Skip to main content
Top
Published in: Clinical Reviews in Allergy & Immunology 1/2010

01-02-2010

Genetic Insights into Congenital Neutropenia

Authors: Christoph Klein, Karl Welte

Published in: Clinical Reviews in Allergy & Immunology | Issue 1/2010

Login to get access

Abstract

Congenital neutropenia syndromes comprise a heterogeneous group of disorders leading to increased susceptibility to bacterial infections. Recent work has elucidated the molecular basis of several congenital neutropenia syndromes such as mutations in ELA2, HAX1, GF11, and WAS. In addition, a number of complex clinical syndromes associating congenital neutropenia have been recognized and elucidated on a genetic level, e.g. p14-deficiency or G6PC3-deficiency. The clinical and genetic findings of various neutropenia syndromes are being discussed.
Literature
1.
go back to reference Kostmann R (1950) Hereditär reticulos-en ny systemsjukdom. Svenska Laekartidningen 47:2861–2868 Kostmann R (1950) Hereditär reticulos-en ny systemsjukdom. Svenska Laekartidningen 47:2861–2868
2.
go back to reference Boztug K et al (2008) Congenital neutropenia syndromes. Immunol Allergy Clin North Am 28(2):259–275 vii-viiiCrossRefPubMed Boztug K et al (2008) Congenital neutropenia syndromes. Immunol Allergy Clin North Am 28(2):259–275 vii-viiiCrossRefPubMed
3.
go back to reference Horwitz M et al (1999) Mutations in ELA2, encoding neutrophil elastase, define a 21-day biological clock in cyclic haematopoiesis. Nat Genet 23(4):433–436CrossRefPubMed Horwitz M et al (1999) Mutations in ELA2, encoding neutrophil elastase, define a 21-day biological clock in cyclic haematopoiesis. Nat Genet 23(4):433–436CrossRefPubMed
4.
go back to reference Horwitz MS et al (2007) Neutrophil elastase in cyclic and severe congenital neutropenia. Blood 109(5):1817–1824CrossRefPubMed Horwitz MS et al (2007) Neutrophil elastase in cyclic and severe congenital neutropenia. Blood 109(5):1817–1824CrossRefPubMed
5.
go back to reference Boxer LA et al (2006) Strong evidence for autosomal dominant inheritance of severe congenital neutropenia associated with ELA2 mutations. J Pediatr 148(5):633–636CrossRefPubMed Boxer LA et al (2006) Strong evidence for autosomal dominant inheritance of severe congenital neutropenia associated with ELA2 mutations. J Pediatr 148(5):633–636CrossRefPubMed
6.
go back to reference Ancliff PJ, Gale RE, Linch DC (2003) Neutrophil elastase mutations in congenital neutropenia. Hematology 8(3):165–171CrossRefPubMed Ancliff PJ, Gale RE, Linch DC (2003) Neutrophil elastase mutations in congenital neutropenia. Hematology 8(3):165–171CrossRefPubMed
7.
go back to reference Germeshausen M et al (2001) Mutations in the gene encoding neutrophil elastase (ELA2) are not sufficient to cause the phenotype of congenital neutropenia. Br J Haematol 115(1):222–224CrossRefPubMed Germeshausen M et al (2001) Mutations in the gene encoding neutrophil elastase (ELA2) are not sufficient to cause the phenotype of congenital neutropenia. Br J Haematol 115(1):222–224CrossRefPubMed
8.
go back to reference Bellanne-Chantelot C et al (2004) Mutations in the ELA2 gene correlate with more severe expression of neutropenia: a study of 81 patients from the French Neutropenia Register. Blood 103(11):4119–4125CrossRefPubMed Bellanne-Chantelot C et al (2004) Mutations in the ELA2 gene correlate with more severe expression of neutropenia: a study of 81 patients from the French Neutropenia Register. Blood 103(11):4119–4125CrossRefPubMed
9.
go back to reference Skokowa J et al (2007) Severe congenital neutropenia: inheritance and pathophysiology. Curr Opin Hematol 14(1):22–28CrossRefPubMed Skokowa J et al (2007) Severe congenital neutropenia: inheritance and pathophysiology. Curr Opin Hematol 14(1):22–28CrossRefPubMed
10.
go back to reference Pham CT (2006) Neutrophil serine proteases: specific regulators of inflammation. Nat Rev Immunol 6(7):541–550CrossRefPubMed Pham CT (2006) Neutrophil serine proteases: specific regulators of inflammation. Nat Rev Immunol 6(7):541–550CrossRefPubMed
11.
go back to reference Benson KF et al (2003) Mutations associated with neutropenia in dogs and humans disrupt intracellular transport of neutrophil elastase. Nat Genet 35(1):90–96CrossRefPubMed Benson KF et al (2003) Mutations associated with neutropenia in dogs and humans disrupt intracellular transport of neutrophil elastase. Nat Genet 35(1):90–96CrossRefPubMed
12.
go back to reference Kollner I et al (2006) Mutations in neutrophil elastase causing congenital neutropenia lead to cytoplasmic protein accumulation and induction of the unfolded protein response. Blood 108(2):493–500CrossRefPubMed Kollner I et al (2006) Mutations in neutrophil elastase causing congenital neutropenia lead to cytoplasmic protein accumulation and induction of the unfolded protein response. Blood 108(2):493–500CrossRefPubMed
13.
go back to reference Devriendt K et al (2001) Constitutively activating mutation in WASP causes X-linked severe congenital neutropenia. Nat Genet 27(3):313–317CrossRefPubMed Devriendt K et al (2001) Constitutively activating mutation in WASP causes X-linked severe congenital neutropenia. Nat Genet 27(3):313–317CrossRefPubMed
14.
15.
go back to reference Moulding DA et al (2007) Unregulated actin polymerization by WASp causes defects of mitosis and cytokinesis in X-linked neutropenia. J Exp Med 204(9):2213–2224CrossRefPubMed Moulding DA et al (2007) Unregulated actin polymerization by WASp causes defects of mitosis and cytokinesis in X-linked neutropenia. J Exp Med 204(9):2213–2224CrossRefPubMed
16.
go back to reference Karsunky H et al (2002) Inflammatory reactions and severe neutropenia in mice lacking the transcriptional repressor Gfi1. Nat Genet 30(3):295–300CrossRefPubMed Karsunky H et al (2002) Inflammatory reactions and severe neutropenia in mice lacking the transcriptional repressor Gfi1. Nat Genet 30(3):295–300CrossRefPubMed
17.
go back to reference Hock H et al (2003) Intrinsic requirement for zinc finger transcription factor Gfi-1 in neutrophil differentiation. Immunity 18(1):109–120CrossRefPubMed Hock H et al (2003) Intrinsic requirement for zinc finger transcription factor Gfi-1 in neutrophil differentiation. Immunity 18(1):109–120CrossRefPubMed
18.
go back to reference Person RE et al (2003) Mutations in proto-oncogene GFI1 cause human neutropenia and target ELA2. Nat Genet 34(3):308–312CrossRefPubMed Person RE et al (2003) Mutations in proto-oncogene GFI1 cause human neutropenia and target ELA2. Nat Genet 34(3):308–312CrossRefPubMed
19.
go back to reference Zhuang D et al (2006) Increased CCAAT enhancer-binding protein epsilon (C/EBPepsilon) expression and premature apoptosis in myeloid cells expressing Gfi-1 N382S mutant associated with severe congenital neutropenia. J Biol Chem 281(16):10745–10751CrossRefPubMed Zhuang D et al (2006) Increased CCAAT enhancer-binding protein epsilon (C/EBPepsilon) expression and premature apoptosis in myeloid cells expressing Gfi-1 N382S mutant associated with severe congenital neutropenia. J Biol Chem 281(16):10745–10751CrossRefPubMed
20.
go back to reference Zarebski A et al (2008) Mutations in growth factor independent-1 associated with human neutropenia block murine granulopoiesis through colony stimulating factor-1. Immunity 28(3):370–380CrossRefPubMed Zarebski A et al (2008) Mutations in growth factor independent-1 associated with human neutropenia block murine granulopoiesis through colony stimulating factor-1. Immunity 28(3):370–380CrossRefPubMed
21.
go back to reference Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810CrossRefPubMed Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810CrossRefPubMed
22.
go back to reference Skokowa J et al (2006) LEF-1 is crucial for neutrophil granulocytopoiesis and its expression is severely reduced in congenital neutropenia. Nat Med 12(10):1191–1197CrossRefPubMed Skokowa J et al (2006) LEF-1 is crucial for neutrophil granulocytopoiesis and its expression is severely reduced in congenital neutropenia. Nat Med 12(10):1191–1197CrossRefPubMed
23.
go back to reference Carlsson G et al (2006) Neutrophil elastase and granulocyte colony-stimulating factor receptor mutation analyses and leukemia evolution in severe congenital neutropenia patients belonging to the original Kostmann family in northern Sweden. Haematologica 91(5):589–595PubMed Carlsson G et al (2006) Neutrophil elastase and granulocyte colony-stimulating factor receptor mutation analyses and leukemia evolution in severe congenital neutropenia patients belonging to the original Kostmann family in northern Sweden. Haematologica 91(5):589–595PubMed
24.
go back to reference Klein C et al (2007) HAX1 deficiency causes autosomal recessive severe congenital neutropenia (Kostmann disease). Nat Genet 39(1):86–92CrossRefPubMed Klein C et al (2007) HAX1 deficiency causes autosomal recessive severe congenital neutropenia (Kostmann disease). Nat Genet 39(1):86–92CrossRefPubMed
25.
go back to reference Suzuki Y et al (1997) HAX-1, a novel intracellular protein, localized on mitochondria, directly associates with HS1, a substrate of Src family tyrosine kinases. J Immunol 158(6):2736–2744PubMed Suzuki Y et al (1997) HAX-1, a novel intracellular protein, localized on mitochondria, directly associates with HS1, a substrate of Src family tyrosine kinases. J Immunol 158(6):2736–2744PubMed
26.
go back to reference Gallagher AR et al (2000) The polycystic kidney disease protein PKD2 interacts with Hax-1, a protein associated with the actin cytoskeleton. Proc Natl Acad Sci U S A 97(8):4017–4022CrossRefPubMed Gallagher AR et al (2000) The polycystic kidney disease protein PKD2 interacts with Hax-1, a protein associated with the actin cytoskeleton. Proc Natl Acad Sci U S A 97(8):4017–4022CrossRefPubMed
27.
go back to reference Radhika V et al (2004) Galpha13 stimulates cell migration through cortactin-interacting protein Hax-1. J Biol Chem 279(47):49406–49413CrossRefPubMed Radhika V et al (2004) Galpha13 stimulates cell migration through cortactin-interacting protein Hax-1. J Biol Chem 279(47):49406–49413CrossRefPubMed
28.
go back to reference Carlsson G, Fasth A (2001) Infantile genetic agranulocytosis, morbus Kostmann: presentation of six cases from the original "Kostmann family" and a review. Acta Paediatr 90(7):757–764CrossRefPubMed Carlsson G, Fasth A (2001) Infantile genetic agranulocytosis, morbus Kostmann: presentation of six cases from the original "Kostmann family" and a review. Acta Paediatr 90(7):757–764CrossRefPubMed
29.
go back to reference Rezaei N et al (2007) Association of HAX1 deficiency with neurological disorder. Neuropediatrics 38(5):261–263CrossRefPubMed Rezaei N et al (2007) Association of HAX1 deficiency with neurological disorder. Neuropediatrics 38(5):261–263CrossRefPubMed
30.
go back to reference Matsubara K et al (2007) Severe developmental delay and epilepsy in a Japanese patient with severe congenital neutropenia due to HAX1 deficiency. Haematologica 92(12):e123–e125CrossRefPubMed Matsubara K et al (2007) Severe developmental delay and epilepsy in a Japanese patient with severe congenital neutropenia due to HAX1 deficiency. Haematologica 92(12):e123–e125CrossRefPubMed
31.
go back to reference Ishikawa N et al (2008) Neurodevelopmental abnormalities associated with severe congenital neutropenia due to the R86X mutation in the HAX1 gene. J Med Genet 45(12):802–807CrossRefPubMed Ishikawa N et al (2008) Neurodevelopmental abnormalities associated with severe congenital neutropenia due to the R86X mutation in the HAX1 gene. J Med Genet 45(12):802–807CrossRefPubMed
32.
go back to reference Germeshausen M et al (2008) Novel HAX1 mutations in patients with severe congenital neutropenia reveal isoform-dependent genotype-phenotype associations. Blood 111(10):4954–4957CrossRefPubMed Germeshausen M et al (2008) Novel HAX1 mutations in patients with severe congenital neutropenia reveal isoform-dependent genotype-phenotype associations. Blood 111(10):4954–4957CrossRefPubMed
33.
go back to reference Carlsson G et al (2008) Central nervous system involvement in severe congenital neutropenia: neurological and neuropsychological abnormalities associated with specific HAX1 mutations. J Intern Med 264(4):388–400CrossRefPubMed Carlsson G et al (2008) Central nervous system involvement in severe congenital neutropenia: neurological and neuropsychological abnormalities associated with specific HAX1 mutations. J Intern Med 264(4):388–400CrossRefPubMed
34.
go back to reference Zeidler C et al (2009) Clinical implications of ELA2-, HAX1-, and G-CSF-receptor (CSF3R) mutations in severe congenital neutropenia. Br J Haematol 144(4):459–467CrossRefPubMed Zeidler C et al (2009) Clinical implications of ELA2-, HAX1-, and G-CSF-receptor (CSF3R) mutations in severe congenital neutropenia. Br J Haematol 144(4):459–467CrossRefPubMed
35.
go back to reference de VO, Seynhaeve V (1959) Reticular dysgenesia. Lancet 2(7112):1123–1125 de VO, Seynhaeve V (1959) Reticular dysgenesia. Lancet 2(7112):1123–1125
36.
go back to reference Small TN et al (1999) Association of reticular dysgenesis (thymic alymphoplasia and congenital aleukocytosis) with bilateral sensorineural deafness. J Pediatr 135(3):387–389CrossRefPubMed Small TN et al (1999) Association of reticular dysgenesis (thymic alymphoplasia and congenital aleukocytosis) with bilateral sensorineural deafness. J Pediatr 135(3):387–389CrossRefPubMed
37.
go back to reference Bujan W et al (1993) Effect of recombinant human granulocyte colony-stimulating factor in reticular dysgenesis. Blood 82(5):1684PubMed Bujan W et al (1993) Effect of recombinant human granulocyte colony-stimulating factor in reticular dysgenesis. Blood 82(5):1684PubMed
38.
go back to reference Pannicke U et al (2009) Reticular dysgenesis (aleukocytosis) is caused by mutations in the gene encoding mitochondrial adenylate kinase 2. Nat Genet 41(1):101–105CrossRefPubMed Pannicke U et al (2009) Reticular dysgenesis (aleukocytosis) is caused by mutations in the gene encoding mitochondrial adenylate kinase 2. Nat Genet 41(1):101–105CrossRefPubMed
39.
go back to reference Lagresle-Peyrou C et al (2009) Human adenylate kinase 2 deficiency causes a profound hematopoietic defect associated with sensorineural deafness. Nat Genet 41(1):106–111CrossRefPubMed Lagresle-Peyrou C et al (2009) Human adenylate kinase 2 deficiency causes a profound hematopoietic defect associated with sensorineural deafness. Nat Genet 41(1):106–111CrossRefPubMed
40.
go back to reference Lee HJ et al (2007) AK2 activates a novel apoptotic pathway through formation of a complex with FADD and caspase-10. Nat Cell Biol 9(11):1303–1310CrossRefPubMed Lee HJ et al (2007) AK2 activates a novel apoptotic pathway through formation of a complex with FADD and caspase-10. Nat Cell Biol 9(11):1303–1310CrossRefPubMed
41.
go back to reference Chediak MM (1952) New leukocyte anomaly of constitutional and familial character. Rev Hematol 7(3):362–367PubMed Chediak MM (1952) New leukocyte anomaly of constitutional and familial character. Rev Hematol 7(3):362–367PubMed
42.
go back to reference Higashi O (1954) Congenital gigantism of peroxidase granules; the first case ever reported of qualitative abnormity of peroxidase. Tohoku J Exp Med 59(3):315–332CrossRefPubMed Higashi O (1954) Congenital gigantism of peroxidase granules; the first case ever reported of qualitative abnormity of peroxidase. Tohoku J Exp Med 59(3):315–332CrossRefPubMed
43.
go back to reference Menasche G et al (2000) Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nat Genet 25(2):173–176CrossRefPubMed Menasche G et al (2000) Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nat Genet 25(2):173–176CrossRefPubMed
44.
go back to reference Jung J et al (2006) Identification of a homozygous deletion in the AP3B1 gene causing Hermansky-Pudlak syndrome, type 2. Blood 108(1):362–369CrossRefPubMed Jung J et al (2006) Identification of a homozygous deletion in the AP3B1 gene causing Hermansky-Pudlak syndrome, type 2. Blood 108(1):362–369CrossRefPubMed
45.
go back to reference Bohn G et al (2007) A novel human primary immunodeficiency syndrome caused by deficiency of the endosomal adaptor protein p14. Nat Med 13(1):38–45CrossRefPubMed Bohn G et al (2007) A novel human primary immunodeficiency syndrome caused by deficiency of the endosomal adaptor protein p14. Nat Med 13(1):38–45CrossRefPubMed
47.
go back to reference Wei ML (2006) Hermansky-Pudlak syndrome: a disease of protein trafficking and organelle function. Pigment Cell Res 19(1):19–42CrossRefPubMed Wei ML (2006) Hermansky-Pudlak syndrome: a disease of protein trafficking and organelle function. Pigment Cell Res 19(1):19–42CrossRefPubMed
48.
go back to reference Clark RH et al (2003) Adaptor protein 3-dependent microtubule-mediated movement of lytic granules to the immunological synapse. Nat Immunol 4(11):1111–1120CrossRefPubMed Clark RH et al (2003) Adaptor protein 3-dependent microtubule-mediated movement of lytic granules to the immunological synapse. Nat Immunol 4(11):1111–1120CrossRefPubMed
49.
go back to reference Huizing M et al (2002) Nonsense mutations in ADTB3A cause complete deficiency of the beta3A subunit of adaptor complex-3 and severe Hermansky-Pudlak syndrome type 2. Pediatr Res 51(2):150–158CrossRefPubMed Huizing M et al (2002) Nonsense mutations in ADTB3A cause complete deficiency of the beta3A subunit of adaptor complex-3 and severe Hermansky-Pudlak syndrome type 2. Pediatr Res 51(2):150–158CrossRefPubMed
50.
go back to reference Shotelersuk V et al (2000) A new variant of Hermansky-Pudlak syndrome due to mutations in a gene responsible for vesicle formation. Am J Med 108(5):423–427CrossRefPubMed Shotelersuk V et al (2000) A new variant of Hermansky-Pudlak syndrome due to mutations in a gene responsible for vesicle formation. Am J Med 108(5):423–427CrossRefPubMed
51.
go back to reference Kotzot D, Richter K, Gierth-Fiebig K (1994) Oculocutaneous albinism, immunodeficiency, hematological disorders, and minor anomalies: a new autosomal recessive syndrome? Am J Med Genet 50(3):224–227CrossRefPubMed Kotzot D, Richter K, Gierth-Fiebig K (1994) Oculocutaneous albinism, immunodeficiency, hematological disorders, and minor anomalies: a new autosomal recessive syndrome? Am J Med Genet 50(3):224–227CrossRefPubMed
52.
go back to reference Enders A et al (2006) Lethal hemophagocytic lymphohistiocytosis in Hermansky-Pudlak syndrome type II. Blood 108(1):81–87CrossRefPubMed Enders A et al (2006) Lethal hemophagocytic lymphohistiocytosis in Hermansky-Pudlak syndrome type II. Blood 108(1):81–87CrossRefPubMed
53.
go back to reference Dell'Angelica EC et al (1999) Altered trafficking of lysosomal proteins in Hermansky-Pudlak syndrome due to mutations in the beta 3A subunit of the AP-3 adaptor. Mol Cell 3(1):11–21CrossRefPubMed Dell'Angelica EC et al (1999) Altered trafficking of lysosomal proteins in Hermansky-Pudlak syndrome due to mutations in the beta 3A subunit of the AP-3 adaptor. Mol Cell 3(1):11–21CrossRefPubMed
54.
go back to reference Sugita M et al (2002) Failure of trafficking and antigen presentation by CD1 in AP-3-deficient cells. Immunity 16(5):697–706CrossRefPubMed Sugita M et al (2002) Failure of trafficking and antigen presentation by CD1 in AP-3-deficient cells. Immunity 16(5):697–706CrossRefPubMed
55.
go back to reference Fontana S et al (2006) Innate immunity defects in Hermansky-Pudlak type 2 syndrome. Blood 107(12):4857–4864CrossRefPubMed Fontana S et al (2006) Innate immunity defects in Hermansky-Pudlak type 2 syndrome. Blood 107(12):4857–4864CrossRefPubMed
56.
go back to reference Bonifacino JS, Dell'Angelica EC (1999) Molecular bases for the recognition of tyrosine-based sorting signals. J Cell Biol 145(5):923–926CrossRefPubMed Bonifacino JS, Dell'Angelica EC (1999) Molecular bases for the recognition of tyrosine-based sorting signals. J Cell Biol 145(5):923–926CrossRefPubMed
57.
go back to reference Wunderlich W et al (2001) A novel 14-kilodalton protein interacts with the mitogen-activated protein kinase scaffold mp1 on a late endosomal/lysosomal compartment. J Cell Biol 152(4):765–776CrossRefPubMed Wunderlich W et al (2001) A novel 14-kilodalton protein interacts with the mitogen-activated protein kinase scaffold mp1 on a late endosomal/lysosomal compartment. J Cell Biol 152(4):765–776CrossRefPubMed
58.
go back to reference Kurzbauer R et al (2004) Crystal structure of the p14/MP1 scaffolding complex: how a twin couple attaches mitogen-activated protein kinase signaling to late endosomes. Proc Natl Acad Sci U S A 101(30):10984–10989CrossRefPubMed Kurzbauer R et al (2004) Crystal structure of the p14/MP1 scaffolding complex: how a twin couple attaches mitogen-activated protein kinase signaling to late endosomes. Proc Natl Acad Sci U S A 101(30):10984–10989CrossRefPubMed
59.
go back to reference Teis D, Wunderlich W, Huber LA (2002) Localization of the MP1-MAPK scaffold complex to endosomes is mediated by p14 and required for signal transduction. Dev Cell 3(6):803–814CrossRefPubMed Teis D, Wunderlich W, Huber LA (2002) Localization of the MP1-MAPK scaffold complex to endosomes is mediated by p14 and required for signal transduction. Dev Cell 3(6):803–814CrossRefPubMed
60.
go back to reference Teis D et al (2006) p14-MP1-MEK1 signaling regulates endosomal traffic and cellular proliferation during tissue homeostasis. J Cell Biol 175(6):861–868CrossRefPubMed Teis D et al (2006) p14-MP1-MEK1 signaling regulates endosomal traffic and cellular proliferation during tissue homeostasis. J Cell Biol 175(6):861–868CrossRefPubMed
61.
go back to reference Melis D et al (2005) Genotype/phenotype correlation in glycogen storage disease type 1b: a multicentre study and review of the literature. Eur J Pediatr 164(8):501–508CrossRefPubMed Melis D et al (2005) Genotype/phenotype correlation in glycogen storage disease type 1b: a multicentre study and review of the literature. Eur J Pediatr 164(8):501–508CrossRefPubMed
62.
go back to reference Boztug K et al (2009) A syndrome with congenital neutropenia and mutations in G6PC3. N Engl J Med 360(1):32–43CrossRefPubMed Boztug K et al (2009) A syndrome with congenital neutropenia and mutations in G6PC3. N Engl J Med 360(1):32–43CrossRefPubMed
63.
go back to reference Bouatia-Naji N et al (2008) A polymorphism within the G6PC2 gene is associated with fasting plasma glucose levels. Science 320(5879):1085–1088CrossRefPubMed Bouatia-Naji N et al (2008) A polymorphism within the G6PC2 gene is associated with fasting plasma glucose levels. Science 320(5879):1085–1088CrossRefPubMed
64.
go back to reference Chen WM et al (2008) Variations in the G6PC2/ABCB11 genomic region are associated with fasting glucose levels. J Clin Invest 118(7):2620–2628PubMed Chen WM et al (2008) Variations in the G6PC2/ABCB11 genomic region are associated with fasting glucose levels. J Clin Invest 118(7):2620–2628PubMed
65.
go back to reference Zuelzer WW (1964) Myelokathexis"—a new form of chronic granulocytopenia. Report of a case. N Engl J Med 270:699–704PubMedCrossRef Zuelzer WW (1964) Myelokathexis"—a new form of chronic granulocytopenia. Report of a case. N Engl J Med 270:699–704PubMedCrossRef
66.
go back to reference Gorlin RJ et al (2000) WHIM syndrome, an autosomal dominant disorder: clinical, hematological, and molecular studies. Am J Med Genet 91(5):368–376CrossRefPubMed Gorlin RJ et al (2000) WHIM syndrome, an autosomal dominant disorder: clinical, hematological, and molecular studies. Am J Med Genet 91(5):368–376CrossRefPubMed
67.
go back to reference Hernandez PA et al (2003) Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat Genet 34(1):70–74CrossRefPubMed Hernandez PA et al (2003) Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat Genet 34(1):70–74CrossRefPubMed
68.
go back to reference Sanmun D et al (2006) Stromal-derived factor-1 abolishes constitutive apoptosis of WHIM syndrome neutrophils harbouring a truncating CXCR4 mutation. Br J Haematol 134(6):640–644CrossRefPubMed Sanmun D et al (2006) Stromal-derived factor-1 abolishes constitutive apoptosis of WHIM syndrome neutrophils harbouring a truncating CXCR4 mutation. Br J Haematol 134(6):640–644CrossRefPubMed
69.
go back to reference Kawai T et al (2007) WHIM syndrome myelokathexis reproduced in the NOD/SCID mouse xenotransplant model engrafted with healthy human stem cells transduced with C-terminus-truncated CXCR4. Blood 109(1):78–84CrossRefPubMed Kawai T et al (2007) WHIM syndrome myelokathexis reproduced in the NOD/SCID mouse xenotransplant model engrafted with healthy human stem cells transduced with C-terminus-truncated CXCR4. Blood 109(1):78–84CrossRefPubMed
70.
go back to reference Balabanian K et al (2005) WHIM syndromes with different genetic anomalies are accounted for by impaired CXCR4 desensitization to CXCL12. Blood 105(6):2449–2457CrossRefPubMed Balabanian K et al (2005) WHIM syndromes with different genetic anomalies are accounted for by impaired CXCR4 desensitization to CXCL12. Blood 105(6):2449–2457CrossRefPubMed
71.
go back to reference Kostmann R (1956) Infantile genetic agranulocytosis; agranulocytosis infantilis hereditaria. Acta Paediatr Suppl 45(Suppl 105):1–78PubMed Kostmann R (1956) Infantile genetic agranulocytosis; agranulocytosis infantilis hereditaria. Acta Paediatr Suppl 45(Suppl 105):1–78PubMed
72.
go back to reference Nagata S et al (1986) Molecular cloning and expression of cDNA for human granulocyte colony-stimulating factor. Nature 319(6052):415–418CrossRefPubMed Nagata S et al (1986) Molecular cloning and expression of cDNA for human granulocyte colony-stimulating factor. Nature 319(6052):415–418CrossRefPubMed
73.
go back to reference Skokowa J et al (2009) NAMPT is essential for the G-CSF-induced myeloid differentiation via a NAD(+)-sirtuin-1-dependent pathway. Nat Med 15(2):151–158CrossRefPubMed Skokowa J et al (2009) NAMPT is essential for the G-CSF-induced myeloid differentiation via a NAD(+)-sirtuin-1-dependent pathway. Nat Med 15(2):151–158CrossRefPubMed
74.
go back to reference Rosenberg PS et al (2006) The incidence of leukemia and mortality from sepsis in patients with severe congenital neutropenia receiving long-term G-CSF therapy. Blood 107(12):4628–4635CrossRefPubMed Rosenberg PS et al (2006) The incidence of leukemia and mortality from sepsis in patients with severe congenital neutropenia receiving long-term G-CSF therapy. Blood 107(12):4628–4635CrossRefPubMed
75.
go back to reference Donini M et al (2007) G-CSF treatment of severe congenital neutropenia reverses neutropenia but does not correct the underlying functional deficiency of the neutrophil in defending against microorganisms. Blood 109(11):4716–4723CrossRefPubMed Donini M et al (2007) G-CSF treatment of severe congenital neutropenia reverses neutropenia but does not correct the underlying functional deficiency of the neutrophil in defending against microorganisms. Blood 109(11):4716–4723CrossRefPubMed
76.
go back to reference Germeshausen M, Ballmaier M, Welte K (2007) Incidence of CSF3R mutations in severe congenital neutropenia and relevance for leukemogenesis: results of a long-term survey. Blood 109(1):93–99CrossRefPubMed Germeshausen M, Ballmaier M, Welte K (2007) Incidence of CSF3R mutations in severe congenital neutropenia and relevance for leukemogenesis: results of a long-term survey. Blood 109(1):93–99CrossRefPubMed
77.
go back to reference Germeshausen M, Welte K, Ballmaier M (2009) In vivo expansion of cells expressing acquired CSF3R mutations in patients with severe congenital neutropenia. Blood 113(3):668–670CrossRefPubMed Germeshausen M, Welte K, Ballmaier M (2009) In vivo expansion of cells expressing acquired CSF3R mutations in patients with severe congenital neutropenia. Blood 113(3):668–670CrossRefPubMed
78.
go back to reference Liu F et al (2008) Csf3r mutations in mice confer a strong clonal HSC advantage via activation of Stat5. J Clin Invest 118(3):946–955PubMed Liu F et al (2008) Csf3r mutations in mice confer a strong clonal HSC advantage via activation of Stat5. J Clin Invest 118(3):946–955PubMed
Metadata
Title
Genetic Insights into Congenital Neutropenia
Authors
Christoph Klein
Karl Welte
Publication date
01-02-2010
Publisher
Humana Press Inc
Published in
Clinical Reviews in Allergy & Immunology / Issue 1/2010
Print ISSN: 1080-0549
Electronic ISSN: 1559-0267
DOI
https://doi.org/10.1007/s12016-009-8130-5

Other articles of this Issue 1/2010

Clinical Reviews in Allergy & Immunology 1/2010 Go to the issue