Skip to main content
Top
Published in: Cardiovascular Toxicology 3/2020

01-06-2020

Oleic Acid Protects from Arsenic-Induced Cardiac Hypertrophy via AMPK/FoxO/NFATc3 Pathway

Authors: Jayeeta Samanta, Arunima Mondal, Srimoyee Saha, Santanu Chakraborty, Arunima Sengupta

Published in: Cardiovascular Toxicology | Issue 3/2020

Login to get access

Abstract

Arsenic toxicity is one of the major environmental problems causing various diseases, cardiovascular disorders is one of them. Several epidemiological studies have shown that arsenic causes cardiac hypertrophy but the detailed molecular mechanism is to be studied yet. This study is designed to determine the molecules involved in the augmentation of arsenic-induced cardiac hypertrophy. Furthermore, the effects of oleic acid on arsenic-induced hypertrophy and cardiac injury have also been investigated. Our results show that arsenic induces cardiac hypertrophy both in vivo in mice and in vitro in rat H9c2 cardiomyocytes. Moreover, arsenic results in decreased activity of AMPK and FoxO1 along with increased NFATc3 expression, a known cardiac hypertrophy inducer. In addition, activation of AMPK and FoxO1 results in reduced NFATc3 expression causing attenuation of arsenic-induced cardiac hypertrophy in H9c2 cells. Interestingly, we have observed that oleic acid helps in ameliorating cardiac hypertrophy in arsenic-exposed mice. Our studies on protection from arsenic-induced cardiac hypertrophy by oleic acid in H9c2 cells shows that oleic acid activates AMPK along with increased nuclear FoxO1 localization, thereby reducing NFATc3 expression and attenuating cardiomyocyte hypertrophy. This study will help in finding out new avenues in treating arsenic-induced cardiac hypertrophy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Al-Shudiefat, A. A. R., Sharma, A. K., Bagchi, A. K., Dhingra, S., & Singal, P. K. (2013). Oleic acid mitigates TNF-a-induced oxidative stress in rat cardiomyocytes. Molecular and Cellular Biochemistry,372, 75–82.PubMedCrossRef Al-Shudiefat, A. A. R., Sharma, A. K., Bagchi, A. K., Dhingra, S., & Singal, P. K. (2013). Oleic acid mitigates TNF-a-induced oxidative stress in rat cardiomyocytes. Molecular and Cellular Biochemistry,372, 75–82.PubMedCrossRef
2.
go back to reference Bairwa, S. C., Parajuli, N., & Dyck, J. R. B. (2016). The role of AMPK in cardiomyocyte health and survival. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease,1862(12), 2199–2210.CrossRef Bairwa, S. C., Parajuli, N., & Dyck, J. R. B. (2016). The role of AMPK in cardiomyocyte health and survival. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease,1862(12), 2199–2210.CrossRef
3.
go back to reference Beauchamp, E. M., Kosciuczuk, E. M., Serrano, R., Nanavati, D., Swindell, E. P., Viollet, B., et al. (2015). Direct binding of arsenic trioxide to AMPK and generation of inhibitory effects on acute myeloid leukemia precursors. Molecular Cancer Therapeutics,14(1), 202–212.PubMedCrossRef Beauchamp, E. M., Kosciuczuk, E. M., Serrano, R., Nanavati, D., Swindell, E. P., Viollet, B., et al. (2015). Direct binding of arsenic trioxide to AMPK and generation of inhibitory effects on acute myeloid leukemia precursors. Molecular Cancer Therapeutics,14(1), 202–212.PubMedCrossRef
4.
go back to reference Bhattacharya, S. (2016). Medicinal plants and natural products in amelioration of arsenic toxicity: A short review. Pharmaceutical Biology,55(1), 349–354.PubMedCentralCrossRef Bhattacharya, S. (2016). Medicinal plants and natural products in amelioration of arsenic toxicity: A short review. Pharmaceutical Biology,55(1), 349–354.PubMedCentralCrossRef
5.
go back to reference Chan, A. Y. M., Dolinsky, V. W., Soltys, C. L. M., Viollet, B., Baksh, S., Light, P. E., et al. (2008). Resveratrol inhibits cardiac hypertrophy via AMP-activated protein kinase and Akt. The Journal of Biological Chemistry,283, 24194–24201.PubMedPubMedCentralCrossRef Chan, A. Y. M., Dolinsky, V. W., Soltys, C. L. M., Viollet, B., Baksh, S., Light, P. E., et al. (2008). Resveratrol inhibits cardiac hypertrophy via AMP-activated protein kinase and Akt. The Journal of Biological Chemistry,283, 24194–24201.PubMedPubMedCentralCrossRef
6.
go back to reference Chan, A. Y., Soltys, C. L., Young, M. E., Proud, C. G., & Dyck, J. R. (2004). Activation of AMP-activated protein kinase inhibits protein synthesis associated with hypertrophy in the cardiac myocyte. Journal of Biological Chemistry,279, 32771–32779.PubMedCrossRef Chan, A. Y., Soltys, C. L., Young, M. E., Proud, C. G., & Dyck, J. R. (2004). Activation of AMP-activated protein kinase inhibits protein synthesis associated with hypertrophy in the cardiac myocyte. Journal of Biological Chemistry,279, 32771–32779.PubMedCrossRef
7.
go back to reference Divya, S. P., Pratheeshkumar, P., Son, Y. O., Roy, R. V., Hitron, J. A., Kim, D., et al. (2015). Arsenic induces insulin resistance in mouse adipocytes and myotubes via oxidative stress-regulated mitochondrial Sirt3-FOXO3a signaling pathway. Toxicological Sciences,146(2), 290–300.CrossRef Divya, S. P., Pratheeshkumar, P., Son, Y. O., Roy, R. V., Hitron, J. A., Kim, D., et al. (2015). Arsenic induces insulin resistance in mouse adipocytes and myotubes via oxidative stress-regulated mitochondrial Sirt3-FOXO3a signaling pathway. Toxicological Sciences,146(2), 290–300.CrossRef
8.
go back to reference Ellinsworth, D. C. (2015). Arsenic, reactive oxygen, and endothelial dysfunction. Journal of Pharmacology and Experimental Therapeutics,353(3), 458–464.PubMedCrossRef Ellinsworth, D. C. (2015). Arsenic, reactive oxygen, and endothelial dysfunction. Journal of Pharmacology and Experimental Therapeutics,353(3), 458–464.PubMedCrossRef
9.
go back to reference Fan, Y., Wang, C., Zhang, Y., Hang, P., Liu, Y., Pan, Z., et al. (2013). Genistein ameliorates adverse cardiac effects induced by arsenic trioxide through preventing cardiomyocytes apoptosis. Cellular Physiology and Biochemistry,31, 80–91.PubMedCrossRef Fan, Y., Wang, C., Zhang, Y., Hang, P., Liu, Y., Pan, Z., et al. (2013). Genistein ameliorates adverse cardiac effects induced by arsenic trioxide through preventing cardiomyocytes apoptosis. Cellular Physiology and Biochemistry,31, 80–91.PubMedCrossRef
10.
go back to reference Firdaus, F., Zafeer, M. F., Ahmad, M., & Afzal, M. (2018). Anxiolytic and anti-inflammatory role of thymoquinone in arsenic-induced hippocampal toxicity in Wistar rats. Heliyon,4(6), e00650.PubMedPubMedCentralCrossRef Firdaus, F., Zafeer, M. F., Ahmad, M., & Afzal, M. (2018). Anxiolytic and anti-inflammatory role of thymoquinone in arsenic-induced hippocampal toxicity in Wistar rats. Heliyon,4(6), e00650.PubMedPubMedCentralCrossRef
11.
go back to reference Gonçalves-de-Albuquerque, C. F., Medeiros-de-Moraes, I. M., Oliveira, F. M. J., Burth, P., Bozza, P. T., Faria, M. V. C., et al. (2016). Omega-9 oleic acid induces fatty acid oxