Skip to main content
Top
Published in: Cardiovascular Toxicology 2/2021

01-02-2021 | Candida Balanitis

Caspofungin Effects on Electrocardiogram of Mice: An Evaluation of Cardiac Safety

Authors: Danielle Cristiane Correa De Paula, Elaine Amaral Leite, Carolina Morais Araujo, Renata Tupinambá Branquinho, Homero Nogueira Guimarães, Andrea Grabe-Guimarães

Published in: Cardiovascular Toxicology | Issue 2/2021

Login to get access

Abstract

Caspofungin is an echinocandin, exhibiting efficacy against most Candida species invasive infection. Its cardiotoxicity was reported in isolated rat heart and ventricular myocytes, but in vivo and clinical studies are insufficient. Our objective was to evaluate caspofungin in vivo cardiac effects using an efficacious dose against Candida albicans. Female Swiss mice were infected with C. albicans, and treated with caspofungin, 5 or 10 mg/kg, intraperitoneal along 5 days. Survival rate and colony-forming units (CFU) into vital organs were determined. For cardiac effects study, mice were treated with caspofungin 10 mg/kg, and electrocardiogram (ECG) signal was obtained on C. albicans-infected mice, single dose-treated, and uninfected mice treated along 5 days, both groups to measure ECG intervals. Besides, ECG was also obtained by telemetry on uninfected mice to evaluate heart rate variability (HRV) parameters. The MIC for caspofungin on the wild-type C. albicans SC5314 strain was 0.3 μg/ml, indicating the susceptible. Survival rate increased significantly in infected mice treated with caspofungin compared to mice treated with vehicle. None of the survived infected mice presented positive CFU after treatment with 10 mg/kg. C. albicans infection induced prolongation of QRS, QT, and QTc intervals; caspofungin did not alter this effect. Caspofungin induced increase of PR and an additional increase of QRS after 24 h of a single dose in infected mice. No significant alterations occurred in ECG intervals and HRV parameters of uninfected mice, after caspofungin treatment. Caspofungin showed in vivo cardiac relative safety maintaining its antifungal efficacy against C. albicans.
Literature
1.
go back to reference Pfaller, M. A., Boyken, L., Hollis, R. J., Kroeger, J., Messer, S. A., Tendolkar, S., et al. (2008). In vitro susceptibility of invasive isolates of Candida spp. to anidulafungin, caspofungin, and micafungin: Six years of global surveillance. Journal of Clinical Microbiology, 46, 150–156.PubMed Pfaller, M. A., Boyken, L., Hollis, R. J., Kroeger, J., Messer, S. A., Tendolkar, S., et al. (2008). In vitro susceptibility of invasive isolates of Candida spp. to anidulafungin, caspofungin, and micafungin: Six years of global surveillance. Journal of Clinical Microbiology, 46, 150–156.PubMed
2.
go back to reference Pappas, P. G., Kauffman, C. A., Andes, D. R., et al. (2016). Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clinical Infectious Disease, 62, 1–50. Pappas, P. G., Kauffman, C. A., Andes, D. R., et al. (2016). Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clinical Infectious Disease, 62, 1–50.
3.
go back to reference Villanueva, A., Arathoon, E. G., Gotuzzo, E., Berman, R. S., DiNubile, M. J., & Sable, C. A. (2001). A randomized double-blind study of caspofungin versus amphotericin for the treatment of candidal esophagitis. Clinical Infectious Diseases, 33, 1529–1535.PubMed Villanueva, A., Arathoon, E. G., Gotuzzo, E., Berman, R. S., DiNubile, M. J., & Sable, C. A. (2001). A randomized double-blind study of caspofungin versus amphotericin for the treatment of candidal esophagitis. Clinical Infectious Diseases, 33, 1529–1535.PubMed
4.
go back to reference Arathoon, E. G., Gotuzzo, E., Noriega, L. M., et al. (2002). Randomized, double- blind, multicenter study of caspofungin versus amphotericin B for treatment of oropharyngeal and esophageal candidiases. Antimicrobial Agents and Chemotherapy, 46, 451–457.PubMedPubMedCentral Arathoon, E. G., Gotuzzo, E., Noriega, L. M., et al. (2002). Randomized, double- blind, multicenter study of caspofungin versus amphotericin B for treatment of oropharyngeal and esophageal candidiases. Antimicrobial Agents and Chemotherapy, 46, 451–457.PubMedPubMedCentral
5.
go back to reference Mora-Duarte, J., Betts, R., Rotstein, C., et al. (2002). Caspofungin invasive candidiasis study group. Comparison of caspofungin and amphotericin B for invasive candidiasis. The New England Journal of Medicine, 347, 2020–2029.PubMed Mora-Duarte, J., Betts, R., Rotstein, C., et al. (2002). Caspofungin invasive candidiasis study group. Comparison of caspofungin and amphotericin B for invasive candidiasis. The New England Journal of Medicine, 347, 2020–2029.PubMed
6.
go back to reference Wang, J. F., Xue, Y., Zhu, X. B., & Fan, H. (2015). Efficacy and safety of echinocandins versus triazoles for the prophylaxis and treatment of fungal infections: A meta-analysis of RCTs. European Journal of Clinical Microbiology & Infectious Disease, 34, 651–659. Wang, J. F., Xue, Y., Zhu, X. B., & Fan, H. (2015). Efficacy and safety of echinocandins versus triazoles for the prophylaxis and treatment of fungal infections: A meta-analysis of RCTs. European Journal of Clinical Microbiology & Infectious Disease, 34, 651–659.
8.
go back to reference Sable, C. A., Nguyen, B. Y., Chodakewitz, J. A., & DiNubile, M. J. (2002). Safety and tolerability of caspofungin acetate in the treatment of fungal infections. Transplant Infectious Disease, 4, 25–30.PubMed Sable, C. A., Nguyen, B. Y., Chodakewitz, J. A., & DiNubile, M. J. (2002). Safety and tolerability of caspofungin acetate in the treatment of fungal infections. Transplant Infectious Disease, 4, 25–30.PubMed
11.
go back to reference Cavero, I., & Crumb, W. (2005). The use of electrocardiograms in clinical trials: A public discussion of the proposed ICH E14 regulatory guidance. Expert Opinion on Drug Safety, 4, 795–799.PubMed Cavero, I., & Crumb, W. (2005). The use of electrocardiograms in clinical trials: A public discussion of the proposed ICH E14 regulatory guidance. Expert Opinion on Drug Safety, 4, 795–799.PubMed
12.
go back to reference EMEA. European Medicines Agency. (2006). ICH Topic E 14. The clinical evaluation of QT/QTc interval prolongation and proarrhythmic potential for non-antiarrhythmic drugs. At https://www.emea.eu.int, 14 pp. Accessed 10 Dec 2019. EMEA. European Medicines Agency. (2006). ICH Topic E 14. The clinical evaluation of QT/QTc interval prolongation and proarrhythmic potential for non-antiarrhythmic drugs. At https://​www.​emea.​eu.​int, 14 pp. Accessed 10 Dec 2019.
14.
go back to reference Poluzzi, E., Raschi, E., Motola, D., Moretti, U., & De Ponti, F. (2010). Antimicrobials and the risk of Torsades de Pointes. Drug Safety, 33(4), 303–314.PubMed Poluzzi, E., Raschi, E., Motola, D., Moretti, U., & De Ponti, F. (2010). Antimicrobials and the risk of Torsades de Pointes. Drug Safety, 33(4), 303–314.PubMed
17.
go back to reference Philips, J. A., Marty, F. M., Stone, R. M., Koplan, B. A., Katz, J. T., & Baden, L. R. (2007). Torsades de pointes associated with voriconazole use. Transplant Infectious Disease, 9, 33–36.PubMed Philips, J. A., Marty, F. M., Stone, R. M., Koplan, B. A., Katz, J. T., & Baden, L. R. (2007). Torsades de pointes associated with voriconazole use. Transplant Infectious Disease, 9, 33–36.PubMed
20.
go back to reference Aron, A., Manchanda-Aron, U., & Freire, A. X. (2017). Candida endocarditis presenting as acute myocardial infarction. American Journal of Respiratory and Critical Care Medicine, 196(2), e4–e6.PubMed Aron, A., Manchanda-Aron, U., & Freire, A. X. (2017). Candida endocarditis presenting as acute myocardial infarction. American Journal of Respiratory and Critical Care Medicine, 196(2), e4–e6.PubMed
22.
go back to reference Force, T., & Heart rate variability., (1996). Standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation, 93, 1043–1065. Force, T., & Heart rate variability., (1996). Standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation, 93, 1043–1065.
23.
go back to reference Stauss, H. M. (2003). Heart rate variability. American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 285, R927–R931.PubMed Stauss, H. M. (2003). Heart rate variability. American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 285, R927–R931.PubMed
24.
go back to reference Kleiger, R. E., Stein, P. K., & Bigger, J. T., Jr. (2005). Heart rate variability: measurement and clinical utility. Annual Noninvasive Electrocardiology, 10(1), 88–101. Kleiger, R. E., Stein, P. K., & Bigger, J. T., Jr. (2005). Heart rate variability: measurement and clinical utility. Annual Noninvasive Electrocardiology, 10(1), 88–101.
31.
go back to reference Papaioannou, V. E., Dragoumanis, C., Theodorou, V., Gargaretas, C., & Pneumatikos, I. (2009). Relation of heart rate variability to serum levels of C-reactive protein, interleukin 6, and 10 in patients with sepsis and septic shock. Journal Critical Care, 24, 625.e1–7. Papaioannou, V. E., Dragoumanis, C., Theodorou, V., Gargaretas, C., & Pneumatikos, I. (2009). Relation of heart rate variability to serum levels of C-reactive protein, interleukin 6, and 10 in patients with sepsis and septic shock. Journal Critical Care, 24, 625.e1–7.
33.
go back to reference Enoch, D. A., Yang, H., Aliyu, S. H., & Micallef, C. (2017). The changing epidemiology of invasive fungal infections. Methods in Molecular Biology, 1508, 17–65.PubMed Enoch, D. A., Yang, H., Aliyu, S. H., & Micallef, C. (2017). The changing epidemiology of invasive fungal infections. Methods in Molecular Biology, 1508, 17–65.PubMed
35.
go back to reference Clinical and Laboratory Standards Institute. (2008). Reference method for broth dilution antifungal susceptibility testing of yeasts: Approved standard M27-A3, 3rd ed. Clinical and Laboratory Standards Institute, Wayne. https://clsi.org/. Accessed 10 Jan 2016. Clinical and Laboratory Standards Institute. (2008). Reference method for broth dilution antifungal susceptibility testing of yeasts: Approved standard M27-A3, 3rd ed. Clinical and Laboratory Standards Institute, Wayne. https://​clsi.​org/​. Accessed 10 Jan 2016.
36.
go back to reference Clinical and Laboratory Standards Institute, Wayne, PA. Clinical and Laboratory Standards Institute. (2012). Reference method for broth dilution antifungal susceptibility testing of yeasts: Approved standard M27-S4, 4rd ed. Clinical and Laboratory Standards Institute, Wayne. https://clsi.org/. Accessed 10 Jan 2016. Clinical and Laboratory Standards Institute, Wayne, PA. Clinical and Laboratory Standards Institute. (2012). Reference method for broth dilution antifungal susceptibility testing of yeasts: Approved standard M27-S4, 4rd ed. Clinical and Laboratory Standards Institute, Wayne. https://​clsi.​org/​. Accessed 10 Jan 2016.
37.
go back to reference Pfaller, M. A., & Diekema, D. J. (2012). Progress in antifungal susceptibility testing of Candida spp. by use of Clinical and Laboratory Standards Institute broth microdilution methods, 2010 to 2012. Journal Clinical Microbiology, 50, 2846–2856. Pfaller, M. A., & Diekema, D. J. (2012). Progress in antifungal susceptibility testing of Candida spp. by use of Clinical and Laboratory Standards Institute broth microdilution methods, 2010 to 2012. Journal Clinical Microbiology, 50, 2846–2856.
38.
go back to reference Brazilian College of Animal Experimentation—Brazilian Directive for the care and use of animals for scientific and educational purposes. (2013). Colégio Brasileiro de Experimentação Animal COBEA—Diretriz Brasileira para o cuidado e a utilização de animais para fins científicos e didáticos—DBCA). https://www.sbcal.org.br/conteudo/view?ID_CONTEUDO=65. Brazilian College of Animal Experimentation—Brazilian Directive for the care and use of animals for scientific and educational purposes. (2013). Colégio Brasileiro de Experimentação Animal COBEA—Diretriz Brasileira para o cuidado e a utilização de animais para fins científicos e didáticos—DBCA). https://​www.​sbcal.​org.​br/​conteudo/​view?​ID_​CONTEUDO=​65.
40.
go back to reference Dimopoulou, D., Hamilos, G., Tzardi, M., Lewis, R. E., Samonis, G., & Kontoyiannis, D. P. (2014). Anidulafungin versus caspofungin in a mouse model of candidiasis caused by anidulafungin-susceptible Candida parapsilosis isolates with different degrees of caspofungin susceptibility. Antimicrobial Agents and Chemotherapy, 58(1), 229–236.PubMedPubMedCentral Dimopoulou, D., Hamilos, G., Tzardi, M., Lewis, R. E., Samonis, G., & Kontoyiannis, D. P. (2014). Anidulafungin versus caspofungin in a mouse model of candidiasis caused by anidulafungin-susceptible Candida parapsilosis isolates with different degrees of caspofungin susceptibility. Antimicrobial Agents and Chemotherapy, 58(1), 229–236.PubMedPubMedCentral
41.
go back to reference Fridericia, L. S. (1920). Die Systolendauer im Elektrokardiogramm bei normalen Menschen und bei Herzkranken. Acta Medica Scandinavica, 53, 469–486. Fridericia, L. S. (1920). Die Systolendauer im Elektrokardiogramm bei normalen Menschen und bei Herzkranken. Acta Medica Scandinavica, 53, 469–486.
44.
go back to reference Cesarovic, N., Jirkof, P., Rettich, A., & Arras, M. (2011). Implantation of radiotelemetry transmitters yielding data on ECG, heart rate, core body temperature and activity in free-moving laboratory mice. Journal of Visualized Experiments (JOVE), 57, 1–7. Cesarovic, N., Jirkof, P., Rettich, A., & Arras, M. (2011). Implantation of radiotelemetry transmitters yielding data on ECG, heart rate, core body temperature and activity in free-moving laboratory mice. Journal of Visualized Experiments (JOVE), 57, 1–7.
45.
go back to reference Shaffer, F., & Ginsberg, J. P. (2017). An overview of heart rate variability metrics and norms. Frontiers in Public Health, 5, 1–17. Shaffer, F., & Ginsberg, J. P. (2017). An overview of heart rate variability metrics and norms. Frontiers in Public Health, 5, 1–17.
46.
go back to reference Food and Drug Administration, HHS. (2005). International Conference on Harmonisation; guidance on S7B nonclinical evaluation of the potential for delayed ventricular repolarization (QT Interval Prolongation) by human pharmaceuticals: availability. Federal Register, 70(202), 133–161. Food and Drug Administration, HHS. (2005). International Conference on Harmonisation; guidance on S7B nonclinical evaluation of the potential for delayed ventricular repolarization (QT Interval Prolongation) by human pharmaceuticals: availability. Federal Register, 70(202), 133–161.
47.
go back to reference Shah, R. R., Morganroth, J., & Kleiman, R. B. (2014). ICH E14 document: commentary on the further updated recommendations on thorough QT studies. British Journal Clinical Pharmacology, 79, 456–464. Shah, R. R., Morganroth, J., & Kleiman, R. B. (2014). ICH E14 document: commentary on the further updated recommendations on thorough QT studies. British Journal Clinical Pharmacology, 79, 456–464.
48.
go back to reference Farraj, A. K., Hazari, M. S., & Cascio, W. E. (2011). The utility of the small rodent electrocardiogram in toxicology. Toxicology Science, 121, 11–30. Farraj, A. K., Hazari, M. S., & Cascio, W. E. (2011). The utility of the small rodent electrocardiogram in toxicology. Toxicology Science, 121, 11–30.
49.
go back to reference Haverkamp, W., Breithardt, G., Camm, J. A., & Janse, M. J. (2000). The potential for QT prolongation and proarrhythmia by non-antiarrhythmic drugs: clinical and regulatory implications. European Heart Journal, 47, 219–233. Haverkamp, W., Breithardt, G., Camm, J. A., & Janse, M. J. (2000). The potential for QT prolongation and proarrhythmia by non-antiarrhythmic drugs: clinical and regulatory implications. European Heart Journal, 47, 219–233.
50.
go back to reference Fairchild, K. D., Saucerman, J. J., Raynor, L. L., Sivak, J. A., Xiao, Y., Lake, D. E., et al. (2009). Endotoxin depresses heart rate variability in mice: cytokine and steroid effects. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 297, 1019–1027. Fairchild, K. D., Saucerman, J. J., Raynor, L. L., Sivak, J. A., Xiao, Y., Lake, D. E., et al. (2009). Endotoxin depresses heart rate variability in mice: cytokine and steroid effects. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 297, 1019–1027.
51.
go back to reference Tateishi, Y., Oda, S., Nakamura, M., Watanabe, K., Kuwaki, T., Moriguchi, T., et al. (2007). Depressed heart rate variability is associated with high IL-6 blood level and decline in the blood pressure in septic patients. Shock (Augusta, Ga.), 28, 549–553. Tateishi, Y., Oda, S., Nakamura, M., Watanabe, K., Kuwaki, T., Moriguchi, T., et al. (2007). Depressed heart rate variability is associated with high IL-6 blood level and decline in the blood pressure in septic patients. Shock (Augusta, Ga.), 28, 549–553.
52.
go back to reference McCarty, T. P., & Pappas, P. G. (2016). Invasive candidiasis. Infectious Disease Clinic of North America, 30, 103–124. McCarty, T. P., & Pappas, P. G. (2016). Invasive candidiasis. Infectious Disease Clinic of North America, 30, 103–124.
54.
go back to reference Wiederhold, N. P., Najvar, L. K., Bocanegra, R. A., Kirkpatrick, W. R., & Patterson, T. F. (2011). Caspofungin dose escalation for invasive candidiasis due to resistant Candida albicans. Antimicrobial Agents Chemotherapy, 55, 3254–3260.PubMed Wiederhold, N. P., Najvar, L. K., Bocanegra, R. A., Kirkpatrick, W. R., & Patterson, T. F. (2011). Caspofungin dose escalation for invasive candidiasis due to resistant Candida albicans. Antimicrobial Agents Chemotherapy, 55, 3254–3260.PubMed
56.
go back to reference Spreghini, E., Orlando, F., Sanguinetti, M., et al. (2012). Comparative effects of micafungin, caspofungin, and anidulafungin against a difficult-to-treat fungal opportunistic pathogen, Candida glabrata. Antimicrobial Agents Chemotherapy, 56, 1215–1222.PubMed Spreghini, E., Orlando, F., Sanguinetti, M., et al. (2012). Comparative effects of micafungin, caspofungin, and anidulafungin against a difficult-to-treat fungal opportunistic pathogen, Candida glabrata. Antimicrobial Agents Chemotherapy, 56, 1215–1222.PubMed
57.
go back to reference Betts, R. F., Nucci, M., Talwar, D., et al. (2009). A multicenter, double-blind trial of a high-dose caspofungin treatment regimen versus a standard caspofungin treatment regimen for adult patients with invasive candidiasis. Clinical Infectious Diseases, 48, 1676–1684. https://doi.org/10.1086/598933.CrossRefPubMed Betts, R. F., Nucci, M., Talwar, D., et al. (2009). A multicenter, double-blind trial of a high-dose caspofungin treatment regimen versus a standard caspofungin treatment regimen for adult patients with invasive candidiasis. Clinical Infectious Diseases, 48, 1676–1684. https://​doi.​org/​10.​1086/​598933.CrossRefPubMed
58.
go back to reference Domán, M., Kovács, R., Perlin, D. S., Kardos, G., Gesztelyi, R., Juhász, B., et al. (2015). Dose escalation studies with caspofungin against Candida glabrata. Journal of Medical Microbiology, 64, 998–1007.PubMedPubMedCentral Domán, M., Kovács, R., Perlin, D. S., Kardos, G., Gesztelyi, R., Juhász, B., et al. (2015). Dose escalation studies with caspofungin against Candida glabrata. Journal of Medical Microbiology, 64, 998–1007.PubMedPubMedCentral
59.
go back to reference Holzschu, D. L., Chandler, F. W., Ajello, L., & Ahearn, D. G. (1979). Evaluation of industrial yeasts for pathogenicity. Sabouraudia, 17, 71–78.PubMed Holzschu, D. L., Chandler, F. W., Ajello, L., & Ahearn, D. G. (1979). Evaluation of industrial yeasts for pathogenicity. Sabouraudia, 17, 71–78.PubMed
60.
go back to reference Chaves, G. M., Cavalcanti, M. A. Q., Carneiro-Leão, A. M. A., & Lopes, L. S. (2004). Model of experimental infection in healthy and immunosuppressed Swiss albino mice (Mus musculus) using Candida albicans strains with different patterns of enzymatic activity. Brazilian Journal of Microbiology, 35, 324–329. Chaves, G. M., Cavalcanti, M. A. Q., Carneiro-Leão, A. M. A., & Lopes, L. S. (2004). Model of experimental infection in healthy and immunosuppressed Swiss albino mice (Mus musculus) using Candida albicans strains with different patterns of enzymatic activity. Brazilian Journal of Microbiology, 35, 324–329.
61.
go back to reference Hajdu, R., Thompson, R., Sundelof, J. G., Pelak, B. A., Bouffard, F. A., Dropinski, J. F., et al. (1997). Preliminary animal pharmacokinetics of the parenteral antifungal agent MK-0991 (L-743,872). Antimicrobial Agents and Chemotherapy, 41, 2339–2344.PubMedPubMedCentral Hajdu, R., Thompson, R., Sundelof, J. G., Pelak, B. A., Bouffard, F. A., Dropinski, J. F., et al. (1997). Preliminary animal pharmacokinetics of the parenteral antifungal agent MK-0991 (L-743,872). Antimicrobial Agents and Chemotherapy, 41, 2339–2344.PubMedPubMedCentral
62.
go back to reference Kaese, S., & Verheule, S. (2012). Cardiac electrophysiology in mice: a matter of size. Frontiers in Physiology, 345, 1–20. Kaese, S., & Verheule, S. (2012). Cardiac electrophysiology in mice: a matter of size. Frontiers in Physiology, 345, 1–20.
63.
go back to reference Victorio, G. B., Bourdon, L. M. B., Benavides, L. G., et al. (2017). Antifungal activity of caspofungin in experimental infective endocarditis caused by Candida albicans. Memórias do Instituto Oswaldo Cruz, 112, 370–375.PubMedPubMedCentral Victorio, G. B., Bourdon, L. M. B., Benavides, L. G., et al. (2017). Antifungal activity of caspofungin in experimental infective endocarditis caused by Candida albicans. Memórias do Instituto Oswaldo Cruz, 112, 370–375.PubMedPubMedCentral
64.
go back to reference Holmqvist, F., Thomas, K. L., Broderick, S., et al. (2015). Clinical outcome as a function of the PR-interval-there is virtue in moderation: Data from the Duke Databank for cardiovascular disease. Europace, 17, 978–985.PubMed Holmqvist, F., Thomas, K. L., Broderick, S., et al. (2015). Clinical outcome as a function of the PR-interval-there is virtue in moderation: Data from the Duke Databank for cardiovascular disease. Europace, 17, 978–985.PubMed
65.
go back to reference Drew, B. J., Ackerman, M. J., Funk, M., et al. (2010). Prevention of Torsade de Pointes In Hospital Settings. A scientific statement from the American Heart Association and the American College of Cardiology Foundation. Circulation, 121, 1047–1060.PubMedPubMedCentral Drew, B. J., Ackerman, M. J., Funk, M., et al. (2010). Prevention of Torsade de Pointes In Hospital Settings. A scientific statement from the American Heart Association and the American College of Cardiology Foundation. Circulation, 121, 1047–1060.PubMedPubMedCentral
68.
go back to reference Jang, S. H., Colangelo, P. M., & Gobburu, J. V. (2010). Exposure-response of posaconazole used for prophylaxis against invasive fungal infections: Evaluating the need to adjust doses based on drug concentrations in plasma. Clinical Pharmacology & Therapeutics, 88, 115–119. https://doi.org/10.1038/clpt.2010.64.CrossRef Jang, S. H., Colangelo, P. M., & Gobburu, J. V. (2010). Exposure-response of posaconazole used for prophylaxis against invasive fungal infections: Evaluating the need to adjust doses based on drug concentrations in plasma. Clinical Pharmacology & Therapeutics, 88, 115–119. https://​doi.​org/​10.​1038/​clpt.​2010.​64.CrossRef
70.
go back to reference Lichtenstern, C., Wolff, M., Arens, C., et al. (2013). Cardiac effects of echinocandin preparations—Three case reports. Journal of Clinical Pharmacy and Therapeutics, 38, 429–431.PubMed Lichtenstern, C., Wolff, M., Arens, C., et al. (2013). Cardiac effects of echinocandin preparations—Three case reports. Journal of Clinical Pharmacy and Therapeutics, 38, 429–431.PubMed
72.
go back to reference Koch, C., Uhle, F., Wolff, M., et al. (2015). Cardiac effects of echnocandins after central venous administration in adult rats. Antimicrobial Agents and Chemotherapy, 59, 1612–1619.PubMedPubMedCentral Koch, C., Uhle, F., Wolff, M., et al. (2015). Cardiac effects of echnocandins after central venous administration in adult rats. Antimicrobial Agents and Chemotherapy, 59, 1612–1619.PubMedPubMedCentral
74.
go back to reference Lahmer, T., Schnappauf, C., Messer, M., et al. (2015). Influence of echinocandin administration on hemodynamic parameters in medical intensive care unit patients: A single center prospective study. Infection, 43, 723–727.PubMed Lahmer, T., Schnappauf, C., Messer, M., et al. (2015). Influence of echinocandin administration on hemodynamic parameters in medical intensive care unit patients: A single center prospective study. Infection, 43, 723–727.PubMed
75.
go back to reference Stover, K. R., & Cleary, J. D. (2015). Cardiac response to centrally administered echinocandin antifungals. The Journal of Pharmacy and Pharmacology, 67, 1279–1283.PubMed Stover, K. R., & Cleary, J. D. (2015). Cardiac response to centrally administered echinocandin antifungals. The Journal of Pharmacy and Pharmacology, 67, 1279–1283.PubMed
76.
go back to reference Fisch, C. (1973). Relation of electrolyte disturbances to cardiac arrhythmias. Circulation, 47(2), 408–419.PubMed Fisch, C. (1973). Relation of electrolyte disturbances to cardiac arrhythmias. Circulation, 47(2), 408–419.PubMed
Metadata
Title
Caspofungin Effects on Electrocardiogram of Mice: An Evaluation of Cardiac Safety
Authors
Danielle Cristiane Correa De Paula
Elaine Amaral Leite
Carolina Morais Araujo
Renata Tupinambá Branquinho
Homero Nogueira Guimarães
Andrea Grabe-Guimarães
Publication date
01-02-2021
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 2/2021
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-020-09599-x

Other articles of this Issue 2/2021

Cardiovascular Toxicology 2/2021 Go to the issue