Skip to main content
Top
Published in: Breast Cancer Research and Treatment 1/2007

01-09-2007 | PRECLINICAL STUDY

RANKL-dependent and RANKL-independent mechanisms of macrophage-osteoclast differentiation in breast cancer

Authors: Y. S. Lau, L. Danks, S. G. Sun, S. Fox, A. Sabokbar, A. Harris, N. A. Athanasou

Published in: Breast Cancer Research and Treatment | Issue 1/2007

Login to get access

Abstract

The cellular and humoral mechanisms accounting for tumour osteolysis in metastatic breast cancer are uncertain. Osteoclasts, the specialised multinucleated cells responsible for tumour osteolysis, are derived from monocyte/macrophage precursors. Breast cancer-derived tumour-associated macrophages (TAMs) are capable of osteoclast differentiation but the cellular and humoral mechanisms controlling this activity are uncertain. In this study, TAMs were isolated from primary breast cancers and cultured in the presence and absence of cytokines/growth factors influencing osteoclastogenesis. Extensive TAM-osteoclast differentiation occurred only in the presence of RANKL and M-CSF; this process was inhibited by OPG and RANK:Fc, decoy receptors for RANKL. Breast cancer-derived fibroblasts and human bone stromal cells expressed mRNA for RANKL, OPG and TRAIL, and co-culture of these fibroblasts with human monocytes stimulated osteoclast formation by a RANKL-dependent mechanism. Osteoclast formation and lacunar resorption also occurred by a RANKL-independent mechanism when the conditioned medium from breast cancer cells, MDA-MB-231 and MCF-7, was added (with M-CSF) to monocyte cultures. Our findings indicate that TAMs in breast cancer are capable of osteoclast differentiation and that breast cancer-derived fibroblasts and breast cancer cells contribute to this process by producing soluble factors that influence osteoclast formation by RANKL-dependent and RANKL-independent mechanisms respectively.
Literature
1.
go back to reference Stoll BA (1983) Natural history, prognosis and staging of bone metastases. In: Stoll BA, Parbhoo S (eds) Bone metastases: monitoring and treatment. Raven Press, New York, pp 1–4 Stoll BA (1983) Natural history, prognosis and staging of bone metastases. In: Stoll BA, Parbhoo S (eds) Bone metastases: monitoring and treatment. Raven Press, New York, pp 1–4
2.
go back to reference Clohisy DR, Palkert D, Ramnaraine ML, Pekurovsky I, Oursler MJ (1996) Human breast cancer induces osteoclast activation and increases the number of osteoclasts at sites of tumor osteolysis. J Orthop Res 14:396–402PubMedCrossRef Clohisy DR, Palkert D, Ramnaraine ML, Pekurovsky I, Oursler MJ (1996) Human breast cancer induces osteoclast activation and increases the number of osteoclasts at sites of tumor osteolysis. J Orthop Res 14:396–402PubMedCrossRef
3.
4.
go back to reference Blair HC, Athanasou NA (2004) Recent advances in osteoclast biology. Histol and Histopathol 19:189–199 Blair HC, Athanasou NA (2004) Recent advances in osteoclast biology. Histol and Histopathol 19:189–199
5.
go back to reference Fujikawa Y, Quinn JM, Sabokbar A, McGee JO, Athanasou NA (1996) The human osteoclast precursor circulates in the monocyte fraction. Endocrinology 137:4058–4060PubMedCrossRef Fujikawa Y, Quinn JM, Sabokbar A, McGee JO, Athanasou NA (1996) The human osteoclast precursor circulates in the monocyte fraction. Endocrinology 137:4058–4060PubMedCrossRef
6.
go back to reference Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclast inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95:3597–3602PubMedCrossRef Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclast inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95:3597–3602PubMedCrossRef
7.
go back to reference Hofbauer LC, Khosla S, Dunstan C, Lacey DL, Boyle W, Riggs BL (2000) The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. Bone Min Res 15:2–12CrossRef Hofbauer LC, Khosla S, Dunstan C, Lacey DL, Boyle W, Riggs BL (2000) The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. Bone Min Res 15:2–12CrossRef
8.
go back to reference Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Boyle WJ, et al (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319PubMedCrossRef Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Boyle WJ, et al (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319PubMedCrossRef
9.
go back to reference Thomas RJ, Guise TA, Yin JJ, Elliott J, Horwood NJ, Martin TJ, Gillespie MT (1999) Breast cancer cells interact with osteoblasts to support osteoclast formation. Endocrinology 140:4451–4458PubMedCrossRef Thomas RJ, Guise TA, Yin JJ, Elliott J, Horwood NJ, Martin TJ, Gillespie MT (1999) Breast cancer cells interact with osteoblasts to support osteoclast formation. Endocrinology 140:4451–4458PubMedCrossRef
10.
go back to reference Itonaga I, Kudo O, Sabokbar A, Danks L, Ferguson D, Fujikawa Y, Athanasou NA (2004) Transforming growth factor β induces human osteoclast formation. Bone 34:57–64PubMedCrossRef Itonaga I, Kudo O, Sabokbar A, Danks L, Ferguson D, Fujikawa Y, Athanasou NA (2004) Transforming growth factor β induces human osteoclast formation. Bone 34:57–64PubMedCrossRef
11.
go back to reference Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M, Kotake S, Nakagawa N, Kinosaki M, Yamaguchi K, Shima N, Yasuda H, Morinaga T, Higashio K, Martin TJ, Suda T (2000) Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Exp Med 191:275–286PubMedCrossRef Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M, Kotake S, Nakagawa N, Kinosaki M, Yamaguchi K, Shima N, Yasuda H, Morinaga T, Higashio K, Martin TJ, Suda T (2000) Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Exp Med 191:275–286PubMedCrossRef
12.
go back to reference Kudo O, Fujikawa Y, Itonaga I, Sabokbar A, Torisu T, Athanasou NA (2002) Proinflammatory cytokine (TNFalpha/IL-1alpha) induction of human osteoclast formation. J Pathol 198:220–227PubMedCrossRef Kudo O, Fujikawa Y, Itonaga I, Sabokbar A, Torisu T, Athanasou NA (2002) Proinflammatory cytokine (TNFalpha/IL-1alpha) induction of human osteoclast formation. J Pathol 198:220–227PubMedCrossRef
13.
go back to reference Kudo O, Sabokbar A, Pocock A, Itonaga I, Fujikawa Y, Athanasou NA (2003) Interleukin-6 and interleukin-11 support human osteoclast formation by a RANKL-independent mechanism. Bone 32:1–7PubMedCrossRef Kudo O, Sabokbar A, Pocock A, Itonaga I, Fujikawa Y, Athanasou NA (2003) Interleukin-6 and interleukin-11 support human osteoclast formation by a RANKL-independent mechanism. Bone 32:1–7PubMedCrossRef
14.
go back to reference Bugelski PJ, Corwin SP, North SM, Kirsh RL, Nicolson GL, Poste G (1987) Macrophage content of spontaneous metastases at different stages of growth. Cancer Res 47:4141–4145PubMed Bugelski PJ, Corwin SP, North SM, Kirsh RL, Nicolson GL, Poste G (1987) Macrophage content of spontaneous metastases at different stages of growth. Cancer Res 47:4141–4145PubMed
15.
go back to reference Van Ravenswaay Classen HH, Kluin PM, Fleuren G (1992) Tumour infiltrating cells in human cancer: on the possible role of CD16+ macrophages in anti-tumour cytoxicity. Lab Invest 67:166–174 Van Ravenswaay Classen HH, Kluin PM, Fleuren G (1992) Tumour infiltrating cells in human cancer: on the possible role of CD16+ macrophages in anti-tumour cytoxicity. Lab Invest 67:166–174
16.
go back to reference Quinn JM, Athanasou NA, McGee JO’D (1992) Tumour infiltrating macrophages are capable of bone resorption. J Cell Science 101:681–686PubMed Quinn JM, Athanasou NA, McGee JO’D (1992) Tumour infiltrating macrophages are capable of bone resorption. J Cell Science 101:681–686PubMed
17.
go back to reference Quinn J, Matsumura Y, Tarin D, McGee JO’D, Athanasou NA (1994) Cellular and hormonal mechanisms associated with malignant bone resorption. Lab Invest 71:465–471PubMed Quinn J, Matsumura Y, Tarin D, McGee JO’D, Athanasou NA (1994) Cellular and hormonal mechanisms associated with malignant bone resorption. Lab Invest 71:465–471PubMed
18.
go back to reference Hunt N, Fujikawa Y, Itonaga I, Harris A, Athanasou NA (2001) Cellular mechanisms of bone resorption in breast cancer. Br J Cancer 85:78–84PubMedCrossRef Hunt N, Fujikawa Y, Itonaga I, Harris A, Athanasou NA (2001) Cellular mechanisms of bone resorption in breast cancer. Br J Cancer 85:78–84PubMedCrossRef
19.
go back to reference Quinn JMW, McGee JO’D, Athanasou NA (1998) Human tumour-associated macrophages differentiate into osteoclastic bone-resorbing cells. J Pathol 184:31–36PubMedCrossRef Quinn JMW, McGee JO’D, Athanasou NA (1998) Human tumour-associated macrophages differentiate into osteoclastic bone-resorbing cells. J Pathol 184:31–36PubMedCrossRef
20.
go back to reference Athanasou NA, Quinn J (1990) Immunophenotypic differences between osteoclasts and macrophage polykaryons: immunohistological distinction and implications for osteoclast ontogeny and function. J Clin Pathol 43:997–1003PubMedCrossRef Athanasou NA, Quinn J (1990) Immunophenotypic differences between osteoclasts and macrophage polykaryons: immunohistological distinction and implications for osteoclast ontogeny and function. J Clin Pathol 43:997–1003PubMedCrossRef
21.
go back to reference Minkin C (1982) Bone acid phosphatase: tartrate-resistant acid phosphatase as a marker of osteoclast function. Calcif Tissue Int 34:285–290PubMedCrossRef Minkin C (1982) Bone acid phosphatase: tartrate-resistant acid phosphatase as a marker of osteoclast function. Calcif Tissue Int 34:285–290PubMedCrossRef
22.
go back to reference Davies J, Warwick J, Totty N, Philp R, Helfrich M, Horton M (1989) The osteoclast functional antigen, implicated in the regulation of bone resorption, is biochemically related to the vitronectin receptor. J Cell Biol 109:1817–1826PubMedCrossRef Davies J, Warwick J, Totty N, Philp R, Helfrich M, Horton M (1989) The osteoclast functional antigen, implicated in the regulation of bone resorption, is biochemically related to the vitronectin receptor. J Cell Biol 109:1817–1826PubMedCrossRef
23.
go back to reference Gundle R, Beresford JN (1995) The isolation and culture of cells from explants of human trabecular bone. Calcif Tissue Int 56:8–10 Gundle R, Beresford JN (1995) The isolation and culture of cells from explants of human trabecular bone. Calcif Tissue Int 56:8–10
24.
go back to reference Sun SG, Lau YS, Itonaga I, Sabokbar A, Athanasou NA (2006) Bone stromal cells in pagetic bone and Paget’s sarcoma express RANKL and support human osteoclast formation. J Pathol 209(1):114–120PubMedCrossRef Sun SG, Lau YS, Itonaga I, Sabokbar A, Athanasou NA (2006) Bone stromal cells in pagetic bone and Paget’s sarcoma express RANKL and support human osteoclast formation. J Pathol 209(1):114–120PubMedCrossRef
25.
go back to reference Bugelski PJ, Kirsh RL, Sowinski JM, Poste GL (1985) Changes in the macrophage content of lung metastases at different stages in tumor growth. Am J Pathol 118:419–424PubMed Bugelski PJ, Kirsh RL, Sowinski JM, Poste GL (1985) Changes in the macrophage content of lung metastases at different stages in tumor growth. Am J Pathol 118:419–424PubMed
26.
go back to reference Normann SJ (1985) Macrophage infiltration and tumour progression. Cancer Metastasis Rev 4:227–291 Normann SJ (1985) Macrophage infiltration and tumour progression. Cancer Metastasis Rev 4:227–291
27.
go back to reference Galasko CBS (1976) Mechanisms of bone destruction in the development of skeletal metastasis. Nature 276:726–728 Galasko CBS (1976) Mechanisms of bone destruction in the development of skeletal metastasis. Nature 276:726–728
28.
go back to reference Mantovani A (1994) Tumor-associated macrophages in neoplastic progression: a paradigm for the in vivo function of chemokines. Lab Invest 71:5–16PubMed Mantovani A (1994) Tumor-associated macrophages in neoplastic progression: a paradigm for the in vivo function of chemokines. Lab Invest 71:5–16PubMed
29.
go back to reference Yamashiro S, Takaya M, Nishi T, Kuratsu J, Yashimura T, Usho Y, Takahashi K (1994) Tumor-derived monocyte chemoattractant protein induces intratumoral infiltration of monocyte-derived macrophage subpopulation in transplanted rat tumour. Am J Pathol 145:856–867PubMed Yamashiro S, Takaya M, Nishi T, Kuratsu J, Yashimura T, Usho Y, Takahashi K (1994) Tumor-derived monocyte chemoattractant protein induces intratumoral infiltration of monocyte-derived macrophage subpopulation in transplanted rat tumour. Am J Pathol 145:856–867PubMed
30.
go back to reference Yoshimura T, Takeya M, Takahashi K (1991) Molecular cloning of rat monocyte chemoattractant protein-1 (MCP-1) and its expression in rat spleen cells and tumour cell lines. Biochem Biophys Res Commun 174:504–509PubMedCrossRef Yoshimura T, Takeya M, Takahashi K (1991) Molecular cloning of rat monocyte chemoattractant protein-1 (MCP-1) and its expression in rat spleen cells and tumour cell lines. Biochem Biophys Res Commun 174:504–509PubMedCrossRef
31.
go back to reference Flanagan AM, Lader CS (1998) Update on the biologic effects of macrophage-colony stimulating factor. Curr Opinion Hematol 5:181–185CrossRef Flanagan AM, Lader CS (1998) Update on the biologic effects of macrophage-colony stimulating factor. Curr Opinion Hematol 5:181–185CrossRef
32.
go back to reference Faust J, Lacey DL, Hunt P, Burgess TL, Scully S, Van G, Eli A, Qian Y, Shalhoub V (1999) Osteoclast markers accumulate on cells developing from human peripheral blood mononuclear precursors. J Cell Biochem 72:67–80PubMedCrossRef Faust J, Lacey DL, Hunt P, Burgess TL, Scully S, Van G, Eli A, Qian Y, Shalhoub V (1999) Osteoclast markers accumulate on cells developing from human peripheral blood mononuclear precursors. J Cell Biochem 72:67–80PubMedCrossRef
33.
go back to reference Quinn JWM, Elliott J, Gillespie MT, Martin TJ (1998) A combination of osteoclast differentiation factor and macrophage-colony stimulating factor is sufficient for both human and mouse osteoclast formation. Endocrinology 139:4424–4427PubMedCrossRef Quinn JWM, Elliott J, Gillespie MT, Martin TJ (1998) A combination of osteoclast differentiation factor and macrophage-colony stimulating factor is sufficient for both human and mouse osteoclast formation. Endocrinology 139:4424–4427PubMedCrossRef
34.
go back to reference Massey HM, Flanagan AM (1999) Human osteoclasts derive from CD14-positive monocytes. Br J Haematol 106:167–170PubMedCrossRef Massey HM, Flanagan AM (1999) Human osteoclasts derive from CD14-positive monocytes. Br J Haematol 106:167–170PubMedCrossRef
35.
go back to reference Quinn JM, Horwood NJ, Elliott J, Gillespie MT, Martin TJ (2000) Fibroblastic stromal cells express receptor activator of NF-kappa B ligand and support osteoclast differentiation. J Bone Miner Res 15:1459–1466PubMedCrossRef Quinn JM, Horwood NJ, Elliott J, Gillespie MT, Martin TJ (2000) Fibroblastic stromal cells express receptor activator of NF-kappa B ligand and support osteoclast differentiation. J Bone Miner Res 15:1459–1466PubMedCrossRef
36.
go back to reference Sabokbar A, Itonaga I, Sun SG, Kudo O, Athanasou NA (2005) Arthroplasty membrane-derived fibroblasts directly induce osteoclast formation and osteolysis in aseptic loosening. J Orthop Res 23:511–519PubMedCrossRef Sabokbar A, Itonaga I, Sun SG, Kudo O, Athanasou NA (2005) Arthroplasty membrane-derived fibroblasts directly induce osteoclast formation and osteolysis in aseptic loosening. J Orthop Res 23:511–519PubMedCrossRef
37.
go back to reference Takayanagi H, Iizuka H, Juji T, Nakagawa T, Yamamoto A, Miyazaki T, Koshihara Y, Oda H, Nakamura K, Tanaka S (2000) Involvement of receptor activator of nuclear factor kappaB ligand/osteoclast differentiation factor in osteoclastogenesis from synoviocytes in rheumatoid arthritis. Arthritis Rheum 43:259–269PubMedCrossRef Takayanagi H, Iizuka H, Juji T, Nakagawa T, Yamamoto A, Miyazaki T, Koshihara Y, Oda H, Nakamura K, Tanaka S (2000) Involvement of receptor activator of nuclear factor kappaB ligand/osteoclast differentiation factor in osteoclastogenesis from synoviocytes in rheumatoid arthritis. Arthritis Rheum 43:259–269PubMedCrossRef
38.
go back to reference Emery JG, McDonnell P, Burke MB, Deen KC, Lyn S, Silverman C, Dul E, Appelbaum ER, Eichman C, Diprinzio R, Dodds RA, James IE, Rosenberg M, Lee JC, Young PR (1998) Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem 273:14363–14367PubMedCrossRef Emery JG, McDonnell P, Burke MB, Deen KC, Lyn S, Silverman C, Dul E, Appelbaum ER, Eichman C, Diprinzio R, Dodds RA, James IE, Rosenberg M, Lee JC, Young PR (1998) Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem 273:14363–14367PubMedCrossRef
39.
go back to reference Van Poznak C, Cross SS, Saggese M, Hudis C, Panageas KS, Norton L, Coleman RE, Holen I (2006) Espression of osteoprotegerin (OPG), TNF related apoptosis inducing ligand (TRAIL), and receptor activator of nuclear factor kappaB ligand (RANKL) in human breast tumours. J Clin Pathol 59:56–63PubMedCrossRef Van Poznak C, Cross SS, Saggese M, Hudis C, Panageas KS, Norton L, Coleman RE, Holen I (2006) Espression of osteoprotegerin (OPG), TNF related apoptosis inducing ligand (TRAIL), and receptor activator of nuclear factor kappaB ligand (RANKL) in human breast tumours. J Clin Pathol 59:56–63PubMedCrossRef
40.
go back to reference Pederson L, Winding B, Foged NT (1999) Identification of breast cancer cell line-derived paracrine factors that stimulate osteoclast activity. Cancer Res 59:5849–5855PubMed Pederson L, Winding B, Foged NT (1999) Identification of breast cancer cell line-derived paracrine factors that stimulate osteoclast activity. Cancer Res 59:5849–5855PubMed
41.
go back to reference Lau YS, Sabokbar A, Giele H, Cerundolo V, Hofstetter W, Athanasou NA (2006) Malignant melanoma and bone resorption. Br J Cancer 94:1496–503PubMedCrossRef Lau YS, Sabokbar A, Giele H, Cerundolo V, Hofstetter W, Athanasou NA (2006) Malignant melanoma and bone resorption. Br J Cancer 94:1496–503PubMedCrossRef
Metadata
Title
RANKL-dependent and RANKL-independent mechanisms of macrophage-osteoclast differentiation in breast cancer
Authors
Y. S. Lau
L. Danks
S. G. Sun
S. Fox
A. Sabokbar
A. Harris
N. A. Athanasou
Publication date
01-09-2007
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 1/2007
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-006-9438-y

Other articles of this Issue 1/2007

Breast Cancer Research and Treatment 1/2007 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine