Skip to main content
Top
Published in: Clinical Reviews in Allergy & Immunology 3/2016

01-06-2016

Critical Link Between Epigenetics and Transcription Factors in the Induction of Autoimmunity: a Comprehensive Review

Authors: Haijing Wu, Ming Zhao, Akihiko Yoshimura, Christopher Chang, Qianjin Lu

Published in: Clinical Reviews in Allergy & Immunology | Issue 3/2016

Login to get access

Abstract

Autoimmune diseases occur when the immune system loses tolerance to self-antigens, inducing inflammation and tissue damage. The pathogenesis of autoimmune diseases has not been elucidated. A growing mountain of evidence suggests the involvement of genetic and epigenetic factors in the development of these disorders. Genetic mapping has identified several candidate variants in autoimmune conditions. However, autoimmune diseases cannot be explained by genetic susceptibility alone. The fact that there is only 20 % of concordance for systemic lupus erythematosus (SLE) in homozygotic twins is an indication that epigenetics and environment may also play significant roles. Epigenetics refer to inheritable and potentially reversible changes in DNA and chromatin that regulate gene expression without altering the DNA sequence. The primary mechanisms of epigenetic regulation include DNA methylation, histone modification, and non-coding RNA-mediated regulation. The regulation on gene expression by epigenetics is similar to that by transcription factors (TFs), and the normal execution of biological event is controlled by a combination of epigenetic modifications and TFs. These two mechanisms share similar regulatory logistics and cooperate in part by influencing activity of the binding sites of target genes. In addition, the promoters of TFs have been found themselves to be modified by epigenetic regulators and TFs can also induce epigenetic changes. There is a two-way street in which interplay between epigenetic regulation and TFs plays a role in the pathogenesis of SLE, rheumatoid arthritis, type 1 diabetes, systemic sclerosis, and multiple sclerosis. Understanding of pathogenesis of these autoimmune diseases will help define potential targets for therapeutic strategies.
Literature
1.
go back to reference Lu Q (2014) Unmet needs in autoimmunity and potential new tools. Clin Rev Allergy Immunol 47:111–8PubMedCrossRef Lu Q (2014) Unmet needs in autoimmunity and potential new tools. Clin Rev Allergy Immunol 47:111–8PubMedCrossRef
2.
go back to reference Wandstrat A, Wakeland E (2001) The genetics of complex autoimmune diseases: non-MHC susceptibility genes. Nat Immunol 2:802–9PubMedCrossRef Wandstrat A, Wakeland E (2001) The genetics of complex autoimmune diseases: non-MHC susceptibility genes. Nat Immunol 2:802–9PubMedCrossRef
3.
go back to reference Rhodes B, Vyse TJ (2008) The genetics of SLE: an update in the light of genome-wide association studies. Rheumatology (Oxford) 47:1603–11CrossRef Rhodes B, Vyse TJ (2008) The genetics of SLE: an update in the light of genome-wide association studies. Rheumatology (Oxford) 47:1603–11CrossRef
4.
go back to reference Alarcon-Riquelme ME (2007) Recent advances in the genetics of autoimmune diseases. Ann N Y Acad Sci 1110:1–9PubMedCrossRef Alarcon-Riquelme ME (2007) Recent advances in the genetics of autoimmune diseases. Ann N Y Acad Sci 1110:1–9PubMedCrossRef
5.
go back to reference Floreani A, Leung PS, Gershwin ME (2015) Environmental basis of autoimmunity Clin Rev Allergy Immunol Floreani A, Leung PS, Gershwin ME (2015) Environmental basis of autoimmunity Clin Rev Allergy Immunol
6.
go back to reference Jeffries MA, Sawalha AH (2011) Epigenetics in systemic lupus erythematosus: leading the way for specific therapeutic agents. Int J Clin Rheumatol 6:423–39CrossRef Jeffries MA, Sawalha AH (2011) Epigenetics in systemic lupus erythematosus: leading the way for specific therapeutic agents. Int J Clin Rheumatol 6:423–39CrossRef
7.
go back to reference Ballestar E (2010) Epigenetics lessons from twins: prospects for autoimmune disease. Clin Rev Allergy Immunol 39:30–41PubMedCrossRef Ballestar E (2010) Epigenetics lessons from twins: prospects for autoimmune disease. Clin Rev Allergy Immunol 39:30–41PubMedCrossRef
8.
go back to reference Brown CC, Wedderburn LR (2015) Genetics: mapping autoimmune disease epigenetics: what’s on the horizon? Nat Rev Rheumatol 11:131–2PubMedCrossRef Brown CC, Wedderburn LR (2015) Genetics: mapping autoimmune disease epigenetics: what’s on the horizon? Nat Rev Rheumatol 11:131–2PubMedCrossRef
9.
go back to reference Jeffries MA, Sawalha AH (2015) Autoimmune disease in the epigenetic era: how has epigenetics changed our understanding of disease and how can we expect the field to evolve? Expert Rev Clin Immunol 11:45–58PubMedPubMedCentralCrossRef Jeffries MA, Sawalha AH (2015) Autoimmune disease in the epigenetic era: how has epigenetics changed our understanding of disease and how can we expect the field to evolve? Expert Rev Clin Immunol 11:45–58PubMedPubMedCentralCrossRef
10.
go back to reference Quddus J, Johnson KJ, Gavalchin J, Amento EP, Chrisp CE, Yung RL et al (1993) Treating activated CD4+ T cells with either of two distinct DNA methyltransferase inhibitors, 5-azacytidine or procainamide, is sufficient to cause a lupus-like disease in syngeneic mice. J Clin Invest 92:38–53PubMedPubMedCentralCrossRef Quddus J, Johnson KJ, Gavalchin J, Amento EP, Chrisp CE, Yung RL et al (1993) Treating activated CD4+ T cells with either of two distinct DNA methyltransferase inhibitors, 5-azacytidine or procainamide, is sufficient to cause a lupus-like disease in syngeneic mice. J Clin Invest 92:38–53PubMedPubMedCentralCrossRef
11.
go back to reference Sanchez-Pernaute O, Ospelt C, Neidhart M, Gay S (2008) Epigenetic clues to rheumatoid arthritis. J Autoimmun 30:12–20PubMedCrossRef Sanchez-Pernaute O, Ospelt C, Neidhart M, Gay S (2008) Epigenetic clues to rheumatoid arthritis. J Autoimmun 30:12–20PubMedCrossRef
12.
go back to reference Kragt J, van Amerongen B, Killestein J, Dijkstra C, Uitdehaag B, Polman C et al (2009) Higher levels of 25-hydroxyvitamin D are associated with a lower incidence of multiple sclerosis only in women. Mult Scler 15:9–15PubMedCrossRef Kragt J, van Amerongen B, Killestein J, Dijkstra C, Uitdehaag B, Polman C et al (2009) Higher levels of 25-hydroxyvitamin D are associated with a lower incidence of multiple sclerosis only in women. Mult Scler 15:9–15PubMedCrossRef
13.
go back to reference Oksenberg JR, Baranzini SE, Sawcer S, Hauser SL (2008) The genetics of multiple sclerosis: SNPs to pathways to pathogenesis. Nat Rev Genet 9:516–26PubMedCrossRef Oksenberg JR, Baranzini SE, Sawcer S, Hauser SL (2008) The genetics of multiple sclerosis: SNPs to pathways to pathogenesis. Nat Rev Genet 9:516–26PubMedCrossRef
14.
go back to reference Koch MW, Metz LM, Kovalchuk O (2013) Epigenetics and miRNAs in the diagnosis and treatment of multiple sclerosis. Trends Mol Med 19:23–30PubMedCrossRef Koch MW, Metz LM, Kovalchuk O (2013) Epigenetics and miRNAs in the diagnosis and treatment of multiple sclerosis. Trends Mol Med 19:23–30PubMedCrossRef
15.
go back to reference Kucukali CI, Kurtuncu M, Coban A, Cebi M, Tuzun E (2014) Epigenetics of multiple sclerosis: an updated review. Neuromolecular Med Kucukali CI, Kurtuncu M, Coban A, Cebi M, Tuzun E (2014) Epigenetics of multiple sclerosis: an updated review. Neuromolecular Med
16.
go back to reference Strickland FM, Li Y, Johnson K, Sun Z, Richardson BC (2015) CD4(+) T cells epigenetically modified by oxidative stress cause lupus-like autoimmunity in mice. J Autoimmun 62:75–80PubMedCrossRef Strickland FM, Li Y, Johnson K, Sun Z, Richardson BC (2015) CD4(+) T cells epigenetically modified by oxidative stress cause lupus-like autoimmunity in mice. J Autoimmun 62:75–80PubMedCrossRef
17.
go back to reference Bao Y, Cao X (2015) Epigenetic control of B cell development and B-cell-related immune disorders. Clin Rev Allergy Immunol Bao Y, Cao X (2015) Epigenetic control of B cell development and B-cell-related immune disorders. Clin Rev Allergy Immunol
18.
go back to reference Renauer P, Coit P, Sawalha AH (2015) Epigenetics and vasculitis: a comprehensive review. Clin Rev Allergy Immunol Renauer P, Coit P, Sawalha AH (2015) Epigenetics and vasculitis: a comprehensive review. Clin Rev Allergy Immunol
19.
go back to reference Saito Y, Saito H, Liang G, Friedman JM (2014) Epigenetic alterations and microRNA misexpression in cancer and autoimmune diseases: a critical review. Clin Rev Allergy Immunol 47:128–35PubMedPubMedCentralCrossRef Saito Y, Saito H, Liang G, Friedman JM (2014) Epigenetic alterations and microRNA misexpression in cancer and autoimmune diseases: a critical review. Clin Rev Allergy Immunol 47:128–35PubMedPubMedCentralCrossRef
22.
go back to reference Abdel-Wahab O, Mullally A, Hedvat C, Garcia-Manero G, Patel J, Wadleigh M et al (2009) Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood 114:144–7PubMedPubMedCentralCrossRef Abdel-Wahab O, Mullally A, Hedvat C, Garcia-Manero G, Patel J, Wadleigh M et al (2009) Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood 114:144–7PubMedPubMedCentralCrossRef
24.
go back to reference Klose RJ, Bird AP (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 31:89–97PubMedCrossRef Klose RJ, Bird AP (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 31:89–97PubMedCrossRef
25.
go back to reference Fan S, Zhang X (2009) CpG island methylation pattern in different human tissues and its correlation with gene expression. Biochem Biophys Res Commun 383:421–5PubMedCrossRef Fan S, Zhang X (2009) CpG island methylation pattern in different human tissues and its correlation with gene expression. Biochem Biophys Res Commun 383:421–5PubMedCrossRef
26.
go back to reference Perini G, Diolaiti D, Porro A, Della Valle G (2005) In vivo transcriptional regulation of N-Myc target genes is controlled by E-box methylation. Proc Natl Acad Sci U S A 102:12117–22PubMedPubMedCentralCrossRef Perini G, Diolaiti D, Porro A, Della Valle G (2005) In vivo transcriptional regulation of N-Myc target genes is controlled by E-box methylation. Proc Natl Acad Sci U S A 102:12117–22PubMedPubMedCentralCrossRef
27.
go back to reference Kim J, Kollhoff A, Bergmann A, Stubbs L (2003) Methylation-sensitive binding of transcription factor YY1 to an insulator sequence within the paternally expressed imprinted gene, Peg3. Hum Mol Genet 12:233–45PubMedCrossRef Kim J, Kollhoff A, Bergmann A, Stubbs L (2003) Methylation-sensitive binding of transcription factor YY1 to an insulator sequence within the paternally expressed imprinted gene, Peg3. Hum Mol Genet 12:233–45PubMedCrossRef
28.
go back to reference Chatterjee R, Vinson C (1819) CpG methylation recruits sequence specific transcription factors essential for tissue specific gene expression. Biochim Biophys Acta 2012:763–70 Chatterjee R, Vinson C (1819) CpG methylation recruits sequence specific transcription factors essential for tissue specific gene expression. Biochim Biophys Acta 2012:763–70
29.
go back to reference Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN et al (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393:386–9PubMedCrossRef Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN et al (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393:386–9PubMedCrossRef
30.
go back to reference Medvedeva YA, Khamis AM, Kulakovskiy IV, Ba-Alawi W, Bhuyan MS, Kawaji H et al (2014) Effects of cytosine methylation on transcription factor binding sites. BMC Genomics 15:119PubMedPubMedCentralCrossRef Medvedeva YA, Khamis AM, Kulakovskiy IV, Ba-Alawi W, Bhuyan MS, Kawaji H et al (2014) Effects of cytosine methylation on transcription factor binding sites. BMC Genomics 15:119PubMedPubMedCentralCrossRef
31.
go back to reference Ali I, Seker H (2010) A comparative study for characterisation and prediction of tissue-specific DNA methylation of CpG islands in chromosomes 6, 20 and 22. Conf Proc IEEE Eng Med Biol Soc 2010:1832–5PubMed Ali I, Seker H (2010) A comparative study for characterisation and prediction of tissue-specific DNA methylation of CpG islands in chromosomes 6, 20 and 22. Conf Proc IEEE Eng Med Biol Soc 2010:1832–5PubMed
32.
go back to reference Ghosh S, Yates AJ, Fruhwald MC, Miecznikowski JC, Plass C, Smiraglia D (2010) Tissue specific DNA methylation of CpG islands in normal human adult somatic tissues distinguishes neural from non-neural tissues. Epigenetics 5:527–38PubMedPubMedCentralCrossRef Ghosh S, Yates AJ, Fruhwald MC, Miecznikowski JC, Plass C, Smiraglia D (2010) Tissue specific DNA methylation of CpG islands in normal human adult somatic tissues distinguishes neural from non-neural tissues. Epigenetics 5:527–38PubMedPubMedCentralCrossRef
33.
go back to reference Cohen CJ, Crome SQ, MacDonald KG, Dai EL, Mager DL, Levings MK (2011) Human Th1 and Th17 cells exhibit epigenetic stability at signature cytokine and transcription factor loci. J Immunol 187:5615–26PubMedCrossRef Cohen CJ, Crome SQ, MacDonald KG, Dai EL, Mager DL, Levings MK (2011) Human Th1 and Th17 cells exhibit epigenetic stability at signature cytokine and transcription factor loci. J Immunol 187:5615–26PubMedCrossRef
34.
go back to reference Ivascu C, Wasserkort R, Lesche R, Dong J, Stein H, Thiel A et al (2007) DNA methylation profiling of transcription factor genes in normal lymphocyte development and lymphomas. Int J Biochem Cell Biol 39:1523–38PubMedCrossRef Ivascu C, Wasserkort R, Lesche R, Dong J, Stein H, Thiel A et al (2007) DNA methylation profiling of transcription factor genes in normal lymphocyte development and lymphomas. Int J Biochem Cell Biol 39:1523–38PubMedCrossRef
35.
go back to reference Perera A, Eisen D, Wagner M, Laube SK, Kunzel AF, Koch S et al (2015) TET3 is recruited by REST for context-specific hydroxymethylation and induction of gene expression. Cell Rep Perera A, Eisen D, Wagner M, Laube SK, Kunzel AF, Koch S et al (2015) TET3 is recruited by REST for context-specific hydroxymethylation and induction of gene expression. Cell Rep
36.
go back to reference Hervouet E, Vallette FM, Cartron PF (2010) Dnmt1/transcription factor interactions: an alternative mechanism of DNA methylation inheritance. Genes Cancer 1:434–43PubMedPubMedCentralCrossRef Hervouet E, Vallette FM, Cartron PF (2010) Dnmt1/transcription factor interactions: an alternative mechanism of DNA methylation inheritance. Genes Cancer 1:434–43PubMedPubMedCentralCrossRef
37.
go back to reference Zhang Q, Wang HY, Woetmann A, Raghunath PN, Odum N, Wasik MA (2006) STAT3 induces transcription of the DNA methyltransferase 1 gene (DNMT1) in malignant T lymphocytes. Blood 108:1058–64PubMedPubMedCentralCrossRef Zhang Q, Wang HY, Woetmann A, Raghunath PN, Odum N, Wasik MA (2006) STAT3 induces transcription of the DNA methyltransferase 1 gene (DNMT1) in malignant T lymphocytes. Blood 108:1058–64PubMedPubMedCentralCrossRef
38.
go back to reference Rothbart SB, Strahl BD (1839) Interpreting the language of histone and DNA modifications. Biochim Biophys Acta 2014:627–43 Rothbart SB, Strahl BD (1839) Interpreting the language of histone and DNA modifications. Biochim Biophys Acta 2014:627–43
39.
40.
go back to reference Renaudineau Y, Youinou P (2011) Epigenetics and autoimmunity, with special emphasis on methylation. Keio J Med 60:10–6PubMedCrossRef Renaudineau Y, Youinou P (2011) Epigenetics and autoimmunity, with special emphasis on methylation. Keio J Med 60:10–6PubMedCrossRef
41.
go back to reference Black JC, Van Rechem C, Whetstine JR (2012) Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol Cell 48:491–507PubMedCrossRef Black JC, Van Rechem C, Whetstine JR (2012) Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol Cell 48:491–507PubMedCrossRef
42.
go back to reference Gregory PD, Wagner K, Horz W (2001) Histone acetylation and chromatin remodeling. Exp Cell Res 265:195–202PubMedCrossRef Gregory PD, Wagner K, Horz W (2001) Histone acetylation and chromatin remodeling. Exp Cell Res 265:195–202PubMedCrossRef
43.
go back to reference Chuang HC, Chang CW, Chang GD, Yao TP, Chen H (2006) Histone deacetylase 3 binds to and regulates the GCMa transcription factor. Nucleic Acids Res 34:1459–69PubMedPubMedCentralCrossRef Chuang HC, Chang CW, Chang GD, Yao TP, Chen H (2006) Histone deacetylase 3 binds to and regulates the GCMa transcription factor. Nucleic Acids Res 34:1459–69PubMedPubMedCentralCrossRef
45.
go back to reference Katto J, Engel N, Abbas W, Herbein G, Mahlknecht U (2013) Transcription factor NFkappaB regulates the expression of the histone deacetylase SIRT1. Clin Epigenetics 5:11PubMedPubMedCentralCrossRef Katto J, Engel N, Abbas W, Herbein G, Mahlknecht U (2013) Transcription factor NFkappaB regulates the expression of the histone deacetylase SIRT1. Clin Epigenetics 5:11PubMedPubMedCentralCrossRef
46.
go back to reference Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303:83–6PubMedCrossRef Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303:83–6PubMedCrossRef
47.
go back to reference Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–79PubMedCrossRef Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–79PubMedCrossRef
48.
go back to reference Inui M, Martello G, Piccolo S (2010) MicroRNA control of signal transduction. Nat Rev Mol Cell Biol 11:252–63PubMedCrossRef Inui M, Martello G, Piccolo S (2010) MicroRNA control of signal transduction. Nat Rev Mol Cell Biol 11:252–63PubMedCrossRef
50.
go back to reference Baltimore D, Boldin MP, O’Connell RM, Rao DS, Taganov KD (2008) MicroRNAs: new regulators of immune cell development and function. Nat Immunol 9:839–45PubMedCrossRef Baltimore D, Boldin MP, O’Connell RM, Rao DS, Taganov KD (2008) MicroRNAs: new regulators of immune cell development and function. Nat Immunol 9:839–45PubMedCrossRef
51.
go back to reference O’Connell RM, Rao DS, Chaudhuri AA, Baltimore D (2010) Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol 10:111–22PubMedCrossRef O’Connell RM, Rao DS, Chaudhuri AA, Baltimore D (2010) Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol 10:111–22PubMedCrossRef
53.
go back to reference Johnson SM, Lin SY, Slack FJ (2003) The time of appearance of the C. elegans let-7 microRNA is transcriptionally controlled utilizing a temporal regulatory element in its promoter. Dev Biol 259:364–79PubMedCrossRef Johnson SM, Lin SY, Slack FJ (2003) The time of appearance of the C. elegans let-7 microRNA is transcriptionally controlled utilizing a temporal regulatory element in its promoter. Dev Biol 259:364–79PubMedCrossRef
54.
go back to reference Biemar F, Zinzen R, Ronshaugen M, Sementchenko V, Manak JR, Levine MS (2005) Spatial regulation of microRNA gene expression in the Drosophila embryo. Proc Natl Acad Sci U S A 102:15907–11PubMedPubMedCentralCrossRef Biemar F, Zinzen R, Ronshaugen M, Sementchenko V, Manak JR, Levine MS (2005) Spatial regulation of microRNA gene expression in the Drosophila embryo. Proc Natl Acad Sci U S A 102:15907–11PubMedPubMedCentralCrossRef
56.
go back to reference Arora S, Rana R, Chhabra A, Jaiswal A, Rani V (2013) miRNA-transcription factor interactions: a combinatorial regulation of gene expression. Mol Genet Genomics 288:77–87PubMedCrossRef Arora S, Rana R, Chhabra A, Jaiswal A, Rani V (2013) miRNA-transcription factor interactions: a combinatorial regulation of gene expression. Mol Genet Genomics 288:77–87PubMedCrossRef
57.
go back to reference Chen CY, Chen ST, Fuh CS, Juan HF, Huang HC (2011) Coregulation of transcription factors and microRNAs in human transcriptional regulatory network. BMC Bioinformatics 12(Suppl 1):S41PubMedPubMedCentralCrossRef Chen CY, Chen ST, Fuh CS, Juan HF, Huang HC (2011) Coregulation of transcription factors and microRNAs in human transcriptional regulatory network. BMC Bioinformatics 12(Suppl 1):S41PubMedPubMedCentralCrossRef
58.
go back to reference Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11:597–610PubMed Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11:597–610PubMed
60.
go back to reference International Human Genome Sequencing C (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931–45CrossRef International Human Genome Sequencing C (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931–45CrossRef
61.
62.
go back to reference Kretz M, Siprashvili Z, Chu C, Webster DE, Zehnder A, Qu K et al (2013) Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature 493:231–5PubMedPubMedCentralCrossRef Kretz M, Siprashvili Z, Chu C, Webster DE, Zehnder A, Qu K et al (2013) Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature 493:231–5PubMedPubMedCentralCrossRef
63.
go back to reference Johnsson P, Ackley A, Vidarsdottir L, Lui WO, Corcoran M, Grander D et al (2013) A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells. Nat Struct Mol Biol 20:440–6PubMedPubMedCentralCrossRef Johnsson P, Ackley A, Vidarsdottir L, Lui WO, Corcoran M, Grander D et al (2013) A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells. Nat Struct Mol Biol 20:440–6PubMedPubMedCentralCrossRef
64.
65.
go back to reference Li Z, Chao TC, Chang KY, Lin N, Patil VS, Shimizu C et al (2014) The long noncoding RNA THRIL regulates TNFalpha expression through its interaction with hnRNPL. Proc Natl Acad Sci U S A 111:1002–7PubMedPubMedCentralCrossRef Li Z, Chao TC, Chang KY, Lin N, Patil VS, Shimizu C et al (2014) The long noncoding RNA THRIL regulates TNFalpha expression through its interaction with hnRNPL. Proc Natl Acad Sci U S A 111:1002–7PubMedPubMedCentralCrossRef
66.
go back to reference Carpenter S, Aiello D, Atianand MK, Ricci EP, Gandhi P, Hall LL et al (2013) A long noncoding RNA mediates both activation and repression of immune response genes. Science 341:789–92PubMedPubMedCentralCrossRef Carpenter S, Aiello D, Atianand MK, Ricci EP, Gandhi P, Hall LL et al (2013) A long noncoding RNA mediates both activation and repression of immune response genes. Science 341:789–92PubMedPubMedCentralCrossRef
67.
go back to reference Wang P, Xue Y, Han Y, Lin L, Wu C, Xu S et al (2014) The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. Science 344:310–3PubMedCrossRef Wang P, Xue Y, Han Y, Lin L, Wu C, Xu S et al (2014) The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. Science 344:310–3PubMedCrossRef
68.
go back to reference Hu G, Tang Q, Sharma S, Yu F, Escobar TM, Muljo SA et al (2013) Expression and regulation of intergenic long noncoding RNAs during T cell development and differentiation. Nat Immunol 14:1190–8PubMedPubMedCentralCrossRef Hu G, Tang Q, Sharma S, Yu F, Escobar TM, Muljo SA et al (2013) Expression and regulation of intergenic long noncoding RNAs during T cell development and differentiation. Nat Immunol 14:1190–8PubMedPubMedCentralCrossRef
69.
go back to reference Heward JA, Lindsay MA (2014) Long non-coding RNAs in the regulation of the immune response. Trends Immunol 35:408–19PubMedCrossRef Heward JA, Lindsay MA (2014) Long non-coding RNAs in the regulation of the immune response. Trends Immunol 35:408–19PubMedCrossRef
70.
go back to reference Hrdlickova B, Kumar V, Kanduri K, Zhernakova DV, Tripathi S, Karjalainen J et al (2014) Expression profiles of long non-coding RNAs located in autoimmune disease-associated regions reveal immune cell-type specificity. Genome Med 6:88PubMedPubMedCentralCrossRef Hrdlickova B, Kumar V, Kanduri K, Zhernakova DV, Tripathi S, Karjalainen J et al (2014) Expression profiles of long non-coding RNAs located in autoimmune disease-associated regions reveal immune cell-type specificity. Genome Med 6:88PubMedPubMedCentralCrossRef
71.
go back to reference Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y et al (2011) A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472:120–4PubMedPubMedCentralCrossRef Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y et al (2011) A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472:120–4PubMedPubMedCentralCrossRef
72.
go back to reference Nagano T, Mitchell JA, Sanz LA, Pauler FM, Ferguson-Smith AC, Feil R et al (2008) The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science 322:1717–20PubMedCrossRef Nagano T, Mitchell JA, Sanz LA, Pauler FM, Ferguson-Smith AC, Feil R et al (2008) The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science 322:1717–20PubMedCrossRef
73.
go back to reference Chen R, Yang Z, Zhou Q (2004) Phosphorylated positive transcription elongation factor b (P-TEFb) is tagged for inhibition through association with 7SK snRNA. J Biol Chem 279:4153–60PubMedCrossRef Chen R, Yang Z, Zhou Q (2004) Phosphorylated positive transcription elongation factor b (P-TEFb) is tagged for inhibition through association with 7SK snRNA. J Biol Chem 279:4153–60PubMedCrossRef
74.
go back to reference Sharma S, Findlay GM, Bandukwala HS, Oberdoerffer S, Baust B, Li Z et al (2011) Dephosphorylation of the nuclear factor of activated T cells (NFAT) transcription factor is regulated by an RNA-protein scaffold complex. Proc Natl Acad Sci U S A 108:11381–6PubMedPubMedCentralCrossRef Sharma S, Findlay GM, Bandukwala HS, Oberdoerffer S, Baust B, Li Z et al (2011) Dephosphorylation of the nuclear factor of activated T cells (NFAT) transcription factor is regulated by an RNA-protein scaffold complex. Proc Natl Acad Sci U S A 108:11381–6PubMedPubMedCentralCrossRef
75.
go back to reference Beltran M, Puig I, Pena C, Garcia JM, Alvarez AB, Pena R et al (2008) A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition. Genes Dev 22:756–69PubMedPubMedCentralCrossRef Beltran M, Puig I, Pena C, Garcia JM, Alvarez AB, Pena R et al (2008) A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition. Genes Dev 22:756–69PubMedPubMedCentralCrossRef
76.
go back to reference Annilo T, Kepp K, Laan M (2009) Natural antisense transcript of natriuretic peptide precursor A (NPPA): structural organization and modulation of NPPA expression. BMC Mol Biol 10:81PubMedPubMedCentralCrossRef Annilo T, Kepp K, Laan M (2009) Natural antisense transcript of natriuretic peptide precursor A (NPPA): structural organization and modulation of NPPA expression. BMC Mol Biol 10:81PubMedPubMedCentralCrossRef
77.
78.
go back to reference Yu C, Gershwin ME, Chang C (2014) Diagnostic criteria for systemic lupus erythematosus: a critical review. J Autoimmun 48–49:10–3PubMedCrossRef Yu C, Gershwin ME, Chang C (2014) Diagnostic criteria for systemic lupus erythematosus: a critical review. J Autoimmun 48–49:10–3PubMedCrossRef
79.
go back to reference Tan EM, Kunkel HG (1966) Characteristics of a soluble nuclear antigen precipitating with sera of patients with systemic lupus erythematosus. J Immunol 96:464–71PubMed Tan EM, Kunkel HG (1966) Characteristics of a soluble nuclear antigen precipitating with sera of patients with systemic lupus erythematosus. J Immunol 96:464–71PubMed
80.
go back to reference Takeno M, Nagafuchi H, Kaneko S, Wakisaka S, Oneda K, Takeba Y et al (1997) Autoreactive T cell clones from patients with systemic lupus erythematosus support polyclonal autoantibody production. J Immunol 158:3529–38PubMed Takeno M, Nagafuchi H, Kaneko S, Wakisaka S, Oneda K, Takeba Y et al (1997) Autoreactive T cell clones from patients with systemic lupus erythematosus support polyclonal autoantibody production. J Immunol 158:3529–38PubMed
81.
go back to reference Santulli-Marotto S, Retter MW, Gee R, Mamula MJ, Clarke SH (1998) Autoreactive B cell regulation: peripheral induction of developmental arrest by lupus-associated autoantigens. Immunity 8:209–19PubMedCrossRef Santulli-Marotto S, Retter MW, Gee R, Mamula MJ, Clarke SH (1998) Autoreactive B cell regulation: peripheral induction of developmental arrest by lupus-associated autoantigens. Immunity 8:209–19PubMedCrossRef
82.
go back to reference Gatto M, Zen M, Ghirardello A, Bettio S, Bassi N, Iaccarino L et al (2013) Emerging and critical issues in the pathogenesis of lupus. Autoimmun Rev 12:523–36PubMedCrossRef Gatto M, Zen M, Ghirardello A, Bettio S, Bassi N, Iaccarino L et al (2013) Emerging and critical issues in the pathogenesis of lupus. Autoimmun Rev 12:523–36PubMedCrossRef
83.
go back to reference Ghodke-Puranik Y, Niewold TB (2015) Immunogenetics of systemic lupus erythematosus: a comprehensive review. J Autoimmun 64:125–36PubMedCrossRef Ghodke-Puranik Y, Niewold TB (2015) Immunogenetics of systemic lupus erythematosus: a comprehensive review. J Autoimmun 64:125–36PubMedCrossRef
84.
go back to reference Kuhn A, Wenzel J, Weyd H (2014) Photosensitivity, apoptosis, and cytokines in the pathogenesis of lupus erythematosus: a critical review. Clin Rev Allergy Immunol 47:148–62PubMedCrossRef Kuhn A, Wenzel J, Weyd H (2014) Photosensitivity, apoptosis, and cytokines in the pathogenesis of lupus erythematosus: a critical review. Clin Rev Allergy Immunol 47:148–62PubMedCrossRef
85.
go back to reference Meroni PL, Penatti AE (2015) Epigenetics and systemic lupus erythematosus: unmet needs. Clin Rev Allergy Immunol Meroni PL, Penatti AE (2015) Epigenetics and systemic lupus erythematosus: unmet needs. Clin Rev Allergy Immunol
86.
go back to reference Cannat A, Seligmann M (1968) Induction by isoniazid and hydrallazine of antinuclear factors in mice. Clin Exp Immunol 3:99–105PubMedPubMedCentral Cannat A, Seligmann M (1968) Induction by isoniazid and hydrallazine of antinuclear factors in mice. Clin Exp Immunol 3:99–105PubMedPubMedCentral
87.
go back to reference Javierre BM, Fernandez AF, Richter J, Al-Shahrour F, Martin-Subero JI, Rodriguez-Ubreva J et al (2010) Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Res 20:170–9PubMedPubMedCentralCrossRef Javierre BM, Fernandez AF, Richter J, Al-Shahrour F, Martin-Subero JI, Rodriguez-Ubreva J et al (2010) Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Res 20:170–9PubMedPubMedCentralCrossRef
88.
go back to reference Zhao M, Liu S, Luo S, Wu H, Tang M, Cheng W et al (2014) DNA methylation and mRNA and microRNA expression of SLE CD4+ T cells correlate with disease phenotype. J Autoimmun 54:127–36PubMedCrossRef Zhao M, Liu S, Luo S, Wu H, Tang M, Cheng W et al (2014) DNA methylation and mRNA and microRNA expression of SLE CD4+ T cells correlate with disease phenotype. J Autoimmun 54:127–36PubMedCrossRef
89.
go back to reference Zhou Y, Qiu X, Luo Y, Yuan J, Li Y, Zhong Q et al (2011) Histone modifications and methyl-CpG-binding domain protein levels at the TNFSF7 (CD70) promoter in SLE CD4+ T cells. Lupus 20:1365–71PubMedCrossRef Zhou Y, Qiu X, Luo Y, Yuan J, Li Y, Zhong Q et al (2011) Histone modifications and methyl-CpG-binding domain protein levels at the TNFSF7 (CD70) promoter in SLE CD4+ T cells. Lupus 20:1365–71PubMedCrossRef
90.
go back to reference Zhao S, Wang Y, Liang Y, Zhao M, Long H, Ding S et al (2011) MicroRNA-126 regulates DNA methylation in CD4+ T cells and contributes to systemic lupus erythematosus by targeting DNA methyltransferase 1. Arthritis Rheum 63:1376–86PubMedCrossRef Zhao S, Wang Y, Liang Y, Zhao M, Long H, Ding S et al (2011) MicroRNA-126 regulates DNA methylation in CD4+ T cells and contributes to systemic lupus erythematosus by targeting DNA methyltransferase 1. Arthritis Rheum 63:1376–86PubMedCrossRef
91.
go back to reference Pan W, Zhu S, Yuan M, Cui H, Wang L, Luo X et al (2010) MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1. J Immunol 184:6773–81PubMedCrossRef Pan W, Zhu S, Yuan M, Cui H, Wang L, Luo X et al (2010) MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1. J Immunol 184:6773–81PubMedCrossRef
92.
go back to reference Shi L, Zhang Z, Yu AM, Wang W, Wei Z, Akhter E et al (2014) The SLE transcriptome exhibits evidence of chronic endotoxin exposure and has widespread dysregulation of non-coding and coding RNAs. PLoS One 9, e93846PubMedPubMedCentralCrossRef Shi L, Zhang Z, Yu AM, Wang W, Wei Z, Akhter E et al (2014) The SLE transcriptome exhibits evidence of chronic endotoxin exposure and has widespread dysregulation of non-coding and coding RNAs. PLoS One 9, e93846PubMedPubMedCentralCrossRef
93.
go back to reference Zhao M, Sun Y, Gao F, Wu X, Tang J, Yin H et al (2010) Epigenetics and SLE: RFX1 downregulation causes CD11a and CD70 overexpression by altering epigenetic modifications in lupus CD4+ T cells. J Autoimmun 35:58–69PubMedCrossRef Zhao M, Sun Y, Gao F, Wu X, Tang J, Yin H et al (2010) Epigenetics and SLE: RFX1 downregulation causes CD11a and CD70 overexpression by altering epigenetic modifications in lupus CD4+ T cells. J Autoimmun 35:58–69PubMedCrossRef
94.
go back to reference Zhao M, Wu X, Zhang Q, Luo S, Liang G, Su Y et al (2010) RFX1 regulates CD70 and CD11a expression in lupus T cells by recruiting the histone methyltransferase SUV39H1. Arthritis Res Ther 12:R227PubMedPubMedCentralCrossRef Zhao M, Wu X, Zhang Q, Luo S, Liang G, Su Y et al (2010) RFX1 regulates CD70 and CD11a expression in lupus T cells by recruiting the histone methyltransferase SUV39H1. Arthritis Res Ther 12:R227PubMedPubMedCentralCrossRef
95.
go back to reference Zhao M, Liu Q, Liang G, Wang L, Luo S, Tang Q et al (2013) E4BP4 overexpression: a protective mechanism in CD4+ T cells from SLE patients. J Autoimmun 41:152–60PubMedCrossRef Zhao M, Liu Q, Liang G, Wang L, Luo S, Tang Q et al (2013) E4BP4 overexpression: a protective mechanism in CD4+ T cells from SLE patients. J Autoimmun 41:152–60PubMedCrossRef
96.
go back to reference Hedrich CM, Crispin JC, Rauen T, Ioannidis C, Apostolidis SA, Lo MS et al (2012) cAMP response element modulator alpha controls IL2 and IL17A expression during CD4 lineage commitment and subset distribution in lupus. Proc Natl Acad Sci U S A 109:16606–11PubMedPubMedCentralCrossRef Hedrich CM, Crispin JC, Rauen T, Ioannidis C, Apostolidis SA, Lo MS et al (2012) cAMP response element modulator alpha controls IL2 and IL17A expression during CD4 lineage commitment and subset distribution in lupus. Proc Natl Acad Sci U S A 109:16606–11PubMedPubMedCentralCrossRef
97.
go back to reference Luo S, Liu Y, Liang G, Zhao M, Wu H, Liang Y et al (2015) The role of microRNA-1246 in the regulation of B cell activation and the pathogenesis of systemic lupus erythematosus. Clin Epigenetics 7:24PubMedPubMedCentralCrossRef Luo S, Liu Y, Liang G, Zhao M, Wu H, Liang Y et al (2015) The role of microRNA-1246 in the regulation of B cell activation and the pathogenesis of systemic lupus erythematosus. Clin Epigenetics 7:24PubMedPubMedCentralCrossRef
98.
go back to reference Kourilovitch M, Galarza-Maldonado C, Ortiz-Prado E (2014) Diagnosis and classification of rheumatoid arthritis. J Autoimmun 48–49:26–30PubMedCrossRef Kourilovitch M, Galarza-Maldonado C, Ortiz-Prado E (2014) Diagnosis and classification of rheumatoid arthritis. J Autoimmun 48–49:26–30PubMedCrossRef
99.
go back to reference Zhu X, Song Y, Huo R, Zhang J, Sun S, He Y et al (2015) Cyr61 participates in the pathogenesis of rheumatoid arthritis by promoting proIL-1beta production by fibroblast-like synoviocytes through an AKT-dependent NF-kappaB signaling pathway. Clin Immunol 157:187–97PubMedCrossRef Zhu X, Song Y, Huo R, Zhang J, Sun S, He Y et al (2015) Cyr61 participates in the pathogenesis of rheumatoid arthritis by promoting proIL-1beta production by fibroblast-like synoviocytes through an AKT-dependent NF-kappaB signaling pathway. Clin Immunol 157:187–97PubMedCrossRef
100.
101.
go back to reference Kuchen S, Seemayer CA, Rethage J, von Knoch R, Kuenzler P, Beat AM et al (2004) The L1 retroelement-related p40 protein induces p38delta MAP kinase. Autoimmunity 37:57–65PubMedCrossRef Kuchen S, Seemayer CA, Rethage J, von Knoch R, Kuenzler P, Beat AM et al (2004) The L1 retroelement-related p40 protein induces p38delta MAP kinase. Autoimmunity 37:57–65PubMedCrossRef
102.
go back to reference Grabiec AM, Tak PP, Reedquist KA (2008) Targeting histone deacetylase activity in rheumatoid arthritis and asthma as prototypes of inflammatory disease: should we keep our HATs on? Arthritis Res Ther 10:226PubMedPubMedCentralCrossRef Grabiec AM, Tak PP, Reedquist KA (2008) Targeting histone deacetylase activity in rheumatoid arthritis and asthma as prototypes of inflammatory disease: should we keep our HATs on? Arthritis Res Ther 10:226PubMedPubMedCentralCrossRef
103.
go back to reference Nakamachi Y, Kawano S, Takenokuchi M, Nishimura K, Sakai Y, Chin T et al (2009) MicroRNA-124a is a key regulator of proliferation and monocyte chemoattractant protein 1 secretion in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Arthritis Rheum 60:1294–304PubMedCrossRef Nakamachi Y, Kawano S, Takenokuchi M, Nishimura K, Sakai Y, Chin T et al (2009) MicroRNA-124a is a key regulator of proliferation and monocyte chemoattractant protein 1 secretion in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Arthritis Rheum 60:1294–304PubMedCrossRef
104.
go back to reference Muller N, Doring F, Klapper M, Neumann K, Schulte DM, Turk K et al (2014) Interleukin-6 and tumour necrosis factor-alpha differentially regulate lincRNA transcripts in cells of the innate immune system in vivo in human subjects with rheumatoid arthritis. Cytokine 68:65–8PubMedCrossRef Muller N, Doring F, Klapper M, Neumann K, Schulte DM, Turk K et al (2014) Interleukin-6 and tumour necrosis factor-alpha differentially regulate lincRNA transcripts in cells of the innate immune system in vivo in human subjects with rheumatoid arthritis. Cytokine 68:65–8PubMedCrossRef
105.
go back to reference Kawahara TL, Michishita E, Adler AS, Damian M, Berber E, Lin M et al (2009) SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell 136:62–74PubMedPubMedCentralCrossRef Kawahara TL, Michishita E, Adler AS, Damian M, Berber E, Lin M et al (2009) SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell 136:62–74PubMedPubMedCentralCrossRef
106.
go back to reference Takami N, Osawa K, Miura Y, Komai K, Taniguchi M, Shiraishi M et al (2006) Hypermethylated promoter region of DR3, the death receptor 3 gene, in rheumatoid arthritis synovial cells. Arthritis Rheum 54:779–87PubMedCrossRef Takami N, Osawa K, Miura Y, Komai K, Taniguchi M, Shiraishi M et al (2006) Hypermethylated promoter region of DR3, the death receptor 3 gene, in rheumatoid arthritis synovial cells. Arthritis Rheum 54:779–87PubMedCrossRef
107.
go back to reference Bull MJ, Williams AS, Mecklenburgh Z, Calder CJ, Twohig JP, Elford C et al (2008) The Death Receptor 3-TNF-like protein 1A pathway drives adverse bone pathology in inflammatory arthritis. J Exp Med 205:2457–64PubMedPubMedCentralCrossRef Bull MJ, Williams AS, Mecklenburgh Z, Calder CJ, Twohig JP, Elford C et al (2008) The Death Receptor 3-TNF-like protein 1A pathway drives adverse bone pathology in inflammatory arthritis. J Exp Med 205:2457–64PubMedPubMedCentralCrossRef
108.
go back to reference Suarez-Alvarez B, Rodriguez RM, Fraga MF, Lopez-Larrea C (2012) DNA methylation: a promising landscape for immune system-related diseases. Trends Genet 28:506–14PubMedCrossRef Suarez-Alvarez B, Rodriguez RM, Fraga MF, Lopez-Larrea C (2012) DNA methylation: a promising landscape for immune system-related diseases. Trends Genet 28:506–14PubMedCrossRef
109.
go back to reference Kosmaczewska A, Ciszak L, Swierkot J, Szteblich A, Kosciow K, Frydecka I (2015) Exogenous IL-2 controls the balance in Th1, Th17, and Treg cell distribution in patients with progressive rheumatoid arthritis treated with TNF-alpha inhibitors. Inflammation 38:765–74PubMedPubMedCentralCrossRef Kosmaczewska A, Ciszak L, Swierkot J, Szteblich A, Kosciow K, Frydecka I (2015) Exogenous IL-2 controls the balance in Th1, Th17, and Treg cell distribution in patients with progressive rheumatoid arthritis treated with TNF-alpha inhibitors. Inflammation 38:765–74PubMedPubMedCentralCrossRef
110.
go back to reference Xie Z, Chang C, Zhou Z (2014) Molecular mechanisms in autoimmune type 1 diabetes: a critical review. Clin Rev Allergy Immunol 47:174–92PubMedCrossRef Xie Z, Chang C, Zhou Z (2014) Molecular mechanisms in autoimmune type 1 diabetes: a critical review. Clin Rev Allergy Immunol 47:174–92PubMedCrossRef
111.
go back to reference Burgio E, Lopomo A, Migliore L (2015) Obesity and diabetes: from genetics to epigenetics. Mol Biol Rep 42:799–818PubMedCrossRef Burgio E, Lopomo A, Migliore L (2015) Obesity and diabetes: from genetics to epigenetics. Mol Biol Rep 42:799–818PubMedCrossRef
112.
113.
go back to reference Dang MN, Buzzetti R, Pozzilli P (2013) Epigenetics in autoimmune diseases with focus on type 1 diabetes. Diabetes Metab Res Rev 29:8–18PubMedCrossRef Dang MN, Buzzetti R, Pozzilli P (2013) Epigenetics in autoimmune diseases with focus on type 1 diabetes. Diabetes Metab Res Rev 29:8–18PubMedCrossRef
114.
go back to reference Stefan M, Zhang W, Concepcion E, Yi Z, Tomer Y (2014) DNA methylation profiles in type 1 diabetes twins point to strong epigenetic effects on etiology. J Autoimmun 50:33–7PubMedPubMedCentralCrossRef Stefan M, Zhang W, Concepcion E, Yi Z, Tomer Y (2014) DNA methylation profiles in type 1 diabetes twins point to strong epigenetic effects on etiology. J Autoimmun 50:33–7PubMedPubMedCentralCrossRef
115.
go back to reference Miao F, Smith DD, Zhang L, Min A, Feng W, Natarajan R (2008) Lymphocytes from patients with type 1 diabetes display a distinct profile of chromatin histone H3 lysine 9 dimethylation: an epigenetic study in diabetes. Diabetes 57:3189–98PubMedPubMedCentralCrossRef Miao F, Smith DD, Zhang L, Min A, Feng W, Natarajan R (2008) Lymphocytes from patients with type 1 diabetes display a distinct profile of chromatin histone H3 lysine 9 dimethylation: an epigenetic study in diabetes. Diabetes 57:3189–98PubMedPubMedCentralCrossRef
116.
go back to reference Elboudwarej E, Cole M, Briggs FB, Fouts A, Fain PR, Quach H et al (2016) Hypomethylation within gene promoter regions and type 1 diabetes in discordant monozygotic twins. Journal of autoimmunity Elboudwarej E, Cole M, Briggs FB, Fouts A, Fain PR, Quach H et al (2016) Hypomethylation within gene promoter regions and type 1 diabetes in discordant monozygotic twins. Journal of autoimmunity
117.
go back to reference Li Y, Reddy MA, Miao F, Shanmugam N, Yee JK, Hawkins D et al (2008) Role of the histone H3 lysine 4 methyltransferase, SET7/9, in the regulation of NF-kappaB-dependent inflammatory genes. Relevance to diabetes and inflammation. J Biol Chem 283:26771–81PubMedPubMedCentralCrossRef Li Y, Reddy MA, Miao F, Shanmugam N, Yee JK, Hawkins D et al (2008) Role of the histone H3 lysine 4 methyltransferase, SET7/9, in the regulation of NF-kappaB-dependent inflammatory genes. Relevance to diabetes and inflammation. J Biol Chem 283:26771–81PubMedPubMedCentralCrossRef
118.
go back to reference Brasacchio D, Okabe J, Tikellis C, Balcerczyk A, George P, Baker EK et al (2009) Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes 58:1229–36PubMedPubMedCentralCrossRef Brasacchio D, Okabe J, Tikellis C, Balcerczyk A, George P, Baker EK et al (2009) Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes 58:1229–36PubMedPubMedCentralCrossRef
119.
go back to reference Wang Z, Zheng Y, Hou C, Yang L, Li X, Lin J et al (2013) DNA methylation impairs TLR9 induced Foxp3 expression by attenuating IRF-7 binding activity in fulminant type 1 diabetes. J Autoimmun 41:50–9PubMedCrossRef Wang Z, Zheng Y, Hou C, Yang L, Li X, Lin J et al (2013) DNA methylation impairs TLR9 induced Foxp3 expression by attenuating IRF-7 binding activity in fulminant type 1 diabetes. J Autoimmun 41:50–9PubMedCrossRef
120.
go back to reference Tan T, Xiang Y, Chang C, Zhou Z (2014) Alteration of regulatory T cells in type 1 diabetes mellitus: a comprehensive review. Clin Rev Allergy Immunol 47:234–43PubMedCrossRef Tan T, Xiang Y, Chang C, Zhou Z (2014) Alteration of regulatory T cells in type 1 diabetes mellitus: a comprehensive review. Clin Rev Allergy Immunol 47:234–43PubMedCrossRef
121.
go back to reference Bettini ML, Pan F, Bettini M, Finkelstein D, Rehg JE, Floess S et al (2012) Loss of epigenetic modification driven by the Foxp3 transcription factor leads to regulatory T cell insufficiency. Immunity 36:717–30PubMedPubMedCentralCrossRef Bettini ML, Pan F, Bettini M, Finkelstein D, Rehg JE, Floess S et al (2012) Loss of epigenetic modification driven by the Foxp3 transcription factor leads to regulatory T cell insufficiency. Immunity 36:717–30PubMedPubMedCentralCrossRef
122.
go back to reference Hudson M, Fritzler MJ (2014) Diagnostic criteria of systemic sclerosis. J Autoimmun 48–49:38–41PubMedCrossRef Hudson M, Fritzler MJ (2014) Diagnostic criteria of systemic sclerosis. J Autoimmun 48–49:38–41PubMedCrossRef
123.
go back to reference Ciechomska M, van Laar JM, O’Reilly S (2014) Emerging role of epigenetics in systemic sclerosis pathogenesis. Genes Immun 15:433–9PubMedCrossRef Ciechomska M, van Laar JM, O’Reilly S (2014) Emerging role of epigenetics in systemic sclerosis pathogenesis. Genes Immun 15:433–9PubMedCrossRef
124.
go back to reference Maurer B, Stanczyk J, Jungel A, Akhmetshina A, Trenkmann M, Brock M et al (2010) MicroRNA-29, a key regulator of collagen expression in systemic sclerosis. Arthritis Rheum 62:1733–43PubMedCrossRef Maurer B, Stanczyk J, Jungel A, Akhmetshina A, Trenkmann M, Brock M et al (2010) MicroRNA-29, a key regulator of collagen expression in systemic sclerosis. Arthritis Rheum 62:1733–43PubMedCrossRef
125.
go back to reference Lei W, Luo Y, Lei W, Luo Y, Yan K, Zhao S et al (2009) Abnormal DNA methylation in CD4+ T cells from patients with systemic lupus erythematosus, systemic sclerosis, and dermatomyositis. Scand J Rheumatol 38:369–74PubMedCrossRef Lei W, Luo Y, Lei W, Luo Y, Yan K, Zhao S et al (2009) Abnormal DNA methylation in CD4+ T cells from patients with systemic lupus erythematosus, systemic sclerosis, and dermatomyositis. Scand J Rheumatol 38:369–74PubMedCrossRef
126.
go back to reference Lian X, Xiao R, Hu X, Kanekura T, Jiang H, Li Y et al (2012) DNA demethylation of CD40l in CD4+ T cells from women with systemic sclerosis: a possible explanation for female susceptibility. Arthritis Rheum 64:2338–45PubMedCrossRef Lian X, Xiao R, Hu X, Kanekura T, Jiang H, Li Y et al (2012) DNA demethylation of CD40l in CD4+ T cells from women with systemic sclerosis: a possible explanation for female susceptibility. Arthritis Rheum 64:2338–45PubMedCrossRef
127.
go back to reference Wang YY, Wang Q, Sun XH, Liu RZ, Shu Y, Kanekura T et al (2014) DNA hypermethylation of the forkhead box protein 3 (FOXP3) promoter in CD4+ T cells of patients with systemic sclerosis. Br J Dermatol 171:39–47PubMedCrossRef Wang YY, Wang Q, Sun XH, Liu RZ, Shu Y, Kanekura T et al (2014) DNA hypermethylation of the forkhead box protein 3 (FOXP3) promoter in CD4+ T cells of patients with systemic sclerosis. Br J Dermatol 171:39–47PubMedCrossRef
128.
go back to reference Wang Y, Shu Y, Xiao Y, Wang Q, Kanekura T, Li Y et al (2014) Hypomethylation and overexpression of ITGAL (CD11a) in CD4(+) T cells in systemic sclerosis. Clin Epigenetics 6:25PubMedPubMedCentralCrossRef Wang Y, Shu Y, Xiao Y, Wang Q, Kanekura T, Li Y et al (2014) Hypomethylation and overexpression of ITGAL (CD11a) in CD4(+) T cells in systemic sclerosis. Clin Epigenetics 6:25PubMedPubMedCentralCrossRef
129.
go back to reference Kubo M, Czuwara-Ladykowska J, Moussa O, Markiewicz M, Smith E, Silver RM et al (2003) Persistent down-regulation of Fli1, a suppressor of collagen transcription, in fibrotic scleroderma skin. Am J Pathol 163:571–81PubMedPubMedCentralCrossRef Kubo M, Czuwara-Ladykowska J, Moussa O, Markiewicz M, Smith E, Silver RM et al (2003) Persistent down-regulation of Fli1, a suppressor of collagen transcription, in fibrotic scleroderma skin. Am J Pathol 163:571–81PubMedPubMedCentralCrossRef
130.
go back to reference Wang Y, Fan PS, Kahaleh B (2006) Association between enhanced type I collagen expression and epigenetic repression of the FLI1 gene in scleroderma fibroblasts. Arthritis Rheum 54:2271–9PubMedCrossRef Wang Y, Fan PS, Kahaleh B (2006) Association between enhanced type I collagen expression and epigenetic repression of the FLI1 gene in scleroderma fibroblasts. Arthritis Rheum 54:2271–9PubMedCrossRef
131.
go back to reference Broen JC, Coenen MJ, Radstake TR (2011) Deciphering the genetic background of systemic sclerosis. Expert Rev Clin Immunol 7:449–62PubMedCrossRef Broen JC, Coenen MJ, Radstake TR (2011) Deciphering the genetic background of systemic sclerosis. Expert Rev Clin Immunol 7:449–62PubMedCrossRef
132.
go back to reference Huber LC, Distler JH, Moritz F, Hemmatazad H, Hauser T, Michel BA et al (2007) Trichostatin A prevents the accumulation of extracellular matrix in a mouse model of bleomycin-induced skin fibrosis. Arthritis Rheum 56:2755–64PubMedCrossRef Huber LC, Distler JH, Moritz F, Hemmatazad H, Hauser T, Michel BA et al (2007) Trichostatin A prevents the accumulation of extracellular matrix in a mouse model of bleomycin-induced skin fibrosis. Arthritis Rheum 56:2755–64PubMedCrossRef
133.
go back to reference Hollenbach JA, Oksenberg JR (2015) The immunogenetics of multiple sclerosis: a comprehensive review. J Autoimmun 64:13–25PubMedCrossRef Hollenbach JA, Oksenberg JR (2015) The immunogenetics of multiple sclerosis: a comprehensive review. J Autoimmun 64:13–25PubMedCrossRef
134.
go back to reference Yang H, Lee SM, Gao B, Zhang J, Fang D (2013) Histone deacetylase sirtuin 1 deacetylates IRF1 protein and programs dendritic cells to control Th17 protein differentiation during autoimmune inflammation. J Biol Chem 288:37256–66PubMedPubMedCentralCrossRef Yang H, Lee SM, Gao B, Zhang J, Fang D (2013) Histone deacetylase sirtuin 1 deacetylates IRF1 protein and programs dendritic cells to control Th17 protein differentiation during autoimmune inflammation. J Biol Chem 288:37256–66PubMedPubMedCentralCrossRef
135.
go back to reference Liu B, Tahk S, Yee KM, Fan G, Shuai K (2010) The ligase PIAS1 restricts natural regulatory T cell differentiation by epigenetic repression. Science 330:521–5PubMedPubMedCentralCrossRef Liu B, Tahk S, Yee KM, Fan G, Shuai K (2010) The ligase PIAS1 restricts natural regulatory T cell differentiation by epigenetic repression. Science 330:521–5PubMedPubMedCentralCrossRef
136.
go back to reference Guan H, Nagarkatti PS, Nagarkatti M (2011) CD44 Reciprocally regulates the differentiation of encephalitogenic Th1/Th17 and Th2/regulatory T cells through epigenetic modulation involving DNA methylation of cytokine gene promoters, thereby controlling the development of experimental autoimmune encephalomyelitis. J Immunol 186:6955–64PubMedPubMedCentralCrossRef Guan H, Nagarkatti PS, Nagarkatti M (2011) CD44 Reciprocally regulates the differentiation of encephalitogenic Th1/Th17 and Th2/regulatory T cells through epigenetic modulation involving DNA methylation of cytokine gene promoters, thereby controlling the development of experimental autoimmune encephalomyelitis. J Immunol 186:6955–64PubMedPubMedCentralCrossRef
137.
go back to reference Lu LF, Thai TH, Calado DP, Chaudhry A, Kubo M, Tanaka K et al (2009) Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity 30:80–91PubMedPubMedCentralCrossRef Lu LF, Thai TH, Calado DP, Chaudhry A, Kubo M, Tanaka K et al (2009) Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity 30:80–91PubMedPubMedCentralCrossRef
Metadata
Title
Critical Link Between Epigenetics and Transcription Factors in the Induction of Autoimmunity: a Comprehensive Review
Authors
Haijing Wu
Ming Zhao
Akihiko Yoshimura
Christopher Chang
Qianjin Lu
Publication date
01-06-2016
Publisher
Springer US
Published in
Clinical Reviews in Allergy & Immunology / Issue 3/2016
Print ISSN: 1080-0549
Electronic ISSN: 1559-0267
DOI
https://doi.org/10.1007/s12016-016-8534-y

Other articles of this Issue 3/2016

Clinical Reviews in Allergy & Immunology 3/2016 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine