Skip to main content
Top
Published in: Clinical Reviews in Allergy & Immunology 1/2016

01-08-2016

Non-Canonical (RANKL-Independent) Pathways of Osteoclast Differentiation and Their Role in Musculoskeletal Diseases

Authors: A. Sabokbar, D. J. Mahoney, F. Hemingway, N. A. Athanasou

Published in: Clinical Reviews in Allergy & Immunology | Issue 1/2016

Login to get access

Abstract

Osteoclasts are multinucleated cells derived from mononuclear phagocyte precursors (monocytes, macrophages); in the canonical pathway of osteoclastogenesis, these cells fuse and differentiate to form specialised bone-resorbing osteoclasts in the presence of receptor activator for nuclear factor kappa B ligand (RANKL). Non-canonical pathways of osteoclastogenesis have been described in which several cytokines and growth factors are able to substitute for RANKL. These humoral factors can generally be divided into those which, like RANKL, are tumour necrosis family (TNF) superfamily members and those which are not; the former include TNFα lymphotoxin exhibiting inducible expression and competing with herpes simplex virus glycoprotein D for herpesvirus entry mediator, a receptor expressed by T lymphocytes (LIGHT), a proliferation inducing ligand (APRIL) and B cell activating factor (BAFF); the latter include transforming growth factor beta (TGF-β), interleukin-6 (IL-6), IL-8, IL-11, nerve growth factor (NGF), insulin-like growth factor-I (IGF-I) and IGF-II. This review summarises the evidence for these RANKL substitutes in inducing osteoclast differentiation from tissue-derived and circulating mononuclear phagocytes. It also assesses the role these factors are likely to play in promoting the pathological bone resorption seen in many inflammatory and neoplastic lesions of bone and joint including rheumatoid arthritis, aseptic implant loosening and primary and secondary tumours of bone.
Literature
1.
go back to reference Knowles HJ, Athanasou NA (2009) Canonical & non-canonical pathways of osteoclast formation. Histol Histopathol 24:337–346PubMed Knowles HJ, Athanasou NA (2009) Canonical & non-canonical pathways of osteoclast formation. Histol Histopathol 24:337–346PubMed
2.
go back to reference Athanasou NA (2011) The osteoclast—what’s new? Skelet Radiol 40:1137–1140CrossRef Athanasou NA (2011) The osteoclast—what’s new? Skelet Radiol 40:1137–1140CrossRef
3.
go back to reference Massey HM, Flanagan AM (1999) Human osteoclasts derive from CD14-positive monocytes. Br J Haematol 106:167–170PubMedCrossRef Massey HM, Flanagan AM (1999) Human osteoclasts derive from CD14-positive monocytes. Br J Haematol 106:167–170PubMedCrossRef
4.
go back to reference Fujikawa Y, Quinn JM, Sabokbar A, McGee JO’D, Athanasou NA (1996) The human osteoclast precursor circulates in the monocyte fraction. Endocrinology 137:4058–4060PubMed Fujikawa Y, Quinn JM, Sabokbar A, McGee JO’D, Athanasou NA (1996) The human osteoclast precursor circulates in the monocyte fraction. Endocrinology 137:4058–4060PubMed
5.
go back to reference Walker DG (1993) Bone resorption restored in osteopetrotic mice by transplants of normal bone marrow and spleen cells. Clin Orthop Relat Res 294:4–6PubMed Walker DG (1993) Bone resorption restored in osteopetrotic mice by transplants of normal bone marrow and spleen cells. Clin Orthop Relat Res 294:4–6PubMed
6.
go back to reference Faust J, Lacey DL, Hunt P et al (1999) Osteoclast markers accumulate on cells developing from human peripheral blood mononuclear precursors. J Cell Biochem 72:67–80PubMedCrossRef Faust J, Lacey DL, Hunt P et al (1999) Osteoclast markers accumulate on cells developing from human peripheral blood mononuclear precursors. J Cell Biochem 72:67–80PubMedCrossRef
7.
go back to reference Lacey DL, Timms E, Tan HL et al (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176PubMedCrossRef Lacey DL, Timms E, Tan HL et al (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176PubMedCrossRef
8.
go back to reference Yasuda H, Shima N, Nakagawa N et al (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A 95:3597–3602PubMedPubMedCentralCrossRef Yasuda H, Shima N, Nakagawa N et al (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A 95:3597–3602PubMedPubMedCentralCrossRef
9.
go back to reference Lum L, Wong BR, Josien R et al (1999) Evidence for a role of a tumour necrosis factor-alpha (TNF-alpha)-converting enzyme-like protease in shedding of TRANCE, a TNF family member involved in osteoclastogenesis and dendritic cell survival. J Biol Chem 274:13613–13618PubMedCrossRef Lum L, Wong BR, Josien R et al (1999) Evidence for a role of a tumour necrosis factor-alpha (TNF-alpha)-converting enzyme-like protease in shedding of TRANCE, a TNF family member involved in osteoclastogenesis and dendritic cell survival. J Biol Chem 274:13613–13618PubMedCrossRef
10.
go back to reference Kong YY, Yoshida H, Sarosi I et al (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397:315–323PubMedCrossRef Kong YY, Yoshida H, Sarosi I et al (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397:315–323PubMedCrossRef
11.
go back to reference Kitazawa R, Kitazawa S (2002) Vitamin D(3) augments osteoclastogenesis via vitamin D-responsive element of mouse RANKL gene promoter. Biochem Biophys Res Commun 290:650–655PubMedCrossRef Kitazawa R, Kitazawa S (2002) Vitamin D(3) augments osteoclastogenesis via vitamin D-responsive element of mouse RANKL gene promoter. Biochem Biophys Res Commun 290:650–655PubMedCrossRef
12.
go back to reference Horwood NJ, Elliott J, Martin TJ, Gillespie MT (1998) Osteotropic agents regulate the expression of osteoclast differentiation factor and osteoprotegerin in osteoblastic stromal cells. Endocrinology 139:4743–4746PubMedCrossRef Horwood NJ, Elliott J, Martin TJ, Gillespie MT (1998) Osteotropic agents regulate the expression of osteoclast differentiation factor and osteoprotegerin in osteoblastic stromal cells. Endocrinology 139:4743–4746PubMedCrossRef
13.
go back to reference Hofbauer LC, Lacey DL, Dunstan CR, Spelsberg TC, Riggs BL, Khosla S (1999) Interleukin-1beta and tumour necrosis factor-alpha, but not interleukin-6, stimulate osteoprotegerin ligand gene expression in human osteoblastic cells. Bone 25:255–259PubMedCrossRef Hofbauer LC, Lacey DL, Dunstan CR, Spelsberg TC, Riggs BL, Khosla S (1999) Interleukin-1beta and tumour necrosis factor-alpha, but not interleukin-6, stimulate osteoprotegerin ligand gene expression in human osteoblastic cells. Bone 25:255–259PubMedCrossRef
14.
go back to reference Atkins GJ, Bouralexis S, Haynes DR et al (2001) Osteoprotegerin inhibits osteoclast formation and bone resorbing activity in giant cell tumors of bone. Bone 28:370–377PubMedCrossRef Atkins GJ, Bouralexis S, Haynes DR et al (2001) Osteoprotegerin inhibits osteoclast formation and bone resorbing activity in giant cell tumors of bone. Bone 28:370–377PubMedCrossRef
15.
go back to reference Fuller K, Wong B, Fox S, Choi Y, Chambers TJ (1998) TRANCE is necessary and sufficient for osteoblast-mediated activation of bone resorption in osteoclasts. J Exp Med 188:997–1001PubMedPubMedCentralCrossRef Fuller K, Wong B, Fox S, Choi Y, Chambers TJ (1998) TRANCE is necessary and sufficient for osteoblast-mediated activation of bone resorption in osteoclasts. J Exp Med 188:997–1001PubMedPubMedCentralCrossRef
16.
go back to reference Li J, Sarosi I, Yan XQ et al (2000) RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci U S A 97:1566–1571PubMedPubMedCentralCrossRef Li J, Sarosi I, Yan XQ et al (2000) RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci U S A 97:1566–1571PubMedPubMedCentralCrossRef
18.
go back to reference Kim N, Odgren PR, Kim DK, Marks SC Jr, Choi Y (2000) Diverse roles of the tumour necrosis factor family member TRANCE in skeletal physiology revealed by TRANCE deficiency and partial rescue by a lymphocyte-expressed TRANCE transgene. Proc Natl Acad Sci U S A 97:10905–10910PubMedPubMedCentralCrossRef Kim N, Odgren PR, Kim DK, Marks SC Jr, Choi Y (2000) Diverse roles of the tumour necrosis factor family member TRANCE in skeletal physiology revealed by TRANCE deficiency and partial rescue by a lymphocyte-expressed TRANCE transgene. Proc Natl Acad Sci U S A 97:10905–10910PubMedPubMedCentralCrossRef
19.
go back to reference Odgren PR, Kim N, MacKay CA, Mason-Savas A, Choi Y, Marks SC Jr (2003) The role of RANKL (TRANCE/TNFSF11), a tumour necrosis factor family member, in skeletal development: effects of gene knockout and transgenic rescue. Connect Tissue Res 44(Suppl 1):264–271PubMedCrossRef Odgren PR, Kim N, MacKay CA, Mason-Savas A, Choi Y, Marks SC Jr (2003) The role of RANKL (TRANCE/TNFSF11), a tumour necrosis factor family member, in skeletal development: effects of gene knockout and transgenic rescue. Connect Tissue Res 44(Suppl 1):264–271PubMedCrossRef
21.
go back to reference Udagawa N, Takahashi N, Yasuda H et al (2000) Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast development and function. Endocrinology 141:3478–3484PubMed Udagawa N, Takahashi N, Yasuda H et al (2000) Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast development and function. Endocrinology 141:3478–3484PubMed
22.
go back to reference Hofbauer LC (1999) Osteoprotegerin ligand and osteoprotegerin: novel implications for osteoclast biology and bone metabolism. Eur J Endocrinol 141:195–210PubMedCrossRef Hofbauer LC (1999) Osteoprotegerin ligand and osteoprotegerin: novel implications for osteoclast biology and bone metabolism. Eur J Endocrinol 141:195–210PubMedCrossRef
23.
go back to reference Mizuno A, Amizuka N, Irie K et al (1998) Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem Biophys Res Commun 247:610–615PubMedCrossRef Mizuno A, Amizuka N, Irie K et al (1998) Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem Biophys Res Commun 247:610–615PubMedCrossRef
24.
go back to reference Bucay N, Sarosi I, Dunstan CR et al (1998) Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12:1260–1268PubMedPubMedCentralCrossRef Bucay N, Sarosi I, Dunstan CR et al (1998) Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12:1260–1268PubMedPubMedCentralCrossRef
25.
go back to reference Wada T, Nakashima T, Hiroshi N, Penninger JM (2006) RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol Med 2006(12):17–25CrossRef Wada T, Nakashima T, Hiroshi N, Penninger JM (2006) RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol Med 2006(12):17–25CrossRef
26.
go back to reference Lomaga MA, Yeh WC, Sarosi I et al (1999) TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signalling. Genes Dev 13:1015–1024PubMedPubMedCentralCrossRef Lomaga MA, Yeh WC, Sarosi I et al (1999) TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signalling. Genes Dev 13:1015–1024PubMedPubMedCentralCrossRef
27.
go back to reference Kanazawa K, Kudo A (2000) TRAF2 is essential for TNF-alpha-induced osteoclastogenesis. J Bone Miner Res 20:840–847CrossRef Kanazawa K, Kudo A (2000) TRAF2 is essential for TNF-alpha-induced osteoclastogenesis. J Bone Miner Res 20:840–847CrossRef
28.
go back to reference Kanazawa K, Azuma Y, Nakano H, Kudo A (2003) TRAF5 functions in both RANKL- and TNF alpha-induced osteoclastogenesis. J Bone Miner Res 18:443–450PubMedCrossRef Kanazawa K, Azuma Y, Nakano H, Kudo A (2003) TRAF5 functions in both RANKL- and TNF alpha-induced osteoclastogenesis. J Bone Miner Res 18:443–450PubMedCrossRef
29.
go back to reference Nakamura I, Takahashi N, Sasaki T et al (1995) A specific inhibitor of phosphatidylinositol-3 kinase, blocks osteoclastic bone resorption. FEBS Lett 361:79–84PubMedCrossRef Nakamura I, Takahashi N, Sasaki T et al (1995) A specific inhibitor of phosphatidylinositol-3 kinase, blocks osteoclastic bone resorption. FEBS Lett 361:79–84PubMedCrossRef
30.
go back to reference Iotsova V, Caamaño J, Loy J, Yang Y, Lewin A, Bravo R (1997) Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Nat Med 3:1285–1289PubMedCrossRef Iotsova V, Caamaño J, Loy J, Yang Y, Lewin A, Bravo R (1997) Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Nat Med 3:1285–1289PubMedCrossRef
31.
go back to reference Soriano P, Montgomery C, Geske R, Bradley A (1991) Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64:693–702PubMedCrossRef Soriano P, Montgomery C, Geske R, Bradley A (1991) Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64:693–702PubMedCrossRef
32.
go back to reference Takeshita S, Namba N, Zhao J et al (2002) SHIP-deficient mice are severely osteoporotic due to increased numbers of hyper-resorptive osteoclasts. Nat Med 8:943–949PubMedCrossRef Takeshita S, Namba N, Zhao J et al (2002) SHIP-deficient mice are severely osteoporotic due to increased numbers of hyper-resorptive osteoclasts. Nat Med 8:943–949PubMedCrossRef
33.
go back to reference David JP, Sabapathy K, Hoffmann O, Idarraga MH, Wagner EF (2002) JNK1 modulates osteoclastogenesis through both c-Jun phosphorylation-dependent and -independent mechanisms. J Cell Sci 115:4317–4325PubMedCrossRef David JP, Sabapathy K, Hoffmann O, Idarraga MH, Wagner EF (2002) JNK1 modulates osteoclastogenesis through both c-Jun phosphorylation-dependent and -independent mechanisms. J Cell Sci 115:4317–4325PubMedCrossRef
34.
go back to reference Kenner L, Hoebertz A, Beil FT et al (2004) Mice lacking JunB are osteopenic due to cell-autonomous osteoblast and osteoclast defects. J Cell Biol 164:613–623PubMedPubMedCentralCrossRef Kenner L, Hoebertz A, Beil FT et al (2004) Mice lacking JunB are osteopenic due to cell-autonomous osteoblast and osteoclast defects. J Cell Biol 164:613–623PubMedPubMedCentralCrossRef
35.
go back to reference Wagner EF (2002) Functions of AP1 (Fos/Jun) in bone development. Ann Rheum Dis 61(Suppl 2):40–42CrossRef Wagner EF (2002) Functions of AP1 (Fos/Jun) in bone development. Ann Rheum Dis 61(Suppl 2):40–42CrossRef
36.
37.
go back to reference Felix R, Hofstetter W, Wetterwald A, Cecchini MG, Fleisch H (1994) Role of colony-stimulating factor-1 in bone metabolism. J Cell Biochem 55:340–349PubMedCrossRef Felix R, Hofstetter W, Wetterwald A, Cecchini MG, Fleisch H (1994) Role of colony-stimulating factor-1 in bone metabolism. J Cell Biochem 55:340–349PubMedCrossRef
38.
go back to reference Flanagan AM, Lader CS (1998) Update on the biologic effects of macrophage colony-stimulating factor. Curr Opin Hematol 5:181–185PubMedCrossRef Flanagan AM, Lader CS (1998) Update on the biologic effects of macrophage colony-stimulating factor. Curr Opin Hematol 5:181–185PubMedCrossRef
39.
go back to reference Motoyoshi K (1998) Biological activities and clinical application of M-CSF. Int J Hematol 67:109–122PubMedCrossRef Motoyoshi K (1998) Biological activities and clinical application of M-CSF. Int J Hematol 67:109–122PubMedCrossRef
40.
go back to reference Sherr CJ, Rettenmier CW, Sacca R, Roussel MF, Look AT, Stanley ER (1985) The c-fms proto-oncogene product is related to the receptor for the mononuclear phagocyte growth factor, CSF-1. Cell 41:665–676PubMedCrossRef Sherr CJ, Rettenmier CW, Sacca R, Roussel MF, Look AT, Stanley ER (1985) The c-fms proto-oncogene product is related to the receptor for the mononuclear phagocyte growth factor, CSF-1. Cell 41:665–676PubMedCrossRef
41.
go back to reference Felix R, Cecchini MG, Fleisch H (1990) Macrophage colony stimulating factor restores in vivo bone resorption in the op/op osteopetrotic mouse. Endocrinology 127:2592–2594PubMedCrossRef Felix R, Cecchini MG, Fleisch H (1990) Macrophage colony stimulating factor restores in vivo bone resorption in the op/op osteopetrotic mouse. Endocrinology 127:2592–2594PubMedCrossRef
42.
go back to reference Yoshida H, Hayashi S, Kunisada T et al (1990) The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345:442–444PubMedCrossRef Yoshida H, Hayashi S, Kunisada T et al (1990) The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345:442–444PubMedCrossRef
43.
go back to reference Mabilleau G, Pascaretti-Grizon F, Basle MF, Chappard D (2012) Depth and volume of resorption induced by osteoclasts generated in the presence of RANKL, TNF-alpha/IL-1 or LIGHT. Cytokine 57(2):294–299PubMedCrossRef Mabilleau G, Pascaretti-Grizon F, Basle MF, Chappard D (2012) Depth and volume of resorption induced by osteoclasts generated in the presence of RANKL, TNF-alpha/IL-1 or LIGHT. Cytokine 57(2):294–299PubMedCrossRef
44.
go back to reference Lam J, Takeshita S, Barker JE, Kanagawa O, Ross FP, Teitelbaum SL (2000) TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest 106:1481–1488PubMedPubMedCentralCrossRef Lam J, Takeshita S, Barker JE, Kanagawa O, Ross FP, Teitelbaum SL (2000) TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest 106:1481–1488PubMedPubMedCentralCrossRef
45.
go back to reference Azuma Y, Kaji K, Katogi R, Takeshita S, Kudo A (2000) Tumour necrosis factor-alpha induces differentiation of and bone resorption by osteoclasts. J Biol Chem 275:4858–4864PubMedCrossRef Azuma Y, Kaji K, Katogi R, Takeshita S, Kudo A (2000) Tumour necrosis factor-alpha induces differentiation of and bone resorption by osteoclasts. J Biol Chem 275:4858–4864PubMedCrossRef
46.
go back to reference Bossen C, Ingold K, Tardivel A et al (2006) Interactions of tumour necrosis factor (TNF) and TNF receptor family members in the mouse and human. J Biol Chem 281:13964–13971PubMedCrossRef Bossen C, Ingold K, Tardivel A et al (2006) Interactions of tumour necrosis factor (TNF) and TNF receptor family members in the mouse and human. J Biol Chem 281:13964–13971PubMedCrossRef
47.
go back to reference Edwards JR, Sun SG, Locklin R et al (2006) LIGHT (TNFSF14), a novel mediator of bone resorption, is elevated in rheumatoid arthritis. Arthritis Rheum 54:1451–1462PubMedCrossRef Edwards JR, Sun SG, Locklin R et al (2006) LIGHT (TNFSF14), a novel mediator of bone resorption, is elevated in rheumatoid arthritis. Arthritis Rheum 54:1451–1462PubMedCrossRef
48.
go back to reference Pasero C, Barbarat B, Just-Landi S et al (2009) A role for HVEM, but not lymphotoxin-beta receptor, in LIGHT-induced tumour cell death and chemokine production. Eur J Immunol 39:2502–2514PubMedCrossRef Pasero C, Barbarat B, Just-Landi S et al (2009) A role for HVEM, but not lymphotoxin-beta receptor, in LIGHT-induced tumour cell death and chemokine production. Eur J Immunol 39:2502–2514PubMedCrossRef
49.
go back to reference Atkins GJ, Haynes DR, Graves SE et al (2000) Expression of osteoclast differentiation signals by stromal elements of giant cell tumors. J Bone Miner Res 15:640–649PubMedCrossRef Atkins GJ, Haynes DR, Graves SE et al (2000) Expression of osteoclast differentiation signals by stromal elements of giant cell tumors. J Bone Miner Res 15:640–649PubMedCrossRef
50.
go back to reference Itonaga I, Sabokbar A, Murray DW, Athanasou NA (2000) Effect of osteoprotegerin and osteoprotegerin ligand on osteoclast formation by arthroplasty membrane derived macrophages. Ann Rheum Dis 59:26–31PubMedPubMedCentralCrossRef Itonaga I, Sabokbar A, Murray DW, Athanasou NA (2000) Effect of osteoprotegerin and osteoprotegerin ligand on osteoclast formation by arthroplasty membrane derived macrophages. Ann Rheum Dis 59:26–31PubMedPubMedCentralCrossRef
51.
go back to reference Tervahartiala T, Koski H, Xu JW, Häyrinen-Immonen R, Hietanen J, Sorsa T, Konttinen YT (2001) Tumor necrosis factor-alpha and its receptors, p55 and p75, in gingiva of adult periodontitis. J Dent Res 80:1535–1539PubMedCrossRef Tervahartiala T, Koski H, Xu JW, Häyrinen-Immonen R, Hietanen J, Sorsa T, Konttinen YT (2001) Tumor necrosis factor-alpha and its receptors, p55 and p75, in gingiva of adult periodontitis. J Dent Res 80:1535–1539PubMedCrossRef
53.
go back to reference Adamopoulos IE, Sabokbar A, Wordsworth BP, Carr A, Ferguson DJ, Athanasou NA (2006) Synovial fluid macrophages are capable for osteoclast formation and resorption. J Pathol 208:35–43PubMedCrossRef Adamopoulos IE, Sabokbar A, Wordsworth BP, Carr A, Ferguson DJ, Athanasou NA (2006) Synovial fluid macrophages are capable for osteoclast formation and resorption. J Pathol 208:35–43PubMedCrossRef
54.
go back to reference Chu CQ, Field M, Feldmann M, Maini RN (1991) Localisation of tumour necrosis factor alpha in synovial tissues and at the cartilage-pannus junction in patients with rheumatoid arthritis. Arthritis Rheum 34:1125–1132PubMedCrossRef Chu CQ, Field M, Feldmann M, Maini RN (1991) Localisation of tumour necrosis factor alpha in synovial tissues and at the cartilage-pannus junction in patients with rheumatoid arthritis. Arthritis Rheum 34:1125–1132PubMedCrossRef
55.
go back to reference Shaikh RB, Santee S, Granger SW et al (2001) Constitutive expression of LIGHT on T cells leads to lymphocyte activation, inflammation, and tissue destruction. J Immunol 167:6330–6337PubMedCrossRef Shaikh RB, Santee S, Granger SW et al (2001) Constitutive expression of LIGHT on T cells leads to lymphocyte activation, inflammation, and tissue destruction. J Immunol 167:6330–6337PubMedCrossRef
56.
go back to reference Hohmann EL, Elde RP, Rysavy JA, Einzig S, Gebhard RL (1986) Innervation of periosteum and bone by sympathetic vasoactive intestinal peptide-containing nerve fibers. Science 232:868–871PubMedCrossRef Hohmann EL, Elde RP, Rysavy JA, Einzig S, Gebhard RL (1986) Innervation of periosteum and bone by sympathetic vasoactive intestinal peptide-containing nerve fibers. Science 232:868–871PubMedCrossRef
57.
go back to reference Wang L, Zhou S, Liu B et al (2006) Locally applied nerve growth factor enhances bone consolidation in a rabbit model of mandibular distraction osteogenesis. J Orthop Res 24:2238–2245PubMedCrossRef Wang L, Zhou S, Liu B et al (2006) Locally applied nerve growth factor enhances bone consolidation in a rabbit model of mandibular distraction osteogenesis. J Orthop Res 24:2238–2245PubMedCrossRef
58.
go back to reference Togari A (2002) Adrenergic regulation of bone metabolism: possible involvement of sympathetic innervation of osteoblastic and osteoclastic cells. Microsc Res Tech 58:77–84PubMedCrossRef Togari A (2002) Adrenergic regulation of bone metabolism: possible involvement of sympathetic innervation of osteoblastic and osteoclastic cells. Microsc Res Tech 58:77–84PubMedCrossRef
59.
go back to reference Mohan S, Jennings JC, Linkhart TA, Baylink DJ (1988) Primary structure of human skeletal growth factor: homology with human insulin-like growth factor-II. Biochim Biophys Acta 966:44–55PubMedCrossRef Mohan S, Jennings JC, Linkhart TA, Baylink DJ (1988) Primary structure of human skeletal growth factor: homology with human insulin-like growth factor-II. Biochim Biophys Acta 966:44–55PubMedCrossRef
60.
go back to reference Hemingway F, Taylor R, Knowles HJ, Athanasou NA (2011) RANKL-independent human osteoclast formation with APRIL, BAFF, NGF, IGF I and IGF II. Bone 48:938–944PubMedCrossRef Hemingway F, Taylor R, Knowles HJ, Athanasou NA (2011) RANKL-independent human osteoclast formation with APRIL, BAFF, NGF, IGF I and IGF II. Bone 48:938–944PubMedCrossRef
61.
62.
go back to reference Centrella M, Horowitz MC, Wozney JM, McCarthy TL (1994) Transforming growth factor-gene family members and bone. Endocr Rev 15:27–39PubMed Centrella M, Horowitz MC, Wozney JM, McCarthy TL (1994) Transforming growth factor-gene family members and bone. Endocr Rev 15:27–39PubMed
63.
go back to reference Pfeilschifter J, Seyedin SM, Mundy GR (1998) Transforming growth factor beta inhibits bone resorption in fetal rat long bone culture. J Clin Invest 82:680–685CrossRef Pfeilschifter J, Seyedin SM, Mundy GR (1998) Transforming growth factor beta inhibits bone resorption in fetal rat long bone culture. J Clin Invest 82:680–685CrossRef
64.
go back to reference Inoue M, Ross FP, Erdmann JM, Abu-Amer Y, Wei S, Teitelbaum SL (2006) Tumour necrosis factor alpha regulates alpha(v)beta5 integrin expression by osteoclast precursors in vitro and in vivo. Endocrinology 141:284–290 Inoue M, Ross FP, Erdmann JM, Abu-Amer Y, Wei S, Teitelbaum SL (2006) Tumour necrosis factor alpha regulates alpha(v)beta5 integrin expression by osteoclast precursors in vitro and in vivo. Endocrinology 141:284–290
65.
go back to reference Kudo O, Fujikawa Y, Itonaga I, Sabokbar A, Torisu T, Athanasou NA (2002) Proinflammatory cytokine (TNFalpha/IL-1alpha) induction of human osteoclast formation. J Pathol 198:220–227PubMedCrossRef Kudo O, Fujikawa Y, Itonaga I, Sabokbar A, Torisu T, Athanasou NA (2002) Proinflammatory cytokine (TNFalpha/IL-1alpha) induction of human osteoclast formation. J Pathol 198:220–227PubMedCrossRef
66.
go back to reference Ma T, Miyanishi K, Suen A et al (2004) Human interleukin-1-induced murine osteoclastogenesis is dependent on RANKL, but independent of TNF-α. Cytokine 26:138–144PubMedCrossRef Ma T, Miyanishi K, Suen A et al (2004) Human interleukin-1-induced murine osteoclastogenesis is dependent on RANKL, but independent of TNF-α. Cytokine 26:138–144PubMedCrossRef
69.
go back to reference Mabilleau G, Chappard D, Sabokbar A (2011) Role of the A20-TRAF6 axis in lipopolysaccharide-mediated osteoclastogenesis. J Biol Chem 286(5):3242–3249PubMedCrossRef Mabilleau G, Chappard D, Sabokbar A (2011) Role of the A20-TRAF6 axis in lipopolysaccharide-mediated osteoclastogenesis. J Biol Chem 286(5):3242–3249PubMedCrossRef
70.
go back to reference Mahoney DJ, Swales C, Athanasou NA et al (2011) TSG-6 inhibits osteoclast activity via an autocrine mechanism and is functionally synergistic with osteoprotegerin. Arthritis Rheum 63(4):1034–1043PubMedCrossRef Mahoney DJ, Swales C, Athanasou NA et al (2011) TSG-6 inhibits osteoclast activity via an autocrine mechanism and is functionally synergistic with osteoprotegerin. Arthritis Rheum 63(4):1034–1043PubMedCrossRef
71.
go back to reference Fuller K, Murphy C, Kirstein B, Fox SW, Chambers TJ (2002) TNFα potently activates osteoclasts, through a direct action independent of and strongly synergistic with RANKL. Endocrinology 143:1108–1118PubMed Fuller K, Murphy C, Kirstein B, Fox SW, Chambers TJ (2002) TNFα potently activates osteoclasts, through a direct action independent of and strongly synergistic with RANKL. Endocrinology 143:1108–1118PubMed
72.
go back to reference Fuller K, Kirstein B, Chambers TJ (2006) Murine osteoclast formation and function: differential regulation by humoral agents. Endocrinology 147:1979–1985PubMedCrossRef Fuller K, Kirstein B, Chambers TJ (2006) Murine osteoclast formation and function: differential regulation by humoral agents. Endocrinology 147:1979–1985PubMedCrossRef
73.
74.
go back to reference Mauri DN, Ebner R, Montgomery RI et al (1998) LIGHT, a new member of the TNF superfamily, and lymphotoxin are ligands for herpesvirus entry mediator. Immunity 8:21–30PubMedCrossRef Mauri DN, Ebner R, Montgomery RI et al (1998) LIGHT, a new member of the TNF superfamily, and lymphotoxin are ligands for herpesvirus entry mediator. Immunity 8:21–30PubMedCrossRef
75.
go back to reference Tamada K, Shimozaki K, Chapoval AI et al (2000) LIGHT, a TNF-like molecule, costimulates T cell proliferation and is required for dendritic cell-mediated allogeneic T cell response. J Immunol 164:4105–4110PubMedCrossRef Tamada K, Shimozaki K, Chapoval AI et al (2000) LIGHT, a TNF-like molecule, costimulates T cell proliferation and is required for dendritic cell-mediated allogeneic T cell response. J Immunol 164:4105–4110PubMedCrossRef
76.
go back to reference Montgomery RI, Warner MS, Lum BJ, Spear PG (1996) Herpes simplex virus-1 entry into cells mediated by a novel member of TNF/NGF receptor family. Cell 87:427–436PubMedCrossRef Montgomery RI, Warner MS, Lum BJ, Spear PG (1996) Herpes simplex virus-1 entry into cells mediated by a novel member of TNF/NGF receptor family. Cell 87:427–436PubMedCrossRef
77.
go back to reference Zhai Y, Guo R, Hsu TL et al (1998) LIGHT, a novel ligand for lymphotoxin receptor and TR2/HVEM, induces apoptosis and suppresses in vivo tumor formation via gene transfer. J Clin Invest 102:1142–1151PubMedPubMedCentralCrossRef Zhai Y, Guo R, Hsu TL et al (1998) LIGHT, a novel ligand for lymphotoxin receptor and TR2/HVEM, induces apoptosis and suppresses in vivo tumor formation via gene transfer. J Clin Invest 102:1142–1151PubMedPubMedCentralCrossRef
78.
go back to reference Heo SK, Yun HJ, Park WH, Park SD (2008) NADPH oxidase activation is required for migration by LIGHT in human monocytes. Biochem Biophys Res Commun 371:834–840PubMedCrossRef Heo SK, Yun HJ, Park WH, Park SD (2008) NADPH oxidase activation is required for migration by LIGHT in human monocytes. Biochem Biophys Res Commun 371:834–840PubMedCrossRef
79.
go back to reference Schneider K, Potter KG, Ware CF (2004) Lymphotoxin and LIGHT signaling pathways and target genes. Immunol Rev 202:49–66PubMedCrossRef Schneider K, Potter KG, Ware CF (2004) Lymphotoxin and LIGHT signaling pathways and target genes. Immunol Rev 202:49–66PubMedCrossRef
80.
go back to reference Chang TH, Hsieh SL, Chao Y, Chou YC, Lin WW (2005) Proinflammatory effects of LIGHT through HVEM and LTbetaR interactions in cultured human umbilical vein endothelial cells. J Biomed Sci 12:363–375PubMedCrossRef Chang TH, Hsieh SL, Chao Y, Chou YC, Lin WW (2005) Proinflammatory effects of LIGHT through HVEM and LTbetaR interactions in cultured human umbilical vein endothelial cells. J Biomed Sci 12:363–375PubMedCrossRef
81.
go back to reference Kang YM, Kim SY, Kang JH et al (2007) LIGHT up-regulated on B lymphocytes and monocytes in rheumatoid arthritis mediates cellular adhesion and metalloproteinase production by synoviocytes. Arthritis Rheum 56:1106–1117PubMedCrossRef Kang YM, Kim SY, Kang JH et al (2007) LIGHT up-regulated on B lymphocytes and monocytes in rheumatoid arthritis mediates cellular adhesion and metalloproteinase production by synoviocytes. Arthritis Rheum 56:1106–1117PubMedCrossRef
83.
go back to reference Rooney IA, Butrovich KD, Glass AA et al (2000) The lymphotoxin-beta receptor is necessary and sufficient for LIGHT-mediated apoptosis of tumor cells. J Biol Chem 275:14307–14315PubMedCrossRef Rooney IA, Butrovich KD, Glass AA et al (2000) The lymphotoxin-beta receptor is necessary and sufficient for LIGHT-mediated apoptosis of tumor cells. J Biol Chem 275:14307–14315PubMedCrossRef
84.
go back to reference Granger SW, Rickert S (2003) LIGHT-HVEM signaling and the regulation of T cell-mediated immunity. Cytokine Growth Factor Rev 14:289–296PubMedCrossRef Granger SW, Rickert S (2003) LIGHT-HVEM signaling and the regulation of T cell-mediated immunity. Cytokine Growth Factor Rev 14:289–296PubMedCrossRef
85.
go back to reference Marsters SA, Ayres TM, Skubatch M, Gray CL, Rothe M, Ashkenazi A (1997) Herpesvirus entry mediator, a member of the tumor necrosis factor receptor (TNFR) family, interacts with members of the TNFR-associated factor family and activates the transcription factors NF-kappaB and AP-1. J Biol Chem 272:14029–14032PubMedCrossRef Marsters SA, Ayres TM, Skubatch M, Gray CL, Rothe M, Ashkenazi A (1997) Herpesvirus entry mediator, a member of the tumor necrosis factor receptor (TNFR) family, interacts with members of the TNFR-associated factor family and activates the transcription factors NF-kappaB and AP-1. J Biol Chem 272:14029–14032PubMedCrossRef
86.
go back to reference Yang CR, Wang JH, Hsieh SL, Wang SM, Hsu TL, Lin WW (2004) Decoy receptor 3 (DcR3) induces osteoclast formation from monocyte/macrophage lineage precursor cells. Cell Death Differ. Suppl 1:S97-107 Yang CR, Wang JH, Hsieh SL, Wang SM, Hsu TL, Lin WW (2004) Decoy receptor 3 (DcR3) induces osteoclast formation from monocyte/macrophage lineage precursor cells. Cell Death Differ. Suppl 1:S97-107
87.
go back to reference Hemingway F, Kashima TG, Knowles HJ, Athanasou NA (2013) Investigation of osteoclastogenic signalling of the RANKL substitute LIGHT. Exp Mol Pathol 94:380–385PubMedCrossRef Hemingway F, Kashima TG, Knowles HJ, Athanasou NA (2013) Investigation of osteoclastogenic signalling of the RANKL substitute LIGHT. Exp Mol Pathol 94:380–385PubMedCrossRef
88.
go back to reference Arch RH, Gedrich RW, Thompson CB (1998) Tumour necrosis factor receptor-associated factors (TRAFs) - a family of adapter proteins that regulates life and death. Genes Dev 12:2821–2830PubMedCrossRef Arch RH, Gedrich RW, Thompson CB (1998) Tumour necrosis factor receptor-associated factors (TRAFs) - a family of adapter proteins that regulates life and death. Genes Dev 12:2821–2830PubMedCrossRef
89.
go back to reference Hahne M, Kataoka T, Schroter M et al (1998) APRIL, a new ligand of the tumor necrosis factor family, stimulates tumor cell growth. J Exp Med 188:1185–1190PubMedPubMedCentralCrossRef Hahne M, Kataoka T, Schroter M et al (1998) APRIL, a new ligand of the tumor necrosis factor family, stimulates tumor cell growth. J Exp Med 188:1185–1190PubMedPubMedCentralCrossRef
90.
go back to reference Kelly K, Manos E, Jensen G, Nadauld L, Jones DA (2000) APRIL/TRDL-1, a tumor necrosis factor-like ligand, stimulates cell death. Cancer Res 60:1021–1027PubMed Kelly K, Manos E, Jensen G, Nadauld L, Jones DA (2000) APRIL/TRDL-1, a tumor necrosis factor-like ligand, stimulates cell death. Cancer Res 60:1021–1027PubMed
91.
go back to reference Schneider P, MacKay F, Steiner V et al (1999) BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J Exp Med 189:1747–1756PubMedPubMedCentralCrossRef Schneider P, MacKay F, Steiner V et al (1999) BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J Exp Med 189:1747–1756PubMedPubMedCentralCrossRef
92.
go back to reference Bonewald LF (1995) Regulation and regulatory activities of transforming growth factor beta. Crit Rev Eukaryot Gene Exp 9:33–44 Bonewald LF (1995) Regulation and regulatory activities of transforming growth factor beta. Crit Rev Eukaryot Gene Exp 9:33–44
93.
go back to reference Massey HM, Scopes J, Horton MA, Flanagan AM (2002) Transforming growth factor-beta stimulates the osteoclast-forming potential of peripheral blood haematopoietic precursors in a lymphocyte-rich microenvironment. Bone 28:577–582CrossRef Massey HM, Scopes J, Horton MA, Flanagan AM (2002) Transforming growth factor-beta stimulates the osteoclast-forming potential of peripheral blood haematopoietic precursors in a lymphocyte-rich microenvironment. Bone 28:577–582CrossRef
94.
go back to reference Beaudreuil J, Mbalaviele G, Cohen-Solal M, Morieux C, de Vernejoul MC, Orcel P (1995) Short-term local injections of transforming growth factor-beta 1 decrease ovariectomy-stimulated osteoclastic resorption in vivo in rat. J Bone Miner Res 10:971–977PubMedCrossRef Beaudreuil J, Mbalaviele G, Cohen-Solal M, Morieux C, de Vernejoul MC, Orcel P (1995) Short-term local injections of transforming growth factor-beta 1 decrease ovariectomy-stimulated osteoclastic resorption in vivo in rat. J Bone Miner Res 10:971–977PubMedCrossRef
95.
go back to reference Ota K, Quint P, Weivoda MM et al (2013) Transforming growth factor beta 1 induces CXCL16 and leukemia inhibitory factor expression in osteoclasts to modulate migration of osteoblast progenitors. Bone 57:68–75PubMedCrossRef Ota K, Quint P, Weivoda MM et al (2013) Transforming growth factor beta 1 induces CXCL16 and leukemia inhibitory factor expression in osteoclasts to modulate migration of osteoblast progenitors. Bone 57:68–75PubMedCrossRef
96.
go back to reference Itonaga I, Sabokbar A, Sun SG et al (2004) Transforming growth factor-beta induces osteoclast formation in the absence of RANKL. Bone 34:57–64PubMedCrossRef Itonaga I, Sabokbar A, Sun SG et al (2004) Transforming growth factor-beta induces osteoclast formation in the absence of RANKL. Bone 34:57–64PubMedCrossRef
97.
go back to reference Takai H, Kanematsu M, Yano K et al (1998) Transforming growth factor-beta stimulates the production of osteoprotegerin/osteoclastogenesis inhibitory factor by bone marrow stromal cells. J Biol Chem 273:27091–27096PubMedCrossRef Takai H, Kanematsu M, Yano K et al (1998) Transforming growth factor-beta stimulates the production of osteoprotegerin/osteoclastogenesis inhibitory factor by bone marrow stromal cells. J Biol Chem 273:27091–27096PubMedCrossRef
98.
go back to reference Ishimi Y, Miyaura C, Jin CH et al (1990) IL-6 is produced by osteoblasts and induces bone resorption. J Immunol 145:3297–3303PubMed Ishimi Y, Miyaura C, Jin CH et al (1990) IL-6 is produced by osteoblasts and induces bone resorption. J Immunol 145:3297–3303PubMed
99.
go back to reference Tamura T, Udagawa N, Takahashi N et al (1993) Soluble interleukin-6 receptor triggers osteoclast formation by interleukin 6. Proc Natl Acad Sci U S A 90:11924–11928PubMedPubMedCentralCrossRef Tamura T, Udagawa N, Takahashi N et al (1993) Soluble interleukin-6 receptor triggers osteoclast formation by interleukin 6. Proc Natl Acad Sci U S A 90:11924–11928PubMedPubMedCentralCrossRef
100.
go back to reference Kudo O, Sabokbar A, Pocock A, Itonaga I, Fujikawa Y, Athanasou NA (2003) Interleukin-6 and interleukin-11 support human osteoclast formation by a RANKL-independent mechanism. Bone 32:1–7PubMedCrossRef Kudo O, Sabokbar A, Pocock A, Itonaga I, Fujikawa Y, Athanasou NA (2003) Interleukin-6 and interleukin-11 support human osteoclast formation by a RANKL-independent mechanism. Bone 32:1–7PubMedCrossRef
101.
go back to reference Roodman GD, Kurihara N, Ohsaki Y et al (1992) Interleukin 6. A potential autocrine/paracrine factor in Paget’s disease of bone. J Clin Invest 89:46–52PubMedPubMedCentralCrossRef Roodman GD, Kurihara N, Ohsaki Y et al (1992) Interleukin 6. A potential autocrine/paracrine factor in Paget’s disease of bone. J Clin Invest 89:46–52PubMedPubMedCentralCrossRef
102.
go back to reference Bendre MS, Montague DC, Peery T, Akel NS, Gaddy D, Suva LJ (2003) Interleukin-8 stimulation of osteoclastogenesis and bone resorption is a mechanism for the increased osteolysis of metastatic bone disease. Bone 33:28–37PubMedCrossRef Bendre MS, Montague DC, Peery T, Akel NS, Gaddy D, Suva LJ (2003) Interleukin-8 stimulation of osteoclastogenesis and bone resorption is a mechanism for the increased osteolysis of metastatic bone disease. Bone 33:28–37PubMedCrossRef
103.
go back to reference Bendre MS, Margulies AG, Walser B et al (2005) Tumour-derived interleukin-8 stimulates osteolysis independent of the receptor activator of nuclear factor-kappaB ligand pathway. Cancer Res 65:11001–11009PubMedCrossRef Bendre MS, Margulies AG, Walser B et al (2005) Tumour-derived interleukin-8 stimulates osteolysis independent of the receptor activator of nuclear factor-kappaB ligand pathway. Cancer Res 65:11001–11009PubMedCrossRef
104.
go back to reference Asaumi K, Nakanishi T, Asahara H, Inoue H, Takigawa M (2000) Expression of neurotrophins and their receptors (TRK) during fracture healing. Bone 26:625–633PubMedCrossRef Asaumi K, Nakanishi T, Asahara H, Inoue H, Takigawa M (2000) Expression of neurotrophins and their receptors (TRK) during fracture healing. Bone 26:625–633PubMedCrossRef
105.
go back to reference Frenkel SR, Guerra LA, Mitchell OG, Singh IJ (1990) Nerve growth factor in skeletal tissues of the embryonic chick. Cell Tissue Res 260:507–511PubMedCrossRef Frenkel SR, Guerra LA, Mitchell OG, Singh IJ (1990) Nerve growth factor in skeletal tissues of the embryonic chick. Cell Tissue Res 260:507–511PubMedCrossRef
106.
go back to reference Grills B, Schuijers J (1998) Immunohistochemical localization of nerve growth factor in fractured and unfractured rat bone. Acta Orthop Scand 69:415–419PubMedCrossRef Grills B, Schuijers J (1998) Immunohistochemical localization of nerve growth factor in fractured and unfractured rat bone. Acta Orthop Scand 69:415–419PubMedCrossRef
107.
go back to reference Hukkanen M, Konttinen Y, Santavirta S et al (1993) Rapid proliferation of calcitonin gene-related peptide-immunoreactive nerves during healing of rat tibial fracture suggests neural involvement in bone growth and remodelling. Neuroscience 54:969–979PubMedCrossRef Hukkanen M, Konttinen Y, Santavirta S et al (1993) Rapid proliferation of calcitonin gene-related peptide-immunoreactive nerves during healing of rat tibial fracture suggests neural involvement in bone growth and remodelling. Neuroscience 54:969–979PubMedCrossRef
108.
go back to reference Serre CM, Farlay D, Delmas PD, Chenu C (1990) Evidence for a dense and intimate innervation of the bone tissue, including glutamate-containing fibers. Bone 25:623–629CrossRef Serre CM, Farlay D, Delmas PD, Chenu C (1990) Evidence for a dense and intimate innervation of the bone tissue, including glutamate-containing fibers. Bone 25:623–629CrossRef
109.
go back to reference Bautista CM, Mohan S, Baylink DJ (1990) Insulin-like growth factors I and II are present in the skeletal tissues of ten vertebrates. Metabolism 39:96–100PubMedCrossRef Bautista CM, Mohan S, Baylink DJ (1990) Insulin-like growth factors I and II are present in the skeletal tissues of ten vertebrates. Metabolism 39:96–100PubMedCrossRef
110.
go back to reference Hayden JM, Mohan S, Baylink DJ (1995) The insulin-like growth factor system and the coupling of formation to resorption. Bone 17:93S–98SPubMedCrossRef Hayden JM, Mohan S, Baylink DJ (1995) The insulin-like growth factor system and the coupling of formation to resorption. Bone 17:93S–98SPubMedCrossRef
111.
go back to reference Hill PA, Reynolds JJ, Meikle MC (1995) Osteoblasts mediate insulin-like growth factor-I and -II stimulation of osteoclast formation and function. Endocrinology 136:124–131PubMed Hill PA, Reynolds JJ, Meikle MC (1995) Osteoblasts mediate insulin-like growth factor-I and -II stimulation of osteoclast formation and function. Endocrinology 136:124–131PubMed
112.
go back to reference Fukuoka H, Aoyama M, Miyazawa K, Asai K, Goto S (2005) Hypoxic stress enhances osteoclast differentiation via increasing IGF2 production by non-osteoclastic cells. Biochem Biophys Res Commun 328:885–894PubMedCrossRef Fukuoka H, Aoyama M, Miyazawa K, Asai K, Goto S (2005) Hypoxic stress enhances osteoclast differentiation via increasing IGF2 production by non-osteoclastic cells. Biochem Biophys Res Commun 328:885–894PubMedCrossRef
113.
go back to reference Mochizuki H, Hakeda Y, Wakatsuki N et al (1992) Insulin-like growth factor-I supports formation and activation of osteoclasts. Endocrinology 131:1075–1080PubMed Mochizuki H, Hakeda Y, Wakatsuki N et al (1992) Insulin-like growth factor-I supports formation and activation of osteoclasts. Endocrinology 131:1075–1080PubMed
114.
go back to reference Nakao K, Aoyama M, Fukuoka H, Fujita M, Miyazawa K, Asai K, Goto S (2009) IGF II modulates the microenvironment for osteoclastogenesis. Biochem Biophys Res Commun 378:462–466PubMedCrossRef Nakao K, Aoyama M, Fukuoka H, Fujita M, Miyazawa K, Asai K, Goto S (2009) IGF II modulates the microenvironment for osteoclastogenesis. Biochem Biophys Res Commun 378:462–466PubMedCrossRef
115.
go back to reference Zhang M, Xuan S, Bouxsein ML et al (2002) Osteoblast-specific knockout of the insulin-like growth factor (IGF) receptor gene reveals an essential role of IGF signalling in bone matrix mineralization. J Biol Chem 277:44005–44012PubMedCrossRef Zhang M, Xuan S, Bouxsein ML et al (2002) Osteoblast-specific knockout of the insulin-like growth factor (IGF) receptor gene reveals an essential role of IGF signalling in bone matrix mineralization. J Biol Chem 277:44005–44012PubMedCrossRef
116.
go back to reference Wang Y, Nishida S, Elalieh HZ, Long RK, Halloran BP, Bikle DD (2006) Role of IGF-I signaling in regulating osteoclastogenesis. J Bone Miner Res 21:1350–1358PubMedCrossRef Wang Y, Nishida S, Elalieh HZ, Long RK, Halloran BP, Bikle DD (2006) Role of IGF-I signaling in regulating osteoclastogenesis. J Bone Miner Res 21:1350–1358PubMedCrossRef
117.
go back to reference Guicheux J, Heymann D, Rousselle AV et al (1998) Growth hormone stimulatory effects on osteoclastic resorption are partly mediated by insulin-like growth factor I: an in vitro study. Bone 22:25–31PubMedCrossRef Guicheux J, Heymann D, Rousselle AV et al (1998) Growth hormone stimulatory effects on osteoclastic resorption are partly mediated by insulin-like growth factor I: an in vitro study. Bone 22:25–31PubMedCrossRef
118.
go back to reference Bautista CM, Baylink DJ, Mohan S (1991) Isolation of a novel insulin-like growth factor (IGF) binding protein from human bone: a potential candidate for fixing IGF-II in human bone. Biochem Biophys Res Commun 176:756–763PubMedCrossRef Bautista CM, Baylink DJ, Mohan S (1991) Isolation of a novel insulin-like growth factor (IGF) binding protein from human bone: a potential candidate for fixing IGF-II in human bone. Biochem Biophys Res Commun 176:756–763PubMedCrossRef
119.
go back to reference Middleton J, Arnott N, Walsh S, Beresford J (1995) Osteoblasts and osteoclasts in adult human osteophyte tissue express the mRNAs for insulin-like growth factors I and II and the type 1 IGF receptor. Bone 16:287–293PubMedCrossRef Middleton J, Arnott N, Walsh S, Beresford J (1995) Osteoblasts and osteoclasts in adult human osteophyte tissue express the mRNAs for insulin-like growth factors I and II and the type 1 IGF receptor. Bone 16:287–293PubMedCrossRef
120.
go back to reference Zheng MH, Fan Y, Smith A, Wysocki S, Papadimitriou JM, Wood DJ (1998) Gene expression of monocyte chemoattractant protein-1 in giant cell tumors of bone osteoclastoma: possible involvement in CD68+ macrophage-like cell migration. J Cell Biochem 70:121–129PubMedCrossRef Zheng MH, Fan Y, Smith A, Wysocki S, Papadimitriou JM, Wood DJ (1998) Gene expression of monocyte chemoattractant protein-1 in giant cell tumors of bone osteoclastoma: possible involvement in CD68+ macrophage-like cell migration. J Cell Biochem 70:121–129PubMedCrossRef
121.
go back to reference Franchi A, Benvenuti S, Masi L et al (2001) TGF-beta isoform and receptor expression in giant cell tumor and giant cell lesions of bone. Appl Immunohistochem Mol Morphol 9:170–175PubMed Franchi A, Benvenuti S, Masi L et al (2001) TGF-beta isoform and receptor expression in giant cell tumor and giant cell lesions of bone. Appl Immunohistochem Mol Morphol 9:170–175PubMed
122.
go back to reference Middleton J, Arnott N, Walsh S, Beresford J (1996) The expression of mRNA for insulin-like growth factors and their receptor in giant cell tumors of human bone. Clin Orthop 322:224–231PubMedCrossRef Middleton J, Arnott N, Walsh S, Beresford J (1996) The expression of mRNA for insulin-like growth factors and their receptor in giant cell tumors of human bone. Clin Orthop 322:224–231PubMedCrossRef
123.
go back to reference Mhawech-Fauceglia P, Kaya G, Sauter G et al (2006) The source of APRIL up-regulation in human solid tumor lesions. J Leukoc Biol 80:697–704PubMedCrossRef Mhawech-Fauceglia P, Kaya G, Sauter G et al (2006) The source of APRIL up-regulation in human solid tumor lesions. J Leukoc Biol 80:697–704PubMedCrossRef
124.
go back to reference Lau YS, Adamopoulos IE, Sabokbar A, Giele H, Gibbons CL, Athanasou NA (2007) Cellular and humoral mechanisms of osteoclast formation in Ewing’s sarcoma. Br J Cancer 96:1716–1722PubMedPubMedCentralCrossRef Lau YS, Adamopoulos IE, Sabokbar A, Giele H, Gibbons CL, Athanasou NA (2007) Cellular and humoral mechanisms of osteoclast formation in Ewing’s sarcoma. Br J Cancer 96:1716–1722PubMedPubMedCentralCrossRef
125.
go back to reference Lau YS, Danks L, Sun SG et al (2007) RANKL-dependent and RANKL-independent mechanisms of macrophage-osteoclast differentiation in breast cancer. Breast Cancer Res Treat 105:7–16PubMedCrossRef Lau YS, Danks L, Sun SG et al (2007) RANKL-dependent and RANKL-independent mechanisms of macrophage-osteoclast differentiation in breast cancer. Breast Cancer Res Treat 105:7–16PubMedCrossRef
126.
127.
go back to reference Oranger A, Carbone C, Izzo M, Grano M. (2013) Cellular mechanisms of multiple myeloma bone disease. Clin Dev Immunol. 289458 Oranger A, Carbone C, Izzo M, Grano M. (2013) Cellular mechanisms of multiple myeloma bone disease. Clin Dev Immunol. 289458
128.
go back to reference Brunetti G, Rizzi R, Oranger A et al (2014) LIGHT/TNFSF14 increases osteoclastogenesis and decreases osteoblastogenesis in multiple myeloma-bone disease. Oncotarget 5:12950–12967PubMedPubMedCentralCrossRef Brunetti G, Rizzi R, Oranger A et al (2014) LIGHT/TNFSF14 increases osteoclastogenesis and decreases osteoblastogenesis in multiple myeloma-bone disease. Oncotarget 5:12950–12967PubMedPubMedCentralCrossRef
130.
go back to reference Hirayama T, Sabokbar A, Itonaga I, Watt-Smith S, Athanasou NA (2014) Cellular and humoral mechanisms of osteoclast formation and bone resorption in Gorham-Stout disease. J Pathol 195:624–630CrossRef Hirayama T, Sabokbar A, Itonaga I, Watt-Smith S, Athanasou NA (2014) Cellular and humoral mechanisms of osteoclast formation and bone resorption in Gorham-Stout disease. J Pathol 195:624–630CrossRef
131.
go back to reference Neri P, Kumar S, Fulciniti MT et al (2007) Neutralizing B-cell activating factor antibody improves survival and inhibits osteoclastogenesis in a severe combined immunodeficient human multiple myeloma model. Clin Cancer Res 13:5903–5909PubMedCrossRef Neri P, Kumar S, Fulciniti MT et al (2007) Neutralizing B-cell activating factor antibody improves survival and inhibits osteoclastogenesis in a severe combined immunodeficient human multiple myeloma model. Clin Cancer Res 13:5903–5909PubMedCrossRef
132.
go back to reference Moreaux J, Cremer FW, Reme T et al (2005) The level of TACI gene expression in myeloma cells is associated with a signature of microenvironment dependence versus a plasmablastic signature. Blood 106:1021–1030PubMedPubMedCentralCrossRef Moreaux J, Cremer FW, Reme T et al (2005) The level of TACI gene expression in myeloma cells is associated with a signature of microenvironment dependence versus a plasmablastic signature. Blood 106:1021–1030PubMedPubMedCentralCrossRef
133.
go back to reference Abe M, Kido S, Hiasa M et al (2006) BAFF and APRIL as osteoclast-derived survival factors for myeloma cells: a rationale for TACI-Fc treatment in patients with multiple myeloma. Leukemia 20:1313–1315PubMedCrossRef Abe M, Kido S, Hiasa M et al (2006) BAFF and APRIL as osteoclast-derived survival factors for myeloma cells: a rationale for TACI-Fc treatment in patients with multiple myeloma. Leukemia 20:1313–1315PubMedCrossRef
134.
go back to reference Sabokbar A, Kudo O, Athanasou NA (2003) Two distinct cellular mechanisms of osteoclast formation and bone resorption in periprosthetic osteolysis. J Orthop Res 21:73–80PubMedCrossRef Sabokbar A, Kudo O, Athanasou NA (2003) Two distinct cellular mechanisms of osteoclast formation and bone resorption in periprosthetic osteolysis. J Orthop Res 21:73–80PubMedCrossRef
135.
go back to reference Yang YM, Kim SY, Kang JH et al (2007) LIGHT up regulated on B lymphocytes and monocytes in rheumatoid arthritis mediates cellular adhesion and metalloproteinase production by synoviocytes. Arthritis Rheum 56:1106–1107CrossRef Yang YM, Kim SY, Kang JH et al (2007) LIGHT up regulated on B lymphocytes and monocytes in rheumatoid arthritis mediates cellular adhesion and metalloproteinase production by synoviocytes. Arthritis Rheum 56:1106–1107CrossRef
136.
go back to reference Fava RA, Notidis E, Hunt J et al (2003) A role for the lymphotoxin/LIGHT axis in the pathogenesis of murine collagen-induced arthritis. J Immunol 171:115–116PubMedCrossRef Fava RA, Notidis E, Hunt J et al (2003) A role for the lymphotoxin/LIGHT axis in the pathogenesis of murine collagen-induced arthritis. J Immunol 171:115–116PubMedCrossRef
137.
go back to reference Ishida S, Yamane S, Nakano S et al (2009) The interaction of monocytes with rheumatoid synovial cells is a key step in LIGHT-mediated inflammatory bone destruction. Immunology 128:315–324CrossRef Ishida S, Yamane S, Nakano S et al (2009) The interaction of monocytes with rheumatoid synovial cells is a key step in LIGHT-mediated inflammatory bone destruction. Immunology 128:315–324CrossRef
138.
go back to reference Ishida S, Yamane S, Ochi T et al (2003) LIGHT induces cell proliferation and inflammatory responses of rheumatoid arthritis synovial fibroblasts via lymphotoxin beta receptor. J Rheumatol 35:960–968 Ishida S, Yamane S, Ochi T et al (2003) LIGHT induces cell proliferation and inflammatory responses of rheumatoid arthritis synovial fibroblasts via lymphotoxin beta receptor. J Rheumatol 35:960–968
139.
go back to reference Pierer M, Brentano F, Rethage J. et al. (2009) The TNF superfamily member LIGHT contributes to survival and activation of synovial fibroblasts in rheumatoid arthritis Pierer M, Brentano F, Rethage J. et al. (2009) The TNF superfamily member LIGHT contributes to survival and activation of synovial fibroblasts in rheumatoid arthritis
140.
go back to reference Cheung TC, Coppieters K, Sanjo H et al (2010) Polymorphic variants of LIGHT (TNF superfamily −14) alter receptor avidity and bioavailability. J Immunol 185:1949–1958PubMedPubMedCentralCrossRef Cheung TC, Coppieters K, Sanjo H et al (2010) Polymorphic variants of LIGHT (TNF superfamily −14) alter receptor avidity and bioavailability. J Immunol 185:1949–1958PubMedPubMedCentralCrossRef
141.
go back to reference Mariette X, Roux S, Zhang J et al (2003) The level of BLyS (BAFF) correlates with the titre of autoantibodies in human Sjogren’s syndrome. Ann Rheum Dis 62:168–171PubMedPubMedCentralCrossRef Mariette X, Roux S, Zhang J et al (2003) The level of BLyS (BAFF) correlates with the titre of autoantibodies in human Sjogren’s syndrome. Ann Rheum Dis 62:168–171PubMedPubMedCentralCrossRef
142.
go back to reference Pers JO, Daridon C, Devauchelle V et al (2005) BAFF overexpression is associated with autoantibody production in autoimmune diseases. Ann N Y Acad Sci 1050:34–39PubMedCrossRef Pers JO, Daridon C, Devauchelle V et al (2005) BAFF overexpression is associated with autoantibody production in autoimmune diseases. Ann N Y Acad Sci 1050:34–39PubMedCrossRef
143.
go back to reference Dickerson TJ, Suzuki E, Stanecki C, Shin HS, Qui H, Adamopoulos IE (2012) Rheumatoid and pyrophosphate arthritis synovial fibroblasts induce osteoclastogenesis independently of RANKL, TNF and IL-6. J Autoimmun 39:369–376PubMedPubMedCentralCrossRef Dickerson TJ, Suzuki E, Stanecki C, Shin HS, Qui H, Adamopoulos IE (2012) Rheumatoid and pyrophosphate arthritis synovial fibroblasts induce osteoclastogenesis independently of RANKL, TNF and IL-6. J Autoimmun 39:369–376PubMedPubMedCentralCrossRef
144.
go back to reference Adamopoulos IE, Tessmer M, Chao CC et al (2011) IL-23 is critical for induction of arthritis, osteoclast formation, and maintenance of bone mass. J Immunol 187:951–959PubMedPubMedCentralCrossRef Adamopoulos IE, Tessmer M, Chao CC et al (2011) IL-23 is critical for induction of arthritis, osteoclast formation, and maintenance of bone mass. J Immunol 187:951–959PubMedPubMedCentralCrossRef
145.
go back to reference Adamopoulos IE, Mellins ED (2015) Alternative pathways of osteoclastogenesis in inflammatory arthritis. Nat Rev Rheumatol 11:189–194PubMedCrossRef Adamopoulos IE, Mellins ED (2015) Alternative pathways of osteoclastogenesis in inflammatory arthritis. Nat Rev Rheumatol 11:189–194PubMedCrossRef
146.
go back to reference Shin HS, Sarin R, Dixit N, Wu J, Gershwin E, Bowman EP, Adamopoulos IE (2015) Crosstalk among IL-23 and DNAX activating protein of 12 kDa-dependent pathways promotes osteoclastogenesis. J Immunol 194:316–324PubMedCrossRef Shin HS, Sarin R, Dixit N, Wu J, Gershwin E, Bowman EP, Adamopoulos IE (2015) Crosstalk among IL-23 and DNAX activating protein of 12 kDa-dependent pathways promotes osteoclastogenesis. J Immunol 194:316–324PubMedCrossRef
Metadata
Title
Non-Canonical (RANKL-Independent) Pathways of Osteoclast Differentiation and Their Role in Musculoskeletal Diseases
Authors
A. Sabokbar
D. J. Mahoney
F. Hemingway
N. A. Athanasou
Publication date
01-08-2016
Publisher
Springer US
Published in
Clinical Reviews in Allergy & Immunology / Issue 1/2016
Print ISSN: 1080-0549
Electronic ISSN: 1559-0267
DOI
https://doi.org/10.1007/s12016-015-8523-6

Other articles of this Issue 1/2016

Clinical Reviews in Allergy & Immunology 1/2016 Go to the issue