Skip to main content
Top
Published in: Cardiovascular Toxicology 2/2021

01-02-2021

Doxorubicin Cytotoxicity in Differentiated H9c2 Cardiomyocytes: Evidence for Acute Mitochondrial Superoxide Generation

Published in: Cardiovascular Toxicology | Issue 2/2021

Login to get access

Abstract

Although a mitochondrial redox-cycling superoxide-generating mechanism for the cardiotoxicity of doxorubicin was suggested from experiments with isolated mitochondria, its occurrence and contribution to cytotoxicity in intact cardiomyocytes is not fully established. Therefore, we determined the immediate and delayed effects of doxorubicin on the generation of reactive oxygen species (ROS) and cytotoxicity in differentiated H9c2 cardiomyocytes. Although relatively short incubations (3 or 6 h) with 1 or 5 µM doxorubicin did not acutely decrease cell survival, exposure to 5 µM doxorubicin for 3 h was sufficient to cause a significant delayed decrease in cell survival after an additional 24 h without doxorubicin. Mitochondrial superoxide generation was observed to increase within 30 min of incubation with 5 µM doxorubicin. Increased intracellular ROS generation, decreased mitochondrial metabolic activity, and decreased mitochondrial membrane potential (MMP) were observed after more extended periods (6–12 h). Overall, these observations support that the toxicity of doxorubicin to differentiated cardiomyocytes involves acute mitochondrial superoxide generation with subsequent intracellular ROS generation, mitochondrial dysfunction, and cell death.
Appendix
Available only for authorised users
Literature
1.
go back to reference Minotti, G., Menna, P., Salvatorelli, E., Cairo, G., & Gianni, L. (2004). Anthracyclines: Molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacological Reviews, 56, 185–229.PubMed Minotti, G., Menna, P., Salvatorelli, E., Cairo, G., & Gianni, L. (2004). Anthracyclines: Molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacological Reviews, 56, 185–229.PubMed
2.
go back to reference Tewey, K. M., Rowe, T. C., Yang, L., Halligan, B. D., & Liu, L. F. (1984). Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. Science, 226, 466–468.PubMed Tewey, K. M., Rowe, T. C., Yang, L., Halligan, B. D., & Liu, L. F. (1984). Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. Science, 226, 466–468.PubMed
3.
go back to reference Gewirtz, D. A. (1999). A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochemical Pharmacology, 57, 727–741.PubMed Gewirtz, D. A. (1999). A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochemical Pharmacology, 57, 727–741.PubMed
4.
go back to reference Singal, P. K., Deally, C. M., & Weinberg, L. E. (1987). Subcellular effects of adriamycin in the heart: a concise review. Journal of Molecular and Cellular Cardiology, 19, 817–828.PubMed Singal, P. K., Deally, C. M., & Weinberg, L. E. (1987). Subcellular effects of adriamycin in the heart: a concise review. Journal of Molecular and Cellular Cardiology, 19, 817–828.PubMed
5.
go back to reference Singal, P. K., & Iliskovic, N. (1998). Doxorubicin-induced cardiomyopathy. New England Journal of Medicine, 339, 900–905. Singal, P. K., & Iliskovic, N. (1998). Doxorubicin-induced cardiomyopathy. New England Journal of Medicine, 339, 900–905.
6.
go back to reference Chatterjee, K., Zhang, J., Honbo, N., & Karliner, J. S. (2010). Doxorubicin cardiomyopathy. Cardiology, 115, 155–162.PubMed Chatterjee, K., Zhang, J., Honbo, N., & Karliner, J. S. (2010). Doxorubicin cardiomyopathy. Cardiology, 115, 155–162.PubMed
7.
go back to reference Tangpong, J., Miriyala, S., Noel, T., Sinthupibulyakit, C., Jungsuwadee, P., & St Clair, D. K. (2011). Doxorubicin-induced central nervous system toxicity and protection by xanthone derivative of Garcinia mangostana. Neuroscience, 175, 292–299.PubMed Tangpong, J., Miriyala, S., Noel, T., Sinthupibulyakit, C., Jungsuwadee, P., & St Clair, D. K. (2011). Doxorubicin-induced central nervous system toxicity and protection by xanthone derivative of Garcinia mangostana. Neuroscience, 175, 292–299.PubMed
8.
go back to reference Berthiaume, J. M., & Wallace, K. B. (2007). Adriamycin-induced oxidative mitochondrial cardiotoxicity. Cell Biology and Toxicology, 23, 15–23.PubMed Berthiaume, J. M., & Wallace, K. B. (2007). Adriamycin-induced oxidative mitochondrial cardiotoxicity. Cell Biology and Toxicology, 23, 15–23.PubMed
9.
go back to reference Carvalho, F. S., Burgeiro, A., Garcia, R., Moreno, A. J., Carvalho, R. A., & Oliveira, P. J. (2014). Doxorubicin-induced cardiotoxicity: From bioenergetic failure and cell death to cardiomyopathy. Medical Research Reviews, 3, 106–135. Carvalho, F. S., Burgeiro, A., Garcia, R., Moreno, A. J., Carvalho, R. A., & Oliveira, P. J. (2014). Doxorubicin-induced cardiotoxicity: From bioenergetic failure and cell death to cardiomyopathy. Medical Research Reviews, 3, 106–135.
10.
go back to reference Wallace, K. B., Sardão, V. A., & Oliveira, P. J. (2020). Mitochondrial determinants of doxorubicin-induced cardiomyopathy. Circulation Research, 126, 926–941.PubMed Wallace, K. B., Sardão, V. A., & Oliveira, P. J. (2020). Mitochondrial determinants of doxorubicin-induced cardiomyopathy. Circulation Research, 126, 926–941.PubMed
11.
go back to reference Minotti, G., Recalcati, S., Menna, P., Salvatorelli, E., Corna, G., & Cairo, G. (2004). Doxorubicin cardiotoxicity and the control of iron metabolism: Quinone-dependent and independent mechanisms. Methods Enzymology, 378, 340–361. Minotti, G., Recalcati, S., Menna, P., Salvatorelli, E., Corna, G., & Cairo, G. (2004). Doxorubicin cardiotoxicity and the control of iron metabolism: Quinone-dependent and independent mechanisms. Methods Enzymology, 378, 340–361.
12.
go back to reference Zhang, S., Liu, X., Bawa-Khalfe, T., Lu, L. S., Lyu, Y. L., Liu, L. F., et al. (2012). Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nature Medicine, 18, 1639–1642.PubMed Zhang, S., Liu, X., Bawa-Khalfe, T., Lu, L. S., Lyu, Y. L., Liu, L. F., et al. (2012). Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nature Medicine, 18, 1639–1642.PubMed
13.
go back to reference Octavia, Y., Tocchetti, C. G., Gabrielson, K. L., Janssens, S., Crijns, H. J., & Moens, A. L. (2012). Doxorubicin-induced cardiomyopathy: From molecular mechanisms to therapeutic strategies. Journal of Molecular and Cellular Cardiology, 52, 1213–1225.PubMed Octavia, Y., Tocchetti, C. G., Gabrielson, K. L., Janssens, S., Crijns, H. J., & Moens, A. L. (2012). Doxorubicin-induced cardiomyopathy: From molecular mechanisms to therapeutic strategies. Journal of Molecular and Cellular Cardiology, 52, 1213–1225.PubMed
14.
go back to reference Kalyanaraman, B. (2020). Teaching the basics of the mechanism of doxorubicin-induced cardiotoxicity: Have we been barking up the wrong tree? Redox Biology, 29, 101394.PubMed Kalyanaraman, B. (2020). Teaching the basics of the mechanism of doxorubicin-induced cardiotoxicity: Have we been barking up the wrong tree? Redox Biology, 29, 101394.PubMed
15.
go back to reference Doroshow, J. H. (1983). Anthracycline antibiotic-stimulated superoxide, hydrogen peroxide, and hydroxyl radical production by NADH dehydrogenase. Cancer Research, 43, 4543–4551.PubMed Doroshow, J. H. (1983). Anthracycline antibiotic-stimulated superoxide, hydrogen peroxide, and hydroxyl radical production by NADH dehydrogenase. Cancer Research, 43, 4543–4551.PubMed
16.
go back to reference Davies, K. J., & Doroshow, J. H. (1986). Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. Journal of Biological Chemistry, 261, 3060–3067. Davies, K. J., & Doroshow, J. H. (1986). Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. Journal of Biological Chemistry, 261, 3060–3067.
