Skip to main content
Top
Published in: Cardiovascular Toxicology 4/2024

Open Access 18-03-2024 | Atrial Fibrillation | Research

Development and Validation of Machine Learning Algorithms to Predict 1-Year Ischemic Stroke and Bleeding Events in Patients with Atrial Fibrillation and Cancer

Authors: Bang Truong, Jingyi Zheng, Lori Hornsby, Brent Fox, Chiahung Chou, Jingjing Qian

Published in: Cardiovascular Toxicology | Issue 4/2024

Login to get access

Abstract

In this study, we leveraged machine learning (ML) approach to develop and validate new assessment tools for predicting stroke and bleeding among patients with atrial fibrillation (AFib) and cancer. We conducted a retrospective cohort study including patients who were newly diagnosed with AFib with a record of cancer from the 2012–2018 Surveillance, Epidemiology, and End Results (SEER)-Medicare database. The ML algorithms were developed and validated separately for each outcome by fitting elastic net, random forest (RF), extreme gradient boosting (XGBoost), support vector machine (SVM), and neural network models with tenfold cross-validation (train:test = 7:3). We obtained area under the curve (AUC), sensitivity, specificity, and F2 score as performance metrics. Model calibration was assessed using Brier score. In sensitivity analysis, we resampled data using Synthetic Minority Oversampling Technique (SMOTE). Among 18,388 patients with AFib and cancer, 523 (2.84%) had ischemic stroke and 221 (1.20%) had major bleeding within one year after AFib diagnosis. In prediction of ischemic stroke, RF significantly outperformed other ML models [AUC (0.916, 95% CI 0.887–0.945), sensitivity 0.868, specificity 0.801, F2 score 0.375, Brier score = 0.035]. However, the performance of ML algorithms in prediction of major bleeding was low with highest AUC achieved by RF (0.623, 95% CI 0.554–0.692). RF models performed better than CHA2DS2-VASc and HAS-BLED scores. SMOTE did not improve the performance of the ML algorithms. Our study demonstrated a promising application of ML in stroke prediction among patients with AFib and cancer. This tool may be leveraged in assisting clinicians to identify patients at high risk of stroke and optimize treatment decisions.
Appendix
Available only for authorised users
Literature
1.
go back to reference Patel, N. J., Deshmukh, A., Pant, S., et al. (2014). Contemporary trends of hospitalization for atrial fibrillation in the United States, 2000 through 2010: Implications for healthcare planning. Circulation, 129(23), 2371–2379.PubMedCrossRef Patel, N. J., Deshmukh, A., Pant, S., et al. (2014). Contemporary trends of hospitalization for atrial fibrillation in the United States, 2000 through 2010: Implications for healthcare planning. Circulation, 129(23), 2371–2379.PubMedCrossRef
2.
go back to reference Benjamin, E. J., Muntner, P., Alonso, A., et al. (2019). Heart disease and stroke statistics-2019 update: A report from the American Heart Association. Circulation, 139(10), e56–e528.PubMedCrossRef Benjamin, E. J., Muntner, P., Alonso, A., et al. (2019). Heart disease and stroke statistics-2019 update: A report from the American Heart Association. Circulation, 139(10), e56–e528.PubMedCrossRef
4.
go back to reference Chung, M. K., Eckhardt, L. L., Chen, L. Y., et al. (2020). Lifestyle and risk factor modification for reduction of atrial fibrillation: A Scientific statement from the American Heart Association. Circulation, 141(16), e750–e772.PubMedCrossRef Chung, M. K., Eckhardt, L. L., Chen, L. Y., et al. (2020). Lifestyle and risk factor modification for reduction of atrial fibrillation: A Scientific statement from the American Heart Association. Circulation, 141(16), e750–e772.PubMedCrossRef
5.
go back to reference Timp, J. F., Braekkan, S. K., Versteeg, H. H., & Cannegieter, S. C. (2013). Epidemiology of cancer-associated venous thrombosis. Blood, 122(10), 1712–1723.PubMedCrossRef Timp, J. F., Braekkan, S. K., Versteeg, H. H., & Cannegieter, S. C. (2013). Epidemiology of cancer-associated venous thrombosis. Blood, 122(10), 1712–1723.PubMedCrossRef
6.
go back to reference Prandoni, P., Lensing, A. W. A., Piccioli, A., et al. (2002). Recurrent venous thromboembolism and bleeding complications during anticoagulant treatment in patients with cancer and venous thrombosis. Blood, 100(10), 3484–3488.PubMedCrossRef Prandoni, P., Lensing, A. W. A., Piccioli, A., et al. (2002). Recurrent venous thromboembolism and bleeding complications during anticoagulant treatment in patients with cancer and venous thrombosis. Blood, 100(10), 3484–3488.PubMedCrossRef
7.
go back to reference Melloni, C., Shrader, P., Carver, J., et al. (2017). Management and outcomes of patients with atrial fibrillation and a history of cancer: The ORBIT-AF registry. European Heart Journal - Quality of Care and Clinical Outcomes, 3(3), 192–197.PubMedCrossRef Melloni, C., Shrader, P., Carver, J., et al. (2017). Management and outcomes of patients with atrial fibrillation and a history of cancer: The ORBIT-AF registry. European Heart Journal - Quality of Care and Clinical Outcomes, 3(3), 192–197.PubMedCrossRef
8.
go back to reference Fanola, C. L., Ruff, C. T., Murphy, S. A., et al. (2018). Efficacy and safety of Edoxaban in patients with active malignancy and atrial fibrillation: Analysis of the ENGAGE AF-TIMI 48 trial. Journal of the American Heart Association., 7(16), e008987.PubMedPubMedCentralCrossRef Fanola, C. L., Ruff, C. T., Murphy, S. A., et al. (2018). Efficacy and safety of Edoxaban in patients with active malignancy and atrial fibrillation: Analysis of the ENGAGE AF-TIMI 48 trial. Journal of the American Heart Association., 7(16), e008987.PubMedPubMedCentralCrossRef
9.
go back to reference Sorigue, M., & Miljkovic, M. D. (2019). Atrial fibrillation and stroke risk in patients with cancer: A primer for oncologists. Journal of Oncology Practice., 15(12), 641–650.PubMedPubMedCentralCrossRef Sorigue, M., & Miljkovic, M. D. (2019). Atrial fibrillation and stroke risk in patients with cancer: A primer for oncologists. Journal of Oncology Practice., 15(12), 641–650.PubMedPubMedCentralCrossRef
10.
go back to reference Lip, G. Y., Nieuwlaat, R., Pisters, R., Lane, D. A., & Crijns, H. J. (2010). Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: The euro heart survey on atrial fibrillation. Chest, 137(2), 263–272.PubMedCrossRef Lip, G. Y., Nieuwlaat, R., Pisters, R., Lane, D. A., & Crijns, H. J. (2010). Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: The euro heart survey on atrial fibrillation. Chest, 137(2), 263–272.PubMedCrossRef
11.
go back to reference January, C. T., Wann, L. S., Calkins, H., et al. (2019). 2019 AHA/ACC/HRS focused update of the 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: A report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines and the heart rhythm society in collaboration with the society of thoracic surgeons. Circulation, 140(2), e125–e151.PubMedCrossRef January, C. T., Wann, L. S., Calkins, H., et al. (2019). 2019 AHA/ACC/HRS focused update of the 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: A report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines and the heart rhythm society in collaboration with the society of thoracic surgeons. Circulation, 140(2), e125–e151.PubMedCrossRef
12.
go back to reference Hindricks, G., Potpara, T., Dagres, N., et al. (2020). 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. European Heart Journal., 42(5), 373–498.CrossRef Hindricks, G., Potpara, T., Dagres, N., et al. (2020). 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. European Heart Journal., 42(5), 373–498.CrossRef
13.
go back to reference D’Souza, M., Carlson, N., Fosbøl, E., et al. (2018). CHA(2)DS(2)-VASc score and risk of thromboembolism and bleeding in patients with atrial fibrillation and recent cancer. European Journal of Preventive Cardiology, 25(6), 651–658.PubMedCrossRef D’Souza, M., Carlson, N., Fosbøl, E., et al. (2018). CHA(2)DS(2)-VASc score and risk of thromboembolism and bleeding in patients with atrial fibrillation and recent cancer. European Journal of Preventive Cardiology, 25(6), 651–658.PubMedCrossRef
14.
go back to reference Patell, R., Gutierrez, A., Rybicki, L., & Khorana, A. A. (2017). Usefulness of CHADS2 and CHA2DS2-VASc scores for stroke prediction in patients with cancer and atrial fibrillation. American Journal of Cardiology, 120(12), 2182–2186.PubMedCrossRef Patell, R., Gutierrez, A., Rybicki, L., & Khorana, A. A. (2017). Usefulness of CHADS2 and CHA2DS2-VASc scores for stroke prediction in patients with cancer and atrial fibrillation. American Journal of Cardiology, 120(12), 2182–2186.PubMedCrossRef
15.
go back to reference Pisters, R., Lane, D. A., Nieuwlaat, R., de Vos, C. B., Crijns, H. J., & Lip, G. Y. (2010). A novel user-friendly score (HAS-BLED) to assess 1-year risk of major bleeding in patients with atrial fibrillation: The Euro Heart Survey. Chest, 138(5), 1093–1100.PubMedCrossRef Pisters, R., Lane, D. A., Nieuwlaat, R., de Vos, C. B., Crijns, H. J., & Lip, G. Y. (2010). A novel user-friendly score (HAS-BLED) to assess 1-year risk of major bleeding in patients with atrial fibrillation: The Euro Heart Survey. Chest, 138(5), 1093–1100.PubMedCrossRef
18.
go back to reference Chirikov, V. V., Shaya, F. T., Onukwugha, E., Mullins, C. D., dosReis, S., & Howell, C. D. (2017). Tree-based claims algorithm for measuring pretreatment quality of care in medicare disabled hepatitis C patients. Medical Care, 55(12), e104.PubMedCrossRef Chirikov, V. V., Shaya, F. T., Onukwugha, E., Mullins, C. D., dosReis, S., & Howell, C. D. (2017). Tree-based claims algorithm for measuring pretreatment quality of care in medicare disabled hepatitis C patients. Medical Care, 55(12), e104.PubMedCrossRef
19.
go back to reference Gordon, J., Norman, M., Hurst, M., et al. (2021). Using machine learning to predict anticoagulation control in atrial fibrillation: A UK clinical practice research datalink study. Informatics in Medicine Unlocked., 25, 100688.CrossRef Gordon, J., Norman, M., Hurst, M., et al. (2021). Using machine learning to predict anticoagulation control in atrial fibrillation: A UK clinical practice research datalink study. Informatics in Medicine Unlocked., 25, 100688.CrossRef
20.
go back to reference Spooner, A., Chen, E., Sowmya, A., et al. (2020). A comparison of machine learning methods for survival analysis of high-dimensional clinical data for dementia prediction. Scientific Reports., 10(1), 20410.PubMedPubMedCentralCrossRef Spooner, A., Chen, E., Sowmya, A., et al. (2020). A comparison of machine learning methods for survival analysis of high-dimensional clinical data for dementia prediction. Scientific Reports., 10(1), 20410.PubMedPubMedCentralCrossRef
21.
go back to reference Thottakkara, P., Ozrazgat-Baslanti, T., Hupf, B. B., et al. (2016). Application of machine learning techniques to high-dimensional clinical data to forecast postoperative complications. PLoS ONE, 11(5), e0155705.PubMedPubMedCentralCrossRef Thottakkara, P., Ozrazgat-Baslanti, T., Hupf, B. B., et al. (2016). Application of machine learning techniques to high-dimensional clinical data to forecast postoperative complications. PLoS ONE, 11(5), e0155705.PubMedPubMedCentralCrossRef
22.
go back to reference Ryo, M., & Rillig, M. C. (2017). Statistically reinforced machine learning for nonlinear patterns and variable interactions. Ecosphere., 8(11), e01976.CrossRef Ryo, M., & Rillig, M. C. (2017). Statistically reinforced machine learning for nonlinear patterns and variable interactions. Ecosphere., 8(11), e01976.CrossRef
23.
go back to reference Collins, G. S., Reitsma, J. B., Altman, D. G., & Moons, K. G. M. (2015). Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement. BMC Medicine., 13(1), 1.PubMedPubMedCentralCrossRef Collins, G. S., Reitsma, J. B., Altman, D. G., & Moons, K. G. M. (2015). Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement. BMC Medicine., 13(1), 1.PubMedPubMedCentralCrossRef
27.
go back to reference Lyman, G. H., Carrier, M., Ay, C., et al. (2021). American Society of Hematology 2021 guidelines for management of venous thromboembolism: Prevention and treatment in patients with cancer. Blood Advances., 5(4), 927–974.PubMedPubMedCentralCrossRef Lyman, G. H., Carrier, M., Ay, C., et al. (2021). American Society of Hematology 2021 guidelines for management of venous thromboembolism: Prevention and treatment in patients with cancer. Blood Advances., 5(4), 927–974.PubMedPubMedCentralCrossRef
28.
go back to reference Otto, C. M., Nishimura, R. A., Bonow, R. O., et al. (2021). 2020 ACC/AHA guideline for the management of patients with valvular heart disease: A report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines. Circulation, 143(5), e72–e227.PubMed Otto, C. M., Nishimura, R. A., Bonow, R. O., et al. (2021). 2020 ACC/AHA guideline for the management of patients with valvular heart disease: A report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines. Circulation, 143(5), e72–e227.PubMed
29.
go back to reference Deitelzweig, S., Keshishian, A. V., Zhang, Y., et al. (2021). Effectiveness and Safety of oral anticoagulants among nonvalvular atrial fibrillation patients with active cancer. JACC: CardioOncology., 3(3), 411–424.PubMedPubMedCentral Deitelzweig, S., Keshishian, A. V., Zhang, Y., et al. (2021). Effectiveness and Safety of oral anticoagulants among nonvalvular atrial fibrillation patients with active cancer. JACC: CardioOncology., 3(3), 411–424.PubMedPubMedCentral
30.
go back to reference Thigpen, J. L., Dillon, C., Forster, K. B., et al. (2015). Validity of international classification of disease codes to identify ischemic stroke and intracranial hemorrhage among individuals with associated diagnosis of atrial fibrillation. Circulation Cardiovascular Quality and Outcomes, 8(1), 8–14.PubMedPubMedCentralCrossRef Thigpen, J. L., Dillon, C., Forster, K. B., et al. (2015). Validity of international classification of disease codes to identify ischemic stroke and intracranial hemorrhage among individuals with associated diagnosis of atrial fibrillation. Circulation Cardiovascular Quality and Outcomes, 8(1), 8–14.PubMedPubMedCentralCrossRef
31.
go back to reference Cunningham, A., Stein, C. M., Chung, C. P., Daugherty, J. R., Smalley, W. E., & Ray, W. A. (2011). An automated database case definition for serious bleeding related to oral anticoagulant use. Pharmacoepidemiology and drug safety., 20(6), 560–566.PubMedPubMedCentralCrossRef Cunningham, A., Stein, C. M., Chung, C. P., Daugherty, J. R., Smalley, W. E., & Ray, W. A. (2011). An automated database case definition for serious bleeding related to oral anticoagulant use. Pharmacoepidemiology and drug safety., 20(6), 560–566.PubMedPubMedCentralCrossRef
32.
go back to reference Shah, S., Norby, F. L., Datta, Y. H., et al. (2018). Comparative effectiveness of direct oral anticoagulants and warfarin in patients with cancer and atrial fibrillation. Blood Advances, 2(3), 200–209.PubMedPubMedCentralCrossRef Shah, S., Norby, F. L., Datta, Y. H., et al. (2018). Comparative effectiveness of direct oral anticoagulants and warfarin in patients with cancer and atrial fibrillation. Blood Advances, 2(3), 200–209.PubMedPubMedCentralCrossRef
33.
go back to reference Connolly, S. J., Ezekowitz, M. D., Yusuf, S., et al. (2009). Dabigatran versus Warfarin in patients with atrial fibrillation. New England Journal of Medicine., 361(12), 1139–1151.PubMedCrossRef Connolly, S. J., Ezekowitz, M. D., Yusuf, S., et al. (2009). Dabigatran versus Warfarin in patients with atrial fibrillation. New England Journal of Medicine., 361(12), 1139–1151.PubMedCrossRef
34.
go back to reference Waljee, A. K., Mukherjee, A., Singal, A. G., et al. (2013). Comparison of imputation methods for missing laboratory data in medicine. British Medical Journal Open, 3(8), e002847. Waljee, A. K., Mukherjee, A., Singal, A. G., et al. (2013). Comparison of imputation methods for missing laboratory data in medicine. British Medical Journal Open, 3(8), e002847.
35.
go back to reference Stekhoven, D. J., & Bühlmann, P. (2012). MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics, 28(1), 112–118.PubMedCrossRef Stekhoven, D. J., & Bühlmann, P. (2012). MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics, 28(1), 112–118.PubMedCrossRef
36.
go back to reference Xu, Y., & Goodacre, R. (2018). On splitting training and validation set: A comparative study of cross-validation, bootstrap and systematic sampling for estimating the generalization performance of supervised learning. Journal of Analysis and Testing., 2(3), 249–262.PubMedPubMedCentralCrossRef Xu, Y., & Goodacre, R. (2018). On splitting training and validation set: A comparative study of cross-validation, bootstrap and systematic sampling for estimating the generalization performance of supervised learning. Journal of Analysis and Testing., 2(3), 249–262.PubMedPubMedCentralCrossRef
37.
go back to reference Liu, H., & Cocea, M. (2017). Semi-random partitioning of data into training and test sets in granular computing context. Granular Computing., 2(4), 357–386.CrossRef Liu, H., & Cocea, M. (2017). Semi-random partitioning of data into training and test sets in granular computing context. Granular Computing., 2(4), 357–386.CrossRef
38.
go back to reference Cawley, G. C., & Talbot, N. L. C. (2010). On over-fitting in model selection and subsequent selection bias in performance evaluation. Journal of Machine Learning Research, 11, 2079–2107. Cawley, G. C., & Talbot, N. L. C. (2010). On over-fitting in model selection and subsequent selection bias in performance evaluation. Journal of Machine Learning Research, 11, 2079–2107.
39.
go back to reference Claxton, J. S., MacLehose, R. F., Lutsey, P. L., et al. (2019). A new model to predict ischemic stroke in patients with atrial fibrillation using warfarin or direct oral anticoagulants. Heart Rhythm, 16(6), 820–826.PubMedCrossRef Claxton, J. S., MacLehose, R. F., Lutsey, P. L., et al. (2019). A new model to predict ischemic stroke in patients with atrial fibrillation using warfarin or direct oral anticoagulants. Heart Rhythm, 16(6), 820–826.PubMedCrossRef
40.
go back to reference Brownlee, J. (2020). Imbalanced Classification with Python: Better Metrics, Balance Skewed Classes, Cost-Sensitive Learning. Machine Learning Mastery. Brownlee, J. (2020). Imbalanced Classification with Python: Better Metrics, Balance Skewed Classes, Cost-Sensitive Learning. Machine Learning Mastery.
41.
go back to reference van den Goorbergh, R., van Smeden, M., Timmerman, D., & Van Calster, B. (2022). The harm of class imbalance corrections for risk prediction models: Illustration and simulation using logistic regression. Journal of the American Medical Informatics Association, 29(9), 1525–1534.PubMedPubMedCentralCrossRef van den Goorbergh, R., van Smeden, M., Timmerman, D., & Van Calster, B. (2022). The harm of class imbalance corrections for risk prediction models: Illustration and simulation using logistic regression. Journal of the American Medical Informatics Association, 29(9), 1525–1534.PubMedPubMedCentralCrossRef
42.
go back to reference DeLong, E. R., DeLong, D. M., & Clarke-Pearson, D. L. (1988). Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics, 44(3), 837–845.PubMedCrossRef DeLong, E. R., DeLong, D. M., & Clarke-Pearson, D. L. (1988). Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics, 44(3), 837–845.PubMedCrossRef
43.
go back to reference Devarriya, D., Gulati, C., Mansharamani, V., Sakalle, A., & Bhardwaj, A. (2020). Unbalanced breast cancer data classification using novel fitness functions in genetic programming. Expert Systems with Applications., 140, 112866.CrossRef Devarriya, D., Gulati, C., Mansharamani, V., Sakalle, A., & Bhardwaj, A. (2020). Unbalanced breast cancer data classification using novel fitness functions in genetic programming. Expert Systems with Applications., 140, 112866.CrossRef
44.
go back to reference Saarela, M., & Jauhiainen, S. (2021). Comparison of feature importance measures as explanations for classification models. SN Applied Sciences., 3(2), 272.CrossRef Saarela, M., & Jauhiainen, S. (2021). Comparison of feature importance measures as explanations for classification models. SN Applied Sciences., 3(2), 272.CrossRef
45.
go back to reference Strobl, C., Boulesteix, A.-L., Zeileis, A., & Hothorn, T. (2007). Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics, 8(1), 25.PubMedPubMedCentralCrossRef Strobl, C., Boulesteix, A.-L., Zeileis, A., & Hothorn, T. (2007). Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics, 8(1), 25.PubMedPubMedCentralCrossRef
46.
go back to reference Loecher, M. (2022). Unbiased variable importance for random forests. Communications in Statistics - Theory and Methods., 51(5), 1413–1425.CrossRef Loecher, M. (2022). Unbiased variable importance for random forests. Communications in Statistics - Theory and Methods., 51(5), 1413–1425.CrossRef
47.
go back to reference Huang, Y., Li, W., Macheret, F., Gabriel, R. A., & Ohno-Machado, L. (2020). A tutorial on calibration measurements and calibration models for clinical prediction models. Journal of the American Medical Informatics Association., 27(4), 621–633.PubMedPubMedCentralCrossRef Huang, Y., Li, W., Macheret, F., Gabriel, R. A., & Ohno-Machado, L. (2020). A tutorial on calibration measurements and calibration models for clinical prediction models. Journal of the American Medical Informatics Association., 27(4), 621–633.PubMedPubMedCentralCrossRef
48.
go back to reference Chawla, N., Bowyer, K., Hall, L., & Kegelmeyer, W. (2002). SMOTE: Synthetic minority over-sampling technique. J Artif Intell Res (JAIR)., 16, 321–357.CrossRef Chawla, N., Bowyer, K., Hall, L., & Kegelmeyer, W. (2002). SMOTE: Synthetic minority over-sampling technique. J Artif Intell Res (JAIR)., 16, 321–357.CrossRef
49.
go back to reference D’Souza, M., Carlson, N., Fosbøl, E., et al. (2018). CHA2DS2-VASc score and risk of thromboembolism and bleeding in patients with atrial fibrillation and recent cancer. European Journal of Preventive Cardiology., 25(6), 651–658.PubMedCrossRef D’Souza, M., Carlson, N., Fosbøl, E., et al. (2018). CHA2DS2-VASc score and risk of thromboembolism and bleeding in patients with atrial fibrillation and recent cancer. European Journal of Preventive Cardiology., 25(6), 651–658.PubMedCrossRef
50.
go back to reference Navi, B. B., Reiner, A. S., Kamel, H., et al. (2015). Association between incident cancer and subsequent stroke. Annals of Neurology, 77(2), 291–300.PubMedPubMedCentralCrossRef Navi, B. B., Reiner, A. S., Kamel, H., et al. (2015). Association between incident cancer and subsequent stroke. Annals of Neurology, 77(2), 291–300.PubMedPubMedCentralCrossRef
51.
go back to reference Bang, O. Y., Chung, J. W., Lee, M. J., Seo, W. K., Kim, G. M., & Ahn, M. J. (2020). Cancer-related stroke: An emerging subtype of ischemic stroke with unique pathomechanisms. J Stroke., 22(1), 1–10.PubMedPubMedCentralCrossRef Bang, O. Y., Chung, J. W., Lee, M. J., Seo, W. K., Kim, G. M., & Ahn, M. J. (2020). Cancer-related stroke: An emerging subtype of ischemic stroke with unique pathomechanisms. J Stroke., 22(1), 1–10.PubMedPubMedCentralCrossRef
52.
go back to reference Bungo, B., Chaudhury, P., Arustamyan, M., et al. (2022). Better prediction of stroke in atrial fibrillation with incorporation of cancer in CHA2DS2VASC score: CCHA2DS2VASC score. IJC Heart & Vasculature., 41, 101072.CrossRef Bungo, B., Chaudhury, P., Arustamyan, M., et al. (2022). Better prediction of stroke in atrial fibrillation with incorporation of cancer in CHA2DS2VASC score: CCHA2DS2VASC score. IJC Heart & Vasculature., 41, 101072.CrossRef
53.
go back to reference Lindmark, A., Eriksson, M., & Darehed, D. (2022). Socioeconomic status and stroke severity: Understanding indirect effects via risk factors and stroke prevention using innovative statistical methods for mediation analysis. PLoS ONE, 17(6), e0270533.PubMedPubMedCentralCrossRef Lindmark, A., Eriksson, M., & Darehed, D. (2022). Socioeconomic status and stroke severity: Understanding indirect effects via risk factors and stroke prevention using innovative statistical methods for mediation analysis. PLoS ONE, 17(6), e0270533.PubMedPubMedCentralCrossRef
54.
go back to reference Raposeiras Roubín, S., Abu Assi, E., Muñoz Pousa, I., et al. (2022). Incidence and predictors of bleeding in patients with cancer and atrial fibrillation. American Journal of Cardiology, 167, 139–146.PubMedCrossRef Raposeiras Roubín, S., Abu Assi, E., Muñoz Pousa, I., et al. (2022). Incidence and predictors of bleeding in patients with cancer and atrial fibrillation. American Journal of Cardiology, 167, 139–146.PubMedCrossRef
55.
go back to reference Trinks-Roerdink, E. M., Geersing, G. J., Hemels, M. E. W., et al. (2023). External validation and updating of prediction models of bleeding risk in patients with cancer receiving anticoagulants. Open Heart., 10(1), e002273.PubMedPubMedCentralCrossRef Trinks-Roerdink, E. M., Geersing, G. J., Hemels, M. E. W., et al. (2023). External validation and updating of prediction models of bleeding risk in patients with cancer receiving anticoagulants. Open Heart., 10(1), e002273.PubMedPubMedCentralCrossRef
56.
go back to reference Wang, S., Dai, Y., Shen, J., & Xuan, J. (2021). Research on expansion and classification of imbalanced data based on SMOTE algorithm. Scientific Reports., 11(1), 24039.PubMedPubMedCentralCrossRef Wang, S., Dai, Y., Shen, J., & Xuan, J. (2021). Research on expansion and classification of imbalanced data based on SMOTE algorithm. Scientific Reports., 11(1), 24039.PubMedPubMedCentralCrossRef
57.
go back to reference Elor Y, Averbuch-Elor H. To SMOTE, or not to SMOTE? arXiv preprint arXiv:220108528. 2022. Elor Y, Averbuch-Elor H. To SMOTE, or not to SMOTE? arXiv preprint arXiv:220108528. 2022.
58.
go back to reference Truong, B., Hornsby, L., Fox, B. I., Chou, C., Zheng, J., & Qian, J. (2023). Screening for clinically relevant drug-drug interactions between direct oral anticoagulants and antineoplastic agents: A pharmacovigilance approach. Journal of Thrombosis and Thrombolysis., 56(4), 555–567.PubMedCrossRef Truong, B., Hornsby, L., Fox, B. I., Chou, C., Zheng, J., & Qian, J. (2023). Screening for clinically relevant drug-drug interactions between direct oral anticoagulants and antineoplastic agents: A pharmacovigilance approach. Journal of Thrombosis and Thrombolysis., 56(4), 555–567.PubMedCrossRef
59.
go back to reference Lee, L. Y., Cazier, J. B., Angelis, V., et al. (2020). COVID-19 mortality in patients with cancer on chemotherapy or other anticancer treatments: A prospective cohort study. Lancet, 395(10241), 1919–1926.PubMedPubMedCentralCrossRef Lee, L. Y., Cazier, J. B., Angelis, V., et al. (2020). COVID-19 mortality in patients with cancer on chemotherapy or other anticancer treatments: A prospective cohort study. Lancet, 395(10241), 1919–1926.PubMedPubMedCentralCrossRef
60.
go back to reference Pardo Sanz, A., Salido Tahoces, L., Ortega Pérez, R., González Ferrer, E., Sánchez Recalde, Á., & Zamorano Gómez, J. L. (2021). New-onset atrial fibrillation during COVID-19 infection predicts poor prognosis. Cardiology Journal, 28(1), 34–40.PubMedCrossRef Pardo Sanz, A., Salido Tahoces, L., Ortega Pérez, R., González Ferrer, E., Sánchez Recalde, Á., & Zamorano Gómez, J. L. (2021). New-onset atrial fibrillation during COVID-19 infection predicts poor prognosis. Cardiology Journal, 28(1), 34–40.PubMedCrossRef
61.
go back to reference Rosenblatt, A. G., Ayers, C. R., Rao, A., et al. (2022). New-onset atrial fibrillation in patients hospitalized with COVID-19: Results from the american heart association COVID-19 cardiovascular registry. Circulation: Arrhythmia and Electrophysiology., 15(5), e010666.PubMed Rosenblatt, A. G., Ayers, C. R., Rao, A., et al. (2022). New-onset atrial fibrillation in patients hospitalized with COVID-19: Results from the american heart association COVID-19 cardiovascular registry. Circulation: Arrhythmia and Electrophysiology., 15(5), e010666.PubMed
62.
go back to reference Mariotto, A. B., Feuer, E. J., Howlader, N., Chen, H.-S., Negoita, S., & Cronin, K. A. (2023). Interpreting cancer incidence trends: challenges due to the COVID-19 pandemic. JNCI: Journal of the National Cancer Institute., 115(9), 1109–1111.PubMedCrossRef Mariotto, A. B., Feuer, E. J., Howlader, N., Chen, H.-S., Negoita, S., & Cronin, K. A. (2023). Interpreting cancer incidence trends: challenges due to the COVID-19 pandemic. JNCI: Journal of the National Cancer Institute., 115(9), 1109–1111.PubMedCrossRef
Metadata
Title
Development and Validation of Machine Learning Algorithms to Predict 1-Year Ischemic Stroke and Bleeding Events in Patients with Atrial Fibrillation and Cancer
Authors
Bang Truong
Jingyi Zheng
Lori Hornsby
Brent Fox
Chiahung Chou
Jingjing Qian
Publication date
18-03-2024
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 4/2024
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-024-09843-8

Other articles of this Issue 4/2024

Cardiovascular Toxicology 4/2024 Go to the issue