt D, Manke T, Piccini I, Sultan M, Borodina T et al (2011) The BTB and CNC homology 1 (BACH1) target genes are involved in the oxidative stress response and in control of the cell cycle. The Journal of biological chemistry 286:23521–32PubMedPubMedCentralCrossRef
29.
go back to reference Watari Y, Yamamoto Y, Brydun A, Ishida T, Mito S, Yoshizumi M et al (2008) Ablation of the bach1 gene leads to the suppression of atherosclerosis in bach1 and apolipoprotein E double knockout mice. Hypertension research : official journal of the Japanese Society of Hypertension 31:783–92CrossRef Watari Y, Yamamoto Y, Brydun A, Ishida T, Mito S, Yoshizumi M et al (2008) Ablation of the bach1 gene leads to the suppression of atherosclerosis in bach1 and apolipoprotein E double knockout mice. Hypertension research : official journal of the Japanese Society of Hypertension 31:783–92CrossRef
30.
go back to reference Chapple SJ, Keeley TP, Mastronicola D, Arno M, Vizcay-Barrena G, Fleck R et al (2015) Bach1 differentially regulates distinct Nrf2-dependent genes in human venous and coronary artery endothelial cells adapted to physiological oxygen levels. Free radical biology & medicine 92:152–162CrossRef Chapple SJ, Keeley TP, Mastronicola D, Arno M, Vizcay-Barrena G, Fleck R et al (2015) Bach1 differentially regulates distinct Nrf2-dependent genes in human venous and coronary artery endothelial cells adapted to physiological oxygen levels. Free radical biology & medicine 92:152–162CrossRef
31.
go back to reference Mito S, Ozono R, Oshima T, Yano Y, Watari Y, Yamamoto Y et al (2008) Myocardial protection against pressure overload in mice lacking Bach1, a transcriptional repressor of heme oxygenase-1. Hypertension 51:1570–7PubMedCrossRef Mito S, Ozono R, Oshima T, Yano Y, Watari Y, Yamamoto Y et al (2008) Myocardial protection against pressure overload in mice lacking Bach1, a transcriptional repressor of heme oxygenase-1. Hypertension 51:1570–7PubMedCrossRef
32.
go back to reference Tanimoto T, Hattori N, Senoo T, Furonaka M, Ishikawa N, Fujitaka K et al (2009) Genetic ablation of the Bach1 gene reduces hyperoxic lung injury in mice: role of IL-6. Free radical biology & medicine 46:1119–26CrossRef Tanimoto T, Hattori N, Senoo T, Furonaka M, Ishikawa N, Fujitaka K et al (2009) Genetic ablation of the Bach1 gene reduces hyperoxic lung injury in mice: role of IL-6. Free radical biology & medicine 46:1119–26CrossRef
33.
go back to reference Harusato A, Naito Y, Takagi T, Uchiyama K, Mizushima K, Hirai Y et al (2011) Suppression of indomethacin-induced apoptosis in the small intestine due to Bach1 deficiency. Free radical research 45:717–27PubMedCrossRef Harusato A, Naito Y, Takagi T, Uchiyama K, Mizushima K, Hirai Y et al (2011) Suppression of indomethacin-induced apoptosis in the small intestine due to Bach1 deficiency. Free radical research 45:717–27PubMedCrossRef
34.
go back to reference Inoue M, Tazuma S, Kanno K, Hyogo H, Igarashi K, Chayama K (2011) Bach1 gene ablation reduces steatohepatitis in mouse MCD diet model. Journal of clinical biochemistry and nutrition 48:161–6PubMedPubMedCentralCrossRef Inoue M, Tazuma S, Kanno K, Hyogo H, Igarashi K, Chayama K (2011) Bach1 gene ablation reduces steatohepatitis in mouse MCD diet model. Journal of clinical biochemistry and nutrition 48:161–6PubMedPubMedCentralCrossRef
35.
go back to reference Kondo K, Ishigaki Y, Gao J, Yamada T, Imai J, Sawada S et al (2013) Bach1 deficiency protects pancreatic beta-cells from oxidative stress injury. American journal of physiology Endocrinology and metabolism 305:E641–8PubMedCrossRef Kondo K, Ishigaki Y, Gao J, Yamada T, Imai J, Sawada S et al (2013) Bach1 deficiency protects pancreatic beta-cells from oxidative stress injury. American journal of physiology Endocrinology and metabolism 305:E641–8PubMedCrossRef
36.
go back to reference So AY, Garcia-Flores Y, Minisandram A, Martin A, Taganov K, Boldin M et al (2012) Regulation of APC development, immune response, and autoimmunity by Bach1/HO-1 pathway in mice. Blood 120:2428–37PubMedPubMedCentralCrossRef So AY, Garcia-Flores Y, Minisandram A, Martin A, Taganov K, Boldin M et al (2012) Regulation of APC development, immune response, and autoimmunity by Bach1/HO-1 pathway in mice. Blood 120:2428–37PubMedPubMedCentralCrossRef
37.
go back to reference Gautier EL, Shay T, Miller J, Greter M, Jakubzick C, Ivanov S et al (2012) Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nature immunology 13:1118–28PubMedPubMedCentralCrossRef Gautier EL, Shay T, Miller J, Greter M, Jakubzick C, Ivanov S et al (2012) Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nature immunology 13:1118–28PubMedPubMedCentralCrossRef
38.
go back to reference Hama M, Kirino Y, Takeno M, Takase K, Miyazaki T, Yoshimi R et al (2012) Bach1 regulates osteoclastogenesis in a mouse model via both heme oxygenase 1-dependent and heme oxygenase 1-independent pathways. Arthritis and rheumatism 64:1518–28PubMedCrossRef Hama M, Kirino Y, Takeno M, Takase K, Miyazaki T, Yoshimi R et al (2012) Bach1 regulates osteoclastogenesis in a mouse model via both heme oxygenase 1-dependent and heme oxygenase 1-independent pathways. Arthritis and rheumatism 64:1518–28PubMedCrossRef
39.
go back to reference Takada T, Miyaki S, Ishitobi H, Hirai Y, Nakasa T, Igarashi K et al (2015) Bach1 deficiency reduces severity of osteoarthritis through upregulation of heme oxygenase-1. Arthritis research & therapy 17:285CrossRef Takada T, Miyaki S, Ishitobi H, Hirai Y, Nakasa T, Igarashi K et al (2015) Bach1 deficiency reduces severity of osteoarthritis through upregulation of heme oxygenase-1. Arthritis research & therapy 17:285CrossRef
40.
go back to reference Muto A, Tashiro S, Tsuchiya H, Kume A, Kanno M, Ito E et al (2002) Activation of Maf/AP-1 repressor Bach2 by oxidative stress promotes apoptosis and its interaction with promyelocytic leukemia nuclear bodies. The Journal of biological chemistry 277:20724–33PubMedCrossRef Muto A, Tashiro S, Tsuchiya H, Kume A, Kanno M, Ito E et al (2002) Activation of Maf/AP-1 repressor Bach2 by oxidative stress promotes apoptosis and its interaction with promyelocytic leukemia nuclear bodies. The Journal of biological chemistry 277:20724–33PubMedCrossRef
41.
go back to reference Yoshida C, Yoshida F, Sears DE, Hart SM, Ikebe D, Muto A et al (2007) Bcr-Abl signaling through the PI-3/S6 kinase pathway inhibits nuclear translocation of the transcription factor Bach2, which represses the antiapoptotic factor heme oxygenase-1. Blood 109:1211–9PubMedCrossRef Yoshida C, Yoshida F, Sears DE, Hart SM, Ikebe D, Muto A et al (2007) Bcr-Abl signaling through the PI-3/S6 kinase pathway inhibits nuclear translocation of the transcription factor Bach2, which represses the antiapoptotic factor heme oxygenase-1. Blood 109:1211–9PubMedCrossRef
42.
go back to reference Casolari DA, Makri M, Yoshida C, Muto A, Igarashi K, Melo JV (2013) Transcriptional suppression of BACH2 by the Bcr-Abl oncoprotein is mediated by PAX5. Leukemia 27:409–15PubMedCrossRef Casolari DA, Makri M, Yoshida C, Muto A, Igarashi K, Melo JV (2013) Transcriptional suppression of BACH2 by the Bcr-Abl oncoprotein is mediated by PAX5. Leukemia 27:409–15PubMedCrossRef
43.
go back to reference Chen Z, Pittman EF, Romaguera J, Fayad L, Wang M, Neelapu SS et al (2013) Nuclear translocation of B-cell-specific transcription factor, BACH2, modulates ROS mediated cytotoxic responses in mantle cell lymphoma. PloS one 8:e69126PubMedPubMedCentralCrossRef Chen Z, Pittman EF, Romaguera J, Fayad L, Wang M, Neelapu SS et al (2013) Nuclear translocation of B-cell-specific transcription factor, BACH2, modulates ROS mediated cytotoxic responses in mantle cell lymphoma. PloS one 8:e69126PubMedPubMedCentralCrossRef
44.
go back to reference Ando R, Shima H, Tamahara T, Sato Y, Watanabe-Matsui M, Kato H et al (2016) The transcription factor Bach2 is phosphorylated at multiple sites in murine B cells but a single site prevents its nuclear localization. J Biol Chem 291:1826–40PubMedCrossRef Ando R, Shima H, Tamahara T, Sato Y, Watanabe-Matsui M, Kato H et al (2016) The transcription factor Bach2 is phosphorylated at multiple sites in murine B cells but a single site prevents its nuclear localization. J Biol Chem 291:1826–40PubMedCrossRef
45.
go back to reference Tashiro S, Muto A, Tanimoto K, Tsuchiya H, Suzuki H, Hoshino H et al (2004) Repression of PML nuclear body-associated transcription by oxidative stress-activated Bach2. Molecular and cellular biology 24:3473–84PubMedPubMedCentralCrossRef Tashiro S, Muto A, Tanimoto K, Tsuchiya H, Suzuki H, Hoshino H et al (2004) Repression of PML nuclear body-associated transcription by oxidative stress-activated Bach2. Molecular and cellular biology 24:3473–84PubMedPubMedCentralCrossRef
46.
go back to reference Kono K, Harano Y, Hoshino H, Kobayashi M, Bazett-Jones DP, Muto A et al (2008) The mobility of Bach2 nuclear foci is regulated by SUMO-1 modification. Experimental cell research 314:903–13PubMedCrossRef Kono K, Harano Y, Hoshino H, Kobayashi M, Bazett-Jones DP, Muto A et al (2008) The mobility of Bach2 nuclear foci is regulated by SUMO-1 modification. Experimental cell research 314:903–13PubMedCrossRef
47.
go back to reference Hoshino H, Nishino TG, Tashiro S, Miyazaki M, Ohmiya Y, Igarashi K et al (2007) Co-repressor SMRT and class II histone deacetylases promote Bach2 nuclear retention and formation of nuclear foci that are responsible for local transcriptional repression. Journal of biochemistry 141:719–27PubMedCrossRef Hoshino H, Nishino TG, Tashiro S, Miyazaki M, Ohmiya Y, Igarashi K et al (2007) Co-repressor SMRT and class II histone deacetylases promote Bach2 nuclear retention and formation of nuclear foci that are responsible for local transcriptional repression. Journal of biochemistry 141:719–27PubMedCrossRef
48.
go back to reference Hong SW, Kim S, Lee DK (2008) The role of Bach2 in nucleic acid-triggered antiviral innate immune responses. Biochemical and biophysical research communications 365:426–32PubMedCrossRef Hong SW, Kim S, Lee DK (2008) The role of Bach2 in nucleic acid-triggered antiviral innate immune responses. Biochemical and biophysical research communications 365:426–32PubMedCrossRef
49.
go back to reference Martensson IL, Almqvist N, Grimsholm O, Bernardi AI (2010) The pre-B cell receptor checkpoint. FEBS letters 584:2572–9PubMedCrossRef Martensson IL, Almqvist N, Grimsholm O, Bernardi AI (2010) The pre-B cell receptor checkpoint. FEBS letters 584:2572–9PubMedCrossRef
50.
go back to reference Melchers F (2005) The pre-B-cell receptor: selector of fitting immunoglobulin heavy chains for the B-cell repertoire. Nature reviews Immunology 5:578–84PubMedCrossRef Melchers F (2005) The pre-B-cell receptor: selector of fitting immunoglobulin heavy chains for the B-cell repertoire. Nature reviews Immunology 5:578–84PubMedCrossRef
51.
go back to reference Zouali M (2014) Transcriptional and metabolic pre-B cell receptor-mediated checkpoints: implications for autoimmune diseases. Molecular immunology 62:315–20PubMedCrossRef Zouali M (2014) Transcriptional and metabolic pre-B cell receptor-mediated checkpoints: implications for autoimmune diseases. Molecular immunology 62:315–20PubMedCrossRef
52.
go back to reference Nahar R, Ramezani-Rad P, Mossner M, Duy C, Cerchietti L, Geng H et al (2011) Pre-B cell receptor-mediated activation of BCL6 induces pre-B cell quiescence through transcriptional repression of MYC. Blood 118:4174–8PubMedPubMedCentralCrossRef Nahar R, Ramezani-Rad P, Mossner M, Duy C, Cerchietti L, Geng H et al (2011) Pre-B cell receptor-mediated activation of BCL6 induces pre-B cell quiescence through transcriptional repression of MYC. Blood 118:4174–8PubMedPubMedCentralCrossRef
53.
go back to reference Swaminathan S, Huang C, Geng H, Chen Z, Harvey R, Kang H et al (2013) BACH2 mediates negative selection and p53-dependent tumor suppression at the pre-B cell receptor checkpoint. Nature medicine 19:1014–22PubMedPubMedCentralCrossRef Swaminathan S, Huang C, Geng H, Chen Z, Harvey R, Kang H et al (2013) BACH2 mediates negative selection and p53-dependent tumor suppression at the pre-B cell receptor checkpoint. Nature medicine 19:1014–22PubMedPubMedCentralCrossRef
54.
55.
go back to reference McAllister K, Yarwood A, Bowes J, Orozco G, Viatte S, Diogo D et al (2013) Identification of BACH2 and RAD51B as rheumatoid arthritis susceptibility loci in a meta-analysis of genome-wide data. Arthritis and rheumatism 65:3058–62PubMedPubMedCentralCrossRef McAllister K, Yarwood A, Bowes J, Orozco G, Viatte S, Diogo D et al (2013) Identification of BACH2 and RAD51B as rheumatoid arthritis susceptibility loci in a meta-analysis of genome-wide data. Arthritis and rheumatism 65:3058–62PubMedPubMedCentralCrossRef
56.
go back to reference Hendriks RW, Middendorp S (2004) The pre-BCR checkpoint as a cell-autonomous proliferation switch. Trends in immunology 25:249–56PubMedCrossRef Hendriks RW, Middendorp S (2004) The pre-BCR checkpoint as a cell-autonomous proliferation switch. Trends in immunology 25:249–56PubMedCrossRef
57.
go back to reference Oracki SA, Walker JA, Hibbs ML, Corcoran LM, Tarlinton DM (2010) Plasma cell development and survival. Immunological reviews 237:140–59PubMedCrossRef Oracki SA, Walker JA, Hibbs ML, Corcoran LM, Tarlinton DM (2010) Plasma cell development and survival. Immunological reviews 237:140–59PubMedCrossRef
58.
go back to reference Shlomchik MJ, Weisel F (2012) Germinal center selection and the development of memory B and plasma cells. Immunological reviews 247:52–63PubMedCrossRef Shlomchik MJ, Weisel F (2012) Germinal center selection and the development of memory B and plasma cells. Immunological reviews 247:52–63PubMedCrossRef
59.
go back to reference Nutt SL, Taubenheim N, Hasbold J, Corcoran LM, Hodgkin PD (2011) The genetic network controlling plasma cell differentiation. Seminars in immunology 23:341–9PubMedCrossRef Nutt SL, Taubenheim N, Hasbold J, Corcoran LM, Hodgkin PD (2011) The genetic network controlling plasma cell differentiation. Seminars in immunology 23:341–9PubMedCrossRef
61.
go back to reference Muto A, Tashiro S, Nakajima O, Hoshino H, Takahashi S, Sakoda E et al (2004) The transcriptional programme of antibody class switching involves the repressor Bach2. Nature 429:566–71PubMedCrossRef Muto A, Tashiro S, Nakajima O, Hoshino H, Takahashi S, Sakoda E et al (2004) The transcriptional programme of antibody class switching involves the repressor Bach2. Nature 429:566–71PubMedCrossRef
63.
go back to reference Ochiai K, Katoh Y, Ikura T, Hoshikawa Y, Noda T, Karasuyama H et al (2006) Plasmacytic transcription factor blimp-1 is repressed by Bach2 in B cells. The Journal of biological chemistry 281:38226–34PubMedCrossRef Ochiai K, Katoh Y, Ikura T, Hoshikawa Y, Noda T, Karasuyama H et al (2006) Plasmacytic transcription factor blimp-1 is repressed by Bach2 in B cells. The Journal of biological chemistry 281:38226–34PubMedCrossRef
64.
go back to reference Nera KP, Kohonen P, Narvi E, Peippo A, Mustonen L, Terho P et al (2006) Loss of Pax5 promotes plasma cell differentiation. Immunity 24:283–93PubMedCrossRef Nera KP, Kohonen P, Narvi E, Peippo A, Mustonen L, Terho P et al (2006) Loss of Pax5 promotes plasma cell differentiation. Immunity 24:283–93PubMedCrossRef
65.
go back to reference Ochiai K, Muto A, Tanaka H, Takahashi S, Igarashi K (2008) Regulation of the plasma cell transcription factor blimp-1 gene by Bach2 and Bcl6. International immunology 20:453–60PubMedCrossRef Ochiai K, Muto A, Tanaka H, Takahashi S, Igarashi K (2008) Regulation of the plasma cell transcription factor blimp-1 gene by Bach2 and Bcl6. International immunology 20:453–60PubMedCrossRef
66.
go back to reference Shaffer AL, Lin KI, Kuo TC, Yu X, Hurt EM, Rosenwald A et al (2002) Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program. Immunity 17:51–62PubMedCrossRef Shaffer AL, Lin KI, Kuo TC, Yu X, Hurt EM, Rosenwald A et al (2002) Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program. Immunity 17:51–62PubMedCrossRef
67.
go back to reference Sciammas R, Shaffer AL, Schatz JH, Zhao H, Staudt LM, Singh H (2006) Graded expression of interferon regulatory factor-4 coordinates isotype switching with plasma cell differentiation. Immunity 25:225–36PubMedCrossRef Sciammas R, Shaffer AL, Schatz JH, Zhao H, Staudt LM, Singh H (2006) Graded expression of interferon regulatory factor-4 coordinates isotype switching with plasma cell differentiation. Immunity 25:225–36PubMedCrossRef
68.
go back to reference Ochiai K, Maienschein-Cline M, Simonetti G, Chen J, Rosenthal R, Brink R et al (2013) Transcriptional regulation of germinal center B and plasma cell fates by dynamical control of IRF4. Immunity 38:918–29PubMedPubMedCentralCrossRef Ochiai K, Maienschein-Cline M, Simonetti G, Chen J, Rosenthal R, Brink R et al (2013) Transcriptional regulation of germinal center B and plasma cell fates by dynamical control of IRF4. Immunity 38:918–29PubMedPubMedCentralCrossRef
69.
go back to reference Klein U, Casola S, Cattoretti G, Shen Q, Lia M, Mo T et al (2006) Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. Nature immunology 7:773–82PubMedCrossRef Klein U, Casola S, Cattoretti G, Shen Q, Lia M, Mo T et al (2006) Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. Nature immunology 7:773–82PubMedCrossRef
70.
go back to reference Muto A, Ochiai K, Kimura Y, Itoh-Nakadai A, Calame KL, Ikebe D et al (2010) Bach2 represses plasma cell gene regulatory network in B cells to promote antibody class switch. The EMBO journal 29:4048–61PubMedPubMedCentralCrossRef Muto A, Ochiai K, Kimura Y, Itoh-Nakadai A, Calame KL, Ikebe D et al (2010) Bach2 represses plasma cell gene regulatory network in B cells to promote antibody class switch. The EMBO journal 29:4048–61PubMedPubMedCentralCrossRef
71.
go back to reference Kometani K, Nakagawa R, Shinnakasu R, Kaji T, Rybouchkin A, Moriyama S et al (2013) Repression of the transcription factor Bach2 contributes to predisposition of IgG1 memory B cells toward plasma cell differentiation. Immunity 39:136–47PubMedCrossRef Kometani K, Nakagawa R, Shinnakasu R, Kaji T, Rybouchkin A, Moriyama S et al (2013) Repression of the transcription factor Bach2 contributes to predisposition of IgG1 memory B cells toward plasma cell differentiation. Immunity 39:136–47PubMedCrossRef
72.