17.
go back to reference Mukhopadhyay, P., Rajesh, M., Yoshihiro, K., Haskó, G., & Pachera, P. (2007). Simple quantitative detection of mitochondrial superoxide production in live cells. Biochemical and Biophysical Research Communications, 358, 203–208.PubMedPubMedCentral Mukhopadhyay, P., Rajesh, M., Yoshihiro, K., Haskó, G., & Pachera, P. (2007). Simple quantitative detection of mitochondrial superoxide production in live cells. Biochemical and Biophysical Research Communications, 358, 203–208.PubMedPubMedCentral
18.
go back to reference Mukhopadhyay, P., Rajesh, M., Sándor Bátkai, S., Kashiwaya, Y., György Haskó, G., Liaudet, L., et al. (2009). Role of superoxide, nitric oxide, and peroxynitrite in doxorubicin-induced cell death in vivo and in vitro. American Journal of Physiology Heart and Circulatory Physiology, 296, H1466–H1483.PubMedPubMedCentral Mukhopadhyay, P., Rajesh, M., Sándor Bátkai, S., Kashiwaya, Y., György Haskó, G., Liaudet, L., et al. (2009). Role of superoxide, nitric oxide, and peroxynitrite in doxorubicin-induced cell death in vivo and in vitro. American Journal of Physiology Heart and Circulatory Physiology, 296, H1466–H1483.PubMedPubMedCentral
19.
go back to reference Dong, Q., Chen, L., Lu, Q., Sharma, S., Li, L., Morimoto, S., et al. (2014). Quercetin attenuates doxorubicin cardiotoxicity by modulating Bmi-1 expression. British Journal of Pharmacology, 171, 4440–4454.PubMedPubMedCentral Dong, Q., Chen, L., Lu, Q., Sharma, S., Li, L., Morimoto, S., et al. (2014). Quercetin attenuates doxorubicin cardiotoxicity by modulating Bmi-1 expression. British Journal of Pharmacology, 171, 4440–4454.PubMedPubMedCentral
20.
go back to reference Cheung, K. G., Cole, L. K., Xiang, B., Chen, K., Ma, X., Myal, Y., et al. (2015). Sirtuin-3 (SIRT3) protein attenuates doxorubicin-induced oxidative stress and improves mitochondrial respiration in H9c2 cardiomyocytes. Journal of Biological Chemistry, 290, 10981–10993. Cheung, K. G., Cole, L. K., Xiang, B., Chen, K., Ma, X., Myal, Y., et al. (2015). Sirtuin-3 (SIRT3) protein attenuates doxorubicin-induced oxidative stress and improves mitochondrial respiration in H9c2 cardiomyocytes. Journal of Biological Chemistry, 290, 10981–10993.
21.
go back to reference Salvatorelli, E., Guarnieri, S., Menna, P., Liberi, G., Calafiore, A. M., Mariggiò, M. A., et al. (2006). Defective one- or two-electron reduction of the anticancer anthracycline epirubicin in human heart. Relative importance of vesicular sequestration and impaired efficiency of electron addition. Journal of Biological Chemistry, 281, 10990–11001. Salvatorelli, E., Guarnieri, S., Menna, P., Liberi, G., Calafiore, A. M., Mariggiò, M. A., et al. (2006). Defective one- or two-electron reduction of the anticancer anthracycline epirubicin in human heart. Relative importance of vesicular sequestration and impaired efficiency of electron addition. Journal of Biological Chemistry, 281, 10990–11001.
22.
go back to reference Choi, E. H., Chang, H. J., Cho, J. Y., & Chun, H. S. (2007). Cytoprotective effect of anthocyanins against doxorubicin-induced toxicity in H9c2 cardiomyocytes in relation to their antioxidant activities. Food and Chemical Toxicology, 45, 1873–1881.PubMed Choi, E. H., Chang, H. J., Cho, J. Y., & Chun, H. S. (2007). Cytoprotective effect of anthocyanins against doxorubicin-induced toxicity in H9c2 cardiomyocytes in relation to their antioxidant activities. Food and Chemical Toxicology, 45, 1873–1881.PubMed
23.
go back to reference Bernuzzi, F., Recalcati, S., Alberghini, A., & Cairo, G. (2009). Reactive oxygen species-independent apoptosis in doxorubicin-treated H9c2 cardiomyocytes: Role for heme oxygenase-1 down-modulation. Chemico-Biological Interactions, 177, 12–20.PubMed Bernuzzi, F., Recalcati, S., Alberghini, A., & Cairo, G. (2009). Reactive oxygen species-independent apoptosis in doxorubicin-treated H9c2 cardiomyocytes: Role for heme oxygenase-1 down-modulation. Chemico-Biological Interactions, 177, 12–20.PubMed
24.
go back to reference Tan, X., Wang, D. B., Lu, X., Wei, H., Zhu, R., Zhu, S. S., et al. (2010). Doxorubicin induces apoptosis in H9c2 cardiomyocytes: Role of overexpressed eukaryotic translation initiation factor 5A. Biological and Pharmaceutical Bulletin, 33, 1666–1672.PubMed Tan, X., Wang, D. B., Lu, X., Wei, H., Zhu, R., Zhu, S. S., et al. (2010). Doxorubicin induces apoptosis in H9c2 cardiomyocytes: Role of overexpressed eukaryotic translation initiation factor 5A. Biological and Pharmaceutical Bulletin, 33, 1666–1672.PubMed
25.
go back to reference Ma, J., Wang, Y., Zheng, D., Wei, M., Xu, H., & Peng, T. (2013). Rac1 signalling mediates doxorubicin-induced cardiotoxicity through both reactive oxygen species-dependent and -independent pathways. Cardiovascular Research, 97, 77–87.PubMed Ma, J., Wang, Y., Zheng, D., Wei, M., Xu, H., & Peng, T. (2013). Rac1 signalling mediates doxorubicin-induced cardiotoxicity through both reactive oxygen species-dependent and -independent pathways. Cardiovascular Research, 97, 77–87.PubMed
26.
go back to reference Chen, Q., Chai, Y. C., Mazumder, S., Jiang, C., Macklis, R. M., Chisolm, G. M., et al. (2003). The late increase in intracellular free radical oxygen species during apoptosis is associated with cytochrome c release, caspase activation, and mitochondrial dysfunction. Cell Death and Differentiation, 10, 323–334.PubMedPubMedCentral Chen, Q., Chai, Y. C., Mazumder, S., Jiang, C., Macklis, R. M., Chisolm, G. M., et al. (2003). The late increase in intracellular free radical oxygen species during apoptosis is associated with cytochrome c release, caspase activation, and mitochondrial dysfunction. Cell Death and Differentiation, 10, 323–334.PubMedPubMedCentral
27.
go back to reference Zorov, D. B., Juhaszova, M., & Sollott, S. J. (2006). Mitochondrial ROS-induced ROS release: An update and review. Biochimica Biophysica Acta, 1757, 509–517. Zorov, D. B., Juhaszova, M., & Sollott, S. J. (2006). Mitochondrial ROS-induced ROS release: An update and review. Biochimica Biophysica Acta, 1757, 509–517.
28.
go back to reference Branco, A. F., Sampaio, S. F., Moreira, A. C., Holy, J., Wallace, K. B., Baldeiras, I., et al. (2012). Differentiation-dependent doxorubicin toxicity on H9c2 cardiomyoblasts. Cardiovascular Toxicology, 12, 326–340.PubMed Branco, A. F., Sampaio, S. F., Moreira, A. C., Holy, J., Wallace, K. B., Baldeiras, I., et al. (2012). Differentiation-dependent doxorubicin toxicity on H9c2 cardiomyoblasts. Cardiovascular Toxicology, 12, 326–340.PubMed
29.
go back to reference Kimes, B., & Brandt, B. (1976). Properties of a clonal muscle cell line from rat heart. Experimental Cell Research, 98, 367–381.PubMed Kimes, B., & Brandt, B. (1976). Properties of a clonal muscle cell line from rat heart. Experimental Cell Research, 98, 367–381.PubMed
30.
go back to reference Pereira, S. L., Ramalho-Santos, J., Branco, A. F., Sardão, V. A., Oliveira, P. J., & Carvalho, R. A. (2011). Metabolic remodeling during H9c2 myoblast differentiation: Relevance for in vitro toxicity studies. Cardiovascular Toxicology, 11, 180–190.PubMed Pereira, S. L., Ramalho-Santos, J., Branco, A. F., Sardão, V. A., Oliveira, P. J., & Carvalho, R. A. (2011). Metabolic remodeling during H9c2 myoblast differentiation: Relevance for in vitro toxicity studies. Cardiovascular Toxicology, 11, 180–190.PubMed
31.
go back to reference Vichai, V., & Kirtikara, K. (2006). Sulforhodamine B colorimetric assay for cytotoxicity screening. Nature Protocols, 1, 1112–1116.PubMed Vichai, V., & Kirtikara, K. (2006). Sulforhodamine B colorimetric assay for cytotoxicity screening. Nature Protocols, 1, 1112–1116.PubMed
32.
go back to reference Orellana, E. A., & Kasinski, A. L. (2016). Sulforhodamine B (SRB) Assay in cell culture to investigate cell proliferation. Bio-protocol, 6, 1984–1993. Orellana, E. A., & Kasinski, A. L. (2016). Sulforhodamine B (SRB) Assay in cell culture to investigate cell proliferation. Bio-protocol, 6, 1984–1993.
33.
go back to reference Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65, 55–63.PubMed Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65, 55–63.PubMed
34.
go back to reference Sardão, V. A., Oliveira, P. J., Holy, J., Oliveira, C. R., & Wallace, K. B. (2009). Morphological alterations induced by doxorubicin on H9c2 myoblasts: Nuclear, mitochondrial, and cytoskeletal targets. Cell Biology and Toxicology, 25, 227–243.PubMed Sardão, V. A., Oliveira, P. J., Holy, J., Oliveira, C. R., & Wallace, K. B. (2009). Morphological alterations induced by doxorubicin on H9c2 myoblasts: Nuclear, mitochondrial, and cytoskeletal targets. Cell Biology and Toxicology, 25, 227–243.PubMed
35.
go back to reference Branco, A. F., Pereira, S. P., Gonzalez, S., Gusev, O., Rizvanov, A. A., & Oliveira, P. J. (2015). Gene expression profiling of H9c2 myoblast differentiation towards a cardiac-like phenotype. PLoS ONE, 10, e0129303.PubMedPubMedCentral Branco, A. F., Pereira, S. P., Gonzalez, S., Gusev, O., Rizvanov, A. A., & Oliveira, P. J. (2015). Gene expression profiling of H9c2 myoblast differentiation towards a cardiac-like phenotype. PLoS ONE, 10, e0129303.PubMedPubMedCentral
36.
go back to reference Liu, J., Mao, W., Ding, B., & Liang, C. S. (2008). ERKs/p53 signal transduction pathway is involved in doxorubicin-induced apoptosis in H9c2 cells and cardiomyocytes. American Journal of Physiology Heart and Circulatory Physiology, 295, H1956–H1965.PubMedPubMedCentral Liu, J., Mao, W., Ding, B., & Liang, C. S. (2008). ERKs/p53 signal transduction pathway is involved in doxorubicin-induced apoptosis in H9c2 cells and cardiomyocytes. American Journal of Physiology Heart and Circulatory Physiology, 295, H1956–H1965.PubMedPubMedCentral
37.
go back to reference Greene, R. F., Collins, J. M., Jenkins, J. F., Speyer, J. L., & Myers, C. E. (1983). Plasma pharmacokinetics of adriamycin and adriamycinol: Implications for the design of in vitro experiments and treatment protocols. Cancer Research, 43, 3417–3421.PubMed Greene, R. F., Collins, J. M., Jenkins, J. F., Speyer, J. L., & Myers, C. E. (1983). Plasma pharmacokinetics of adriamycin and adriamycinol: Implications for the design of in vitro experiments and treatment protocols. Cancer Research, 43, 3417–3421.PubMed
38.
go back to reference Rahman, A., Carmichael, D., Harris, M., & Roh, J. K. (1986). Comparative pharmacokinetics of free doxorubicin and doxorubicin entrapped in cardiolipin liposomes. Cancer Research, 46, 2295–2299.PubMed Rahman, A., Carmichael, D., Harris, M., & Roh, J. K. (1986). Comparative pharmacokinetics of free doxorubicin and doxorubicin entrapped in cardiolipin liposomes. Cancer Research, 46, 2295–2299.PubMed
39.
go back to reference Speth, P. A., van Hoesel, Q. G., & Haanen, C. (1988). Clinical pharmacokinetics of doxorubicin. Clinical Pharmacokinetics, 15, 15–31.PubMed Speth, P. A., van Hoesel, Q. G., & Haanen, C. (1988). Clinical pharmacokinetics of doxorubicin. Clinical Pharmacokinetics, 15, 15–31.PubMed
40.
go back to reference Patten, V., Chabaesele, I., Sishi, B., & Van Vuuren, D. (2012). Cardiomyocyte differentiation: Experience and observations from 2 laboratories. Journal of the South African Heart Association, 14, 96–107. Patten, V., Chabaesele, I., Sishi, B., & Van Vuuren, D. (2012). Cardiomyocyte differentiation: Experience and observations from 2 laboratories. Journal of the South African Heart Association, 14, 96–107.
41.
go back to reference Hosseinzadeh, L., Behravan, J., Mosaffa, F., Bahrami, G., Bahrami, A., & Karimi, G. (2011). Curcumin potentiates doxorubicin-induced apoptosis in H9c2 cardiac muscle cells through generation of reactive oxygen species. Food and Chemical Toxicology, 49, 1102–1109.PubMed Hosseinzadeh, L., Behravan, J., Mosaffa, F., Bahrami, G., Bahrami, A., & Karimi, G. (2011). Curcumin potentiates doxorubicin-induced apoptosis in H9c2 cardiac muscle cells through generation of reactive oxygen species. Food and Chemical Toxicology, 49, 1102–1109.PubMed
42.
go back to reference Wang, G. W., Klein, J. B., & Kang, Y. J. (2001). Metallothionein inhibits doxorubicin-induced mitochondrial cytochrome c release and caspase-3 activation in cardiomyocytes. Journal of Pharmacology and Experimental Therapeutics, 298, 461–468. Wang, G. W., Klein, J. B., & Kang, Y. J. (2001). Metallothionein inhibits doxorubicin-induced mitochondrial cytochrome c release and caspase-3 activation in cardiomyocytes. Journal of Pharmacology and Experimental Therapeutics, 298, 461–468.
43.
go back to reference Wu, C. C., & Bratton, S. B. (2013). Regulation of the intrinsic apoptosis pathway by reactive oxygen species. Antioxidants and Redox Signaling, 19, 546–558.PubMed Wu, C. C., & Bratton, S. B. (2013). Regulation of the intrinsic apoptosis pathway by reactive oxygen species. Antioxidants and Redox Signaling, 19, 546–558.PubMed
44.
go back to reference Doroshow, J. H., & Davies, K. J. (1986). Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical. Journal of Biological Chemistry, 261, 3068–3074. Doroshow, J. H., & Davies, K. J. (1986). Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical. Journal of Biological Chemistry, 261, 3068–3074.
45.
go back to reference Dickey, J. S., Gonzalez, Y., Aryal, B., et al. (2013). Mito-tempol and dexrazoxane exhibit cardioprotective and chemotherapeutic effects through specific protein oxidation and autophagy in a syngeneic breast tumor preclinical model. PLoS ONE, 8, e70575.PubMedPubMedCentral Dickey, J. S., Gonzalez, Y., Aryal, B., et al. (2013). Mito-tempol and dexrazoxane exhibit cardioprotective and chemotherapeutic effects through specific protein oxidation and autophagy in a syngeneic breast tumor preclinical model. PLoS ONE, 8, e70575.PubMedPubMedCentral
46.
go back to reference Rocha, V. C., França, L. S., de Araújo, C. F., et al. (2016). Protective effects of mito-TEMPO against doxorubicin cardiotoxicity in mice. Cancer Chemotherapy and Pharmacology, 77, 659–662.PubMed Rocha, V. C., França, L. S., de Araújo, C. F., et al. (2016). Protective effects of mito-TEMPO against doxorubicin cardiotoxicity in mice. Cancer Chemotherapy and Pharmacology, 77, 659–662.PubMed
47.
go back to reference Cadenas, E., & Davies, K. J. (2000). Mitochondrial free radical generation, oxidative stress, and aging. Free Radical Biology and Medicine, 29, 222–230.PubMed Cadenas, E., & Davies, K. J. (2000). Mitochondrial free radical generation, oxidative stress, and aging. Free Radical Biology and Medicine, 29, 222–230.PubMed
48.
go back to reference Murphy, M. P. (2009). How mitochondria produce reactive oxygen species. Biochemical Journal, 417, 1–13. Murphy, M. P. (2009). How mitochondria produce reactive oxygen species. Biochemical Journal, 417, 1–13.
49.
go back to reference Larosa, V., & Remacle, C. (2018). Insights into the respiratory chain and oxidative stress. Bioscience Reports, 38, BSR20171492.PubMedPubMedCentral Larosa, V., & Remacle, C. (2018). Insights into the respiratory chain and oxidative stress. Bioscience Reports, 38, BSR20171492.PubMedPubMedCentral
Metadata
Title
Doxorubicin Cytotoxicity in Differentiated H9c2 Cardiomyocytes: Evidence for Acute Mitochondrial Superoxide Generation
Publication date
01-02-2021
Published in
Cardiovascular Toxicology / Issue 2/2021
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-020-09606-1

Other articles of this Issue 2/2021

Cardiovascular Toxicology 2/2021 Go to the issue