go back to reference Tanaka H, Muto A, Shima H, Katoh Y, Sax N, Tajima S et al. (2016) Epigenetic regulation of the Blimp-1 gene in B cells involves Bach2 and histone deacetylase 3 Tanaka H, Muto A, Shima H, Katoh Y, Sax N, Tajima S et al. (2016) Epigenetic regulation of the Blimp-1 gene in B cells involves Bach2 and histone deacetylase 3
73.
go back to reference Itoh-Nakadai A, Hikota R, Muto A, Kometani K, Watanabe-Matsui M, Sato Y et al (2014) The transcription repressors Bach2 and Bach1 promote B cell development by repressing the myeloid program. Nature immunology 15:1171–80PubMedCrossRef Itoh-Nakadai A, Hikota R, Muto A, Kometani K, Watanabe-Matsui M, Sato Y et al (2014) The transcription repressors Bach2 and Bach1 promote B cell development by repressing the myeloid program. Nature immunology 15:1171–80PubMedCrossRef
74.
go back to reference Igarashi K, Itoh-Nakadai A (2016) Orchestration of B lymphoid cells and their inner myeloid by Bach. Current opinion in immunology 39:136–42PubMedCrossRef Igarashi K, Itoh-Nakadai A (2016) Orchestration of B lymphoid cells and their inner myeloid by Bach. Current opinion in immunology 39:136–42PubMedCrossRef
75.
go back to reference Kohyama M, Ise W, Edelson BT, Wilker PR, Hildner K, Mejia C et al (2009) Role for Spi-C in the development of red pulp macrophages and splenic iron homeostasis. Nature 457:318–21PubMedPubMedCentralCrossRef Kohyama M, Ise W, Edelson BT, Wilker PR, Hildner K, Mejia C et al (2009) Role for Spi-C in the development of red pulp macrophages and splenic iron homeostasis. Nature 457:318–21PubMedPubMedCentralCrossRef
76.
go back to reference Xie H, Ye M, Feng R, Graf T (2004) Stepwise reprogramming of B cells into macrophages. Cell 117:663–76PubMedCrossRef Xie H, Ye M, Feng R, Graf T (2004) Stepwise reprogramming of B cells into macrophages. Cell 117:663–76PubMedCrossRef
77.
go back to reference Jang KJ, Mano H, Aoki K, Hayashi T, Muto A, Nambu Y et al (2015) Mitochondrial function provides instructive signals for activation-induced B-cell fates. Nature communications 6:6750PubMedPubMedCentralCrossRef Jang KJ, Mano H, Aoki K, Hayashi T, Muto A, Nambu Y et al (2015) Mitochondrial function provides instructive signals for activation-induced B-cell fates. Nature communications 6:6750PubMedPubMedCentralCrossRef
78.
go back to reference Schumacher A, Zenclussen AC (2014) Effects of heme oxygenase-1 on innate and adaptive immune responses promoting pregnancy success and allograft tolerance. Frontiers in pharmacology 5:288PubMedPubMedCentral Schumacher A, Zenclussen AC (2014) Effects of heme oxygenase-1 on innate and adaptive immune responses promoting pregnancy success and allograft tolerance. Frontiers in pharmacology 5:288PubMedPubMedCentral
79.
go back to reference Kurotaki D, Uede T, Tamura T (2015) Functions and development of red pulp macrophages. Microbiology and immunology 59:55–62PubMedCrossRef Kurotaki D, Uede T, Tamura T (2015) Functions and development of red pulp macrophages. Microbiology and immunology 59:55–62PubMedCrossRef
80.
go back to reference Nakamura A, Ebina-Shibuya R, Itoh-Nakadai A, Muto A, Shima H, Saigusa D et al (2013) Transcription repressor Bach2 is required for pulmonary surfactant homeostasis and alveolar macrophage function. The Journal of experimental medicine 210:2191–204PubMedPubMedCentralCrossRef Nakamura A, Ebina-Shibuya R, Itoh-Nakadai A, Muto A, Shima H, Saigusa D et al (2013) Transcription repressor Bach2 is required for pulmonary surfactant homeostasis and alveolar macrophage function. The Journal of experimental medicine 210:2191–204PubMedPubMedCentralCrossRef
81.
go back to reference Tsukumo S, Unno M, Muto A, Takeuchi A, Kometani K, Kurosaki T et al (2013) Bach2 maintains T cells in a naive state by suppressing effector memory-related genes. Proceedings of the National Academy of Sciences of the United States of America 110:10735–40PubMedPubMedCentralCrossRef Tsukumo S, Unno M, Muto A, Takeuchi A, Kometani K, Kurosaki T et al (2013) Bach2 maintains T cells in a naive state by suppressing effector memory-related genes. Proceedings of the National Academy of Sciences of the United States of America 110:10735–40PubMedPubMedCentralCrossRef
82.
go back to reference Roychoudhuri R, Hirahara K, Mousavi K, Clever D, Klebanoff CA, Bonelli M et al (2013) BACH2 represses effector programs to stabilize T(reg)-mediated immune homeostasis. Nature 498:506–10PubMedPubMedCentralCrossRef Roychoudhuri R, Hirahara K, Mousavi K, Clever D, Klebanoff CA, Bonelli M et al (2013) BACH2 represses effector programs to stabilize T(reg)-mediated immune homeostasis. Nature 498:506–10PubMedPubMedCentralCrossRef
83.
go back to reference Kim EH, Gasper DJ, Lee SH, Plisch EH, Svaren J, Suresh M (2014) Bach2 regulates homeostasis of Foxp3+ regulatory T cells and protects against fatal lung disease in mice. Journal of immunology 192:985–95CrossRef Kim EH, Gasper DJ, Lee SH, Plisch EH, Svaren J, Suresh M (2014) Bach2 regulates homeostasis of Foxp3+ regulatory T cells and protects against fatal lung disease in mice. Journal of immunology 192:985–95CrossRef
84.
go back to reference Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH et al (2013) Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153:307–19PubMedPubMedCentralCrossRef Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH et al (2013) Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153:307–19PubMedPubMedCentralCrossRef
85.
go back to reference Vahedi G, Kanno Y, Furumoto Y, Jiang K, Parker SC, Erdos MR et al (2015) Super-enhancers delineate disease-associated regulatory nodes in T cells. Nature 520:558–62PubMedPubMedCentralCrossRef Vahedi G, Kanno Y, Furumoto Y, Jiang K, Parker SC, Erdos MR et al (2015) Super-enhancers delineate disease-associated regulatory nodes in T cells. Nature 520:558–62PubMedPubMedCentralCrossRef
86.
go back to reference Hu G, Chen J (2013) A genome-wide regulatory network identifies key transcription factors for memory CD8(+) T-cell development. Nature communications 4:2830PubMedPubMedCentral Hu G, Chen J (2013) A genome-wide regulatory network identifies key transcription factors for memory CD8(+) T-cell development. Nature communications 4:2830PubMedPubMedCentral
87.
go back to reference Chang C (2014) Autoimmunity: from black water fever to regulatory function. J Autoimmun 48–49:1–9PubMedCrossRef Chang C (2014) Autoimmunity: from black water fever to regulatory function. J Autoimmun 48–49:1–9PubMedCrossRef
88.
go back to reference Ghodke-Puranik Y, Niewold TB (2015) Immunogenetics of systemic lupus erythematosus: a comprehensive review. J Autoimmun 64:125–36PubMedCrossRef Ghodke-Puranik Y, Niewold TB (2015) Immunogenetics of systemic lupus erythematosus: a comprehensive review. J Autoimmun 64:125–36PubMedCrossRef
89.
go back to reference Kuhn A, Landmann A (2014) The classification and diagnosis of cutaneous lupus erythematosus. J Autoimmun 48–49:14–9PubMedCrossRef Kuhn A, Landmann A (2014) The classification and diagnosis of cutaneous lupus erythematosus. J Autoimmun 48–49:14–9PubMedCrossRef
90.
go back to reference Kourilovitch M, Galarza-Maldonado C, Ortiz-Prado E (2014) Diagnosis and classification of rheumatoid arthritis. J Autoimmun 48–49:26–30PubMedCrossRef Kourilovitch M, Galarza-Maldonado C, Ortiz-Prado E (2014) Diagnosis and classification of rheumatoid arthritis. J Autoimmun 48–49:26–30PubMedCrossRef
91.
go back to reference Eisenstein EM, Berkun Y (2014) Diagnosis and classification of juvenile idiopathic arthritis. J Autoimmun 48–49:31–3PubMedCrossRef Eisenstein EM, Berkun Y (2014) Diagnosis and classification of juvenile idiopathic arthritis. J Autoimmun 48–49:31–3PubMedCrossRef
92.
go back to reference Alunno A, Carubbi F, Bistoni O, Caterbi S, Bartoloni E, Bigerna B et al (2014) CD4(−)CD8(−) T-cells in primary Sjogren’s syndrome: association with the extent of glandular involvement. J Autoimmun 51:38–43PubMedCrossRef Alunno A, Carubbi F, Bistoni O, Caterbi S, Bartoloni E, Bigerna B et al (2014) CD4(−)CD8(−) T-cells in primary Sjogren’s syndrome: association with the extent of glandular involvement. J Autoimmun 51:38–43PubMedCrossRef
93.
go back to reference Colafrancesco S, Perricone C, Priori R, Valesini G, Shoenfeld Y (2014) Sjogren’s syndrome: another facet of the autoimmune/inflammatory syndrome induced by adjuvants (ASIA). J Autoimmun 51:10–6PubMedCrossRef Colafrancesco S, Perricone C, Priori R, Valesini G, Shoenfeld Y (2014) Sjogren’s syndrome: another facet of the autoimmune/inflammatory syndrome induced by adjuvants (ASIA). J Autoimmun 51:10–6PubMedCrossRef
94.
go back to reference Goules AV, Tzioufas AG, Moutsopoulos HM (2014) Classification criteria of Sjogren’s syndrome. J Autoimmun 48–49:42–5PubMedCrossRef Goules AV, Tzioufas AG, Moutsopoulos HM (2014) Classification criteria of Sjogren’s syndrome. J Autoimmun 48–49:42–5PubMedCrossRef
95.
96.
go back to reference Harden JL, Krueger JG, Bowcock AM (2015) The immunogenetics of psoriasis: a comprehensive review. J Autoimmun 64:66–73PubMedCrossRef Harden JL, Krueger JG, Bowcock AM (2015) The immunogenetics of psoriasis: a comprehensive review. J Autoimmun 64:66–73PubMedCrossRef
97.
go back to reference Kallenberg CG (2014) The diagnosis and classification of microscopic polyangiitis. J Autoimmun 48–49:90–3PubMedCrossRef Kallenberg CG (2014) The diagnosis and classification of microscopic polyangiitis. J Autoimmun 48–49:90–3PubMedCrossRef
98.
go back to reference Hernandez-Rodriguez J, Alba MA, Prieto-Gonzalez S, Cid MC (2014) Diagnosis and classification of polyarteritis nodosa. J Autoimmun 48–49:84–9PubMedCrossRef Hernandez-Rodriguez J, Alba MA, Prieto-Gonzalez S, Cid MC (2014) Diagnosis and classification of polyarteritis nodosa. J Autoimmun 48–49:84–9PubMedCrossRef
99.
100.
go back to reference Wessendorf TE, Bonella F, Costabel U (2015) Diagnosis of sarcoidosis. Clin Rev Allergy Immunol 49:54–62PubMedCrossRef Wessendorf TE, Bonella F, Costabel U (2015) Diagnosis of sarcoidosis. Clin Rev Allergy Immunol 49:54–62PubMedCrossRef
101.
102.
103.
go back to reference Spagnolo P (2015) Sarcoidosis: a critical review of history and milestones. Clin Rev Allergy Immunol 49:1–5PubMedCrossRef Spagnolo P (2015) Sarcoidosis: a critical review of history and milestones. Clin Rev Allergy Immunol 49:1–5PubMedCrossRef
104.
go back to reference Hollenbach JA, Oksenberg JR (2015) The immunogenetics of multiple sclerosis: a comprehensive review. J Autoimmun 64:13–25PubMedCrossRef Hollenbach JA, Oksenberg JR (2015) The immunogenetics of multiple sclerosis: a comprehensive review. J Autoimmun 64:13–25PubMedCrossRef
106.
go back to reference Efe C, Kahramanoglu-Aksoy E, Yilmaz B, Ozseker B, Takci S, Roach EC et al (2014) Pregnancy in women with primary biliary cirrhosis. Autoimmun Rev 13:931–5PubMedCrossRef Efe C, Kahramanoglu-Aksoy E, Yilmaz B, Ozseker B, Takci S, Roach EC et al (2014) Pregnancy in women with primary biliary cirrhosis. Autoimmun Rev 13:931–5PubMedCrossRef
107.
go back to reference Floreani A, Infantolino C, Franceschet I, Tene IM, Cazzagon N, Buja A et al (2015) Pregnancy and primary biliary cirrhosis: a case–control study. Clin Rev Allergy Immunol 48:236–42PubMedCrossRef Floreani A, Infantolino C, Franceschet I, Tene IM, Cazzagon N, Buja A et al (2015) Pregnancy and primary biliary cirrhosis: a case–control study. Clin Rev Allergy Immunol 48:236–42PubMedCrossRef
108.
go back to reference Sun Y, Haapanen K, Li B, Zhang W, Van de Water J, Gershwin ME (2015) Women and primary biliary cirrhosis. Clin Rev Allergy Immunol 48:285–300PubMedCrossRef Sun Y, Haapanen K, Li B, Zhang W, Van de Water J, Gershwin ME (2015) Women and primary biliary cirrhosis. Clin Rev Allergy Immunol 48:285–300PubMedCrossRef
109.
go back to reference Webb GJ, Siminovitch KA, Hirschfield GM (2015) The immunogenetics of primary biliary cirrhosis: a comprehensive review. J Autoimmun 64:42–52PubMedCrossRef Webb GJ, Siminovitch KA, Hirschfield GM (2015) The immunogenetics of primary biliary cirrhosis: a comprehensive review. J Autoimmun 64:42–52PubMedCrossRef
110.
go back to reference Lee HJ, Li CW, Hammerstad SS, Stefan M, Tomer Y (2015) Immunogenetics of autoimmune thyroid diseases: a comprehensive review. J Autoimmun 64:82–90PubMedCrossRef Lee HJ, Li CW, Hammerstad SS, Stefan M, Tomer Y (2015) Immunogenetics of autoimmune thyroid diseases: a comprehensive review. J Autoimmun 64:82–90PubMedCrossRef
111.
go back to reference Bossini-Castillo L, Lopez-Isac E, Martin J (2015) Immunogenetics of systemic sclerosis: defining heritability, functional variants and shared-autoimmunity pathways. J Autoimmun 64:53–65PubMedCrossRef Bossini-Castillo L, Lopez-Isac E, Martin J (2015) Immunogenetics of systemic sclerosis: defining heritability, functional variants and shared-autoimmunity pathways. J Autoimmun 64:53–65PubMedCrossRef
112.
go back to reference Hudson M, Fritzler MJ (2014) Diagnostic criteria of systemic sclerosis. J Autoimmun 48–49:38–41PubMedCrossRef Hudson M, Fritzler MJ (2014) Diagnostic criteria of systemic sclerosis. J Autoimmun 48–49:38–41PubMedCrossRef
113.
go back to reference Wang Q, Yang F, Miao Q, Krawitt EL, Gershwin ME, Ma X (2016) The clinical phenotypes of autoimmune hepatitis: a comprehensive review. J Autoimmun 66:98–107PubMedCrossRef Wang Q, Yang F, Miao Q, Krawitt EL, Gershwin ME, Ma X (2016) The clinical phenotypes of autoimmune hepatitis: a comprehensive review. J Autoimmun 66:98–107PubMedCrossRef
114.
go back to reference Aricha R, Reuveni D, Fuchs S, Souroujon MC (2016) Suppression of experimental autoimmune myasthenia gravis by autologous T regulatory cells. J Autoimmun 67:57–64PubMedCrossRef Aricha R, Reuveni D, Fuchs S, Souroujon MC (2016) Suppression of experimental autoimmune myasthenia gravis by autologous T regulatory cells. J Autoimmun 67:57–64PubMedCrossRef
115.
go back to reference Avidan N, Le Panse R, Berrih-Aknin S, Miller A (2014) Genetic basis of myasthenia gravis—a comprehensive review. J Autoimmun 52:146–53PubMedCrossRef Avidan N, Le Panse R, Berrih-Aknin S, Miller A (2014) Genetic basis of myasthenia gravis—a comprehensive review. J Autoimmun 52:146–53PubMedCrossRef
116.
go back to reference Berrih-Aknin S (2014) Myasthenia gravis: paradox versus paradigm in autoimmunity. J Autoimmun 52:1–28PubMedCrossRef Berrih-Aknin S (2014) Myasthenia gravis: paradox versus paradigm in autoimmunity. J Autoimmun 52:1–28PubMedCrossRef
117.
go back to reference Berrih-Aknin S, Le Panse R (2014) Myasthenia gravis: a comprehensive review of immune dysregulation and etiological mechanisms. J Autoimmun 52:90–100PubMedCrossRef Berrih-Aknin S, Le Panse R (2014) Myasthenia gravis: a comprehensive review of immune dysregulation and etiological mechanisms. J Autoimmun 52:90–100PubMedCrossRef
118.
go back to reference Canivell S, Gomis R (2014) Diagnosis and classification of autoimmune diabetes mellitus. Autoimmun Rev 13:403–7PubMedCrossRef Canivell S, Gomis R (2014) Diagnosis and classification of autoimmune diabetes mellitus. Autoimmun Rev 13:403–7PubMedCrossRef
119.
go back to reference Ferretti C, La Cava A (2016) Adaptive immune regulation in autoimmune diabetes. Autoimmun Rev 15:236–41PubMedCrossRef Ferretti C, La Cava A (2016) Adaptive immune regulation in autoimmune diabetes. Autoimmun Rev 15:236–41PubMedCrossRef
120.
go back to reference Tan T, Xiang Y, Chang C, Zhou Z (2014) Alteration of regulatory T cells in type 1 diabetes mellitus: a comprehensive review. Clin Rev Allergy Immunol 47:234–43PubMedCrossRef Tan T, Xiang Y, Chang C, Zhou Z (2014) Alteration of regulatory T cells in type 1 diabetes mellitus: a comprehensive review. Clin Rev Allergy Immunol 47:234–43PubMedCrossRef
121.
go back to reference Xie Z, Chang C, Zhou Z (2014) Molecular mechanisms in autoimmune type 1 diabetes: a critical review. Clin Rev Allergy Immunol 47:174–92PubMedCrossRef Xie Z, Chang C, Zhou Z (2014) Molecular mechanisms in autoimmune type 1 diabetes: a critical review. Clin Rev Allergy Immunol 47:174–92PubMedCrossRef
122.
123.
go back to reference Perga S, Montarolo F, Martire S, Berchialla P, Malucchi S, Bertolotto A (2015) Anti-inflammatory genes associated with multiple sclerosis: a gene expression study. Journal of neuroimmunology 279:75–8PubMedCrossRef Perga S, Montarolo F, Martire S, Berchialla P, Malucchi S, Bertolotto A (2015) Anti-inflammatory genes associated with multiple sclerosis: a gene expression study. Journal of neuroimmunology 279:75–8PubMedCrossRef
124.
go back to reference Hoppmann N, Graetz C, Paterka M, Poisa-Beiro L, Larochelle C, Hasan M et al (2015) New candidates for CD4 T cell pathogenicity in experimental neuroinflammation and multiple sclerosis. Brain : a journal of neurology 138:902–17CrossRef Hoppmann N, Graetz C, Paterka M, Poisa-Beiro L, Larochelle C, Hasan M et al (2015) New candidates for CD4 T cell pathogenicity in experimental neuroinflammation and multiple sclerosis. Brain : a journal of neurology 138:902–17CrossRef
125.
go back to reference Kiani AK, Jahngir S, John P, Bhatti A, Zia A, Wang X et al (2015) Genetic link of type 1 diabetes susceptibility loci with rheumatoid arthritis in Pakistani patients. Immunogenetics 67:277–82PubMedCrossRef Kiani AK, Jahngir S, John P, Bhatti A, Zia A, Wang X et al (2015) Genetic link of type 1 diabetes susceptibility loci with rheumatoid arthritis in Pakistani patients. Immunogenetics 67:277–82PubMedCrossRef
126.
go back to reference Ferreira MA, Matheson MC, Duffy DL, Marks GB, Hui J, Le Souef P et al (2011) Identification of IL6R and chromosome 11q13.5 as risk loci for asthma. Lancet 378:1006–14PubMedPubMedCentralCrossRef Ferreira MA, Matheson MC, Duffy DL, Marks GB, Hui J, Le Souef P et al (2011) Identification of IL6R and chromosome 11q13.5 as risk loci for asthma. Lancet 378:1006–14PubMedPubMedCentralCrossRef
127.
go back to reference Franke A, McGovern DP, Barrett JC, Wang K, Radford-Smith GL, Ahmad T et al (2010) Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nature genetics 42:1118–25PubMedPubMedCentralCrossRef Franke A, McGovern DP, Barrett JC, Wang K, Radford-Smith GL, Ahmad T et al (2010) Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nature genetics 42:1118–25PubMedPubMedCentralCrossRef
128.
go back to reference Sivakumaran S, Agakov F, Theodoratou E, Prendergast JG, Zgaga L, Manolio T et al (2011) Abundant pleiotropy in human complex diseases and traits. American journal of human genetics 89:607–18PubMedPubMedCentralCrossRef Sivakumaran S, Agakov F, Theodoratou E, Prendergast JG, Zgaga L, Manolio T et al (2011) Abundant pleiotropy in human complex diseases and traits. American journal of human genetics 89:607–18PubMedPubMedCentralCrossRef
129.
go back to reference Dubois PC, Trynka G, Franke L, Hunt KA, Romanos J, Curtotti A et al (2010) Multiple common variants for celiac disease influencing immune gene expression. Nature genetics 42:295–302PubMedPubMedCentralCrossRef Dubois PC, Trynka G, Franke L, Hunt KA, Romanos J, Curtotti A et al (2010) Multiple common variants for celiac disease influencing immune gene expression. Nature genetics 42:295–302PubMedPubMedCentralCrossRef
130.
go back to reference Quinn EM, Coleman C, Molloy B, Dominguez Castro P, Cormican P, Trimble V et al (2015) Transcriptome analysis of CD4+ T cells in coeliac disease reveals imprint of BACH2 and IFNgamma regulation. PloS one 10:e0140049PubMedPubMedCentralCrossRef Quinn EM, Coleman C, Molloy B, Dominguez Castro P, Cormican P, Trimble V et al (2015) Transcriptome analysis of CD4+ T cells in coeliac disease reveals imprint of BACH2 and IFNgamma regulation. PloS one 10:e0140049PubMedPubMedCentralCrossRef
131.
go back to reference Jin Y, Birlea SA, Fain PR, Ferrara TM, Ben S, Riccardi SL et al (2012) Genome-wide association analyses identify 13 new susceptibility loci for generalized vitiligo. Nature genetics 44:676–80PubMedPubMedCentralCrossRef Jin Y, Birlea SA, Fain PR, Ferrara TM, Ben S, Riccardi SL et al (2012) Genome-wide association analyses identify 13 new susceptibility loci for generalized vitiligo. Nature genetics 44:676–80PubMedPubMedCentralCrossRef
132.
go back to reference Cooper JD, Smyth DJ, Smiles AM, Plagnol V, Walker NM, Allen JE et al (2008) Meta-analysis of genome-wide association study data identifies additional type 1 diabetes risk loci. Nature genetics 40:1399–401PubMedPubMedCentralCrossRef Cooper JD, Smyth DJ, Smiles AM, Plagnol V, Walker NM, Allen JE et al (2008) Meta-analysis of genome-wide association study data identifies additional type 1 diabetes risk loci. Nature genetics 40:1399–401PubMedPubMedCentralCrossRef
133.
go back to reference Plagnol V, Howson JM, Smyth DJ, Walker N, Hafler JP, Wallace C et al (2011) Genome-wide association analysis of autoantibody positivity in type 1 diabetes cases. PLoS genetics 7:e1002216PubMedPubMedCentralCrossRef Plagnol V, Howson JM, Smyth DJ, Walker N, Hafler JP, Wallace C et al (2011) Genome-wide association analysis of autoantibody positivity in type 1 diabetes cases. PLoS genetics 7:e1002216PubMedPubMedCentralCrossRef
134.
go back to reference Elboudwarej E, Cole M, Briggs FB, Fouts A, Fain PR, Quach H et al (2016) Hypomethylation within gene promoter regions and type 1 diabetes in discordant monozygotic twins. Journal of autoimmunity 68:23–9PubMedCrossRef Elboudwarej E, Cole M, Briggs FB, Fouts A, Fain PR, Quach H et al (2016) Hypomethylation within gene promoter regions and type 1 diabetes in discordant monozygotic twins. Journal of autoimmunity 68:23–9PubMedCrossRef
135.
go back to reference Lee I, Blom UM, Wang PI, Shim JE, Marcotte EM (2011) Prioritizing candidate disease genes by network-based boosting of genome-wide association data. Genome research 21:1109–21PubMedPubMedCentralCrossRef Lee I, Blom UM, Wang PI, Shim JE, Marcotte EM (2011) Prioritizing candidate disease genes by network-based boosting of genome-wide association data. Genome research 21:1109–21PubMedPubMedCentralCrossRef
136.
go back to reference Christodoulou K, Wiskin AE, Gibson J, Tapper W, Willis C, Afzal NA et al (2013) Next generation exome sequencing of paediatric inflammatory bowel disease patients identifies rare and novel variants in candidate genes. Gut 62:977–84PubMedPubMedCentralCrossRef Christodoulou K, Wiskin AE, Gibson J, Tapper W, Willis C, Afzal NA et al (2013) Next generation exome sequencing of paediatric inflammatory bowel disease patients identifies rare and novel variants in candidate genes. Gut 62:977–84PubMedPubMedCentralCrossRef
137.
go back to reference Medici M, Porcu E, Pistis G, Teumer A, Brown SJ, Jensen RA et al (2014) Identification of novel genetic loci associated with thyroid peroxidase antibodies and clinical thyroid disease. PLoS genetics 10:e1004123PubMedPubMedCentralCrossRef Medici M, Porcu E, Pistis G, Teumer A, Brown SJ, Jensen RA et al (2014) Identification of novel genetic loci associated with thyroid peroxidase antibodies and clinical thyroid disease. PLoS genetics 10:e1004123PubMedPubMedCentralCrossRef
139.
go back to reference Parkes M, Cortes A, van Heel DA, Brown MA (2013) Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nature reviews Genetics 14:661–73PubMedCrossRef Parkes M, Cortes A, van Heel DA, Brown MA (2013) Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nature reviews Genetics 14:661–73PubMedCrossRef
141.
go back to reference Lu Q (2013) The critical importance of epigenetics in autoimmunity. Journal of autoimmunity 41:1–5PubMedCrossRef Lu Q (2013) The critical importance of epigenetics in autoimmunity. Journal of autoimmunity 41:1–5PubMedCrossRef
142.
go back to reference Saito Y, Saito H, Liang G, Friedman JM (2014) Epigenetic alterations and microRNA misexpression in cancer and autoimmune diseases: a critical review. Clin Rev Allergy Immunol 47:128–35PubMedPubMedCentralCrossRef Saito Y, Saito H, Liang G, Friedman JM (2014) Epigenetic alterations and microRNA misexpression in cancer and autoimmune diseases: a critical review. Clin Rev Allergy Immunol 47:128–35PubMedPubMedCentralCrossRef
143.
go back to reference Gottwein E, Mukherjee N, Sachse C, Frenzel C, Majoros WH, Chi JT et al (2007) A viral microRNA functions as an orthologue of cellular miR-155. Nature 450:1096–9PubMedPubMedCentralCrossRef Gottwein E, Mukherjee N, Sachse C, Frenzel C, Majoros WH, Chi JT et al (2007) A viral microRNA functions as an orthologue of cellular miR-155. Nature 450:1096–9PubMedPubMedCentralCrossRef
144.
go back to reference Skalsky RL, Samols MA, Plaisance KB, Boss IW, Riva A, Lopez MC et al (2007) Kaposi’s sarcoma-associated herpesvirus encodes an ortholog of miR-155. Journal of virology 81:12836–45PubMedPubMedCentralCrossRef Skalsky RL, Samols MA, Plaisance KB, Boss IW, Riva A, Lopez MC et al (2007) Kaposi’s sarcoma-associated herpesvirus encodes an ortholog of miR-155. Journal of virology 81:12836–45PubMedPubMedCentralCrossRef
145.
go back to reference Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, Soond DR et al (2007) Requirement of bic/microRNA-155 for normal immune function. Science (New York, NY) 316:608–11CrossRef Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, Soond DR et al (2007) Requirement of bic/microRNA-155 for normal immune function. Science (New York, NY) 316:608–11CrossRef
146.
go back to reference Thai TH, Calado DP, Casola S, Ansel KM, Xiao C, Xue Y et al (2007) Regulation of the germinal center response by microRNA-155. Science (New York, NY) 316:604–8CrossRef Thai TH, Calado DP, Casola S, Ansel KM, Xiao C, Xue Y et al (2007) Regulation of the germinal center response by microRNA-155. Science (New York, NY) 316:604–8CrossRef
147.
go back to reference O’Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D (2007) MicroRNA-155 is induced during the macrophage inflammatory response. Proceedings of the National Academy of Sciences of the United States of America 104:1604–9PubMedPubMedCentralCrossRef O’Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D (2007) MicroRNA-155 is induced during the macrophage inflammatory response. Proceedings of the National Academy of Sciences of the United States of America 104:1604–9PubMedPubMedCentralCrossRef
148.
149.
go back to reference Fernando TR, Rodriguez-Malave NI, Rao DS (2012) MicroRNAs in B cell development and malignancy. Journal of hematology & oncology 5:7CrossRef Fernando TR, Rodriguez-Malave NI, Rao DS (2012) MicroRNAs in B cell development and malignancy. Journal of hematology & oncology 5:7CrossRef
150.
go back to reference Porstner M, Winkelmann R, Daum P, Schmid J, Pracht K, Corte-Real J et al (2015) miR-148a promotes plasma cell differentiation and targets the germinal center transcription factors mitf and Bach2. European journal of immunology 45:1206–15PubMedCrossRef Porstner M, Winkelmann R, Daum P, Schmid J, Pracht K, Corte-Real J et al (2015) miR-148a promotes plasma cell differentiation and targets the germinal center transcription factors mitf and Bach2. European journal of immunology 45:1206–15PubMedCrossRef
151.
go back to reference Haam K, Kim HJ, Lee KT, Kim JH, Kim M, Kim SY et al (2014) Epigenetic silencing of BTB and CNC homology 2 and concerted promoter CpG methylation in gastric cancer. Cancer letters 351:206–14PubMedCrossRef Haam K, Kim HJ, Lee KT, Kim JH, Kim M, Kim SY et al (2014) Epigenetic silencing of BTB and CNC homology 2 and concerted promoter CpG methylation in gastric cancer. Cancer letters 351:206–14PubMedCrossRef
152.
go back to reference Igarashi K, Ota K, Nakame A (2009) Regulation of cellular senescence by Bach1. Nihon rinsho Japanese journal of clinical medicine 67:1423–8PubMed Igarashi K, Ota K, Nakame A (2009) Regulation of cellular senescence by Bach1. Nihon rinsho Japanese journal of clinical medicine 67:1423–8PubMed
153.
go back to reference Omura S, Suzuki H, Toyofuku M, Ozono R, Kohno N, Igarashi K (2005) Effects of genetic ablation of bach1 upon smooth muscle cell proliferation and atherosclerosis after cuff injury. Genes to cells : devoted to molecular & cellular mechanisms 10:277–85CrossRef Omura S, Suzuki H, Toyofuku M, Ozono R, Kohno N, Igarashi K (2005) Effects of genetic ablation of bach1 upon smooth muscle cell proliferation and atherosclerosis after cuff injury. Genes to cells : devoted to molecular & cellular mechanisms 10:277–85CrossRef
154.
go back to reference Kuwahara M, Suzuki J, Tofukuji S, Yamada T, Kanoh M, Matsumoto A et al (2014) The menin-Bach2 axis is critical for regulating CD4 T-cell senescence and cytokine homeostasis. Nature communications 5:3555PubMedPubMedCentralCrossRef Kuwahara M, Suzuki J, Tofukuji S, Yamada T, Kanoh M, Matsumoto A et al (2014) The menin-Bach2 axis is critical for regulating CD4 T-cell senescence and cytokine homeostasis. Nature communications 5:3555PubMedPubMedCentralCrossRef
156.
go back to reference Vieira SA, Deininger MW, Sorour A, Sinclair P, Foroni L, Goldman JM et al (2001) Transcription factor BACH2 is transcriptionally regulated by the BCR/ABL oncogene. Genes, chromosomes & cancer 32:353–63CrossRef Vieira SA, Deininger MW, Sorour A, Sinclair P, Foroni L, Goldman JM et al (2001) Transcription factor BACH2 is transcriptionally regulated by the BCR/ABL oncogene. Genes, chromosomes & cancer 32:353–63CrossRef
157.
go back to reference Ichikawa S, Fukuhara N, Katsushima H, Takahashi T, Yamamoto J, Yokoyama H et al (2014) Association between BACH2 expression and clinical prognosis in diffuse large B-cell lymphoma. Cancer science 105:437–44PubMedPubMedCentralCrossRef Ichikawa S, Fukuhara N, Katsushima H, Takahashi T, Yamamoto J, Yokoyama H et al (2014) Association between BACH2 expression and clinical prognosis in diffuse large B-cell lymphoma. Cancer science 105:437–44PubMedPubMedCentralCrossRef
158.
go back to reference Roychoudhuri R, Eil RL, Clever D, Klebanoff CA, Sukumar M, Grant FM et al (2016) The transcription factor BACH2 promotes tumor immunosuppression. The Journal of clinical investigation 126:599–604PubMedCrossRef Roychoudhuri R, Eil RL, Clever D, Klebanoff CA, Sukumar M, Grant FM et al (2016) The transcription factor BACH2 promotes tumor immunosuppression. The Journal of clinical investigation 126:599–604PubMedCrossRef
Metadata
Title
The Bach Family of Transcription Factors: A Comprehensive Review
Authors
Yin Zhou
Haijing Wu
Ming Zhao
Christopher Chang
Qianjin Lu
Publication date
01-06-2016
Publisher
Springer US
Published in
Clinical Reviews in Allergy & Immunology / Issue 3/2016
Print ISSN: 1080-0549
Electronic ISSN: 1559-0267
DOI
https://doi.org/10.1007/s12016-016-8538-7

Other articles of this Issue 3/2016

Clinical Reviews in Allergy & Immunology 3/2016 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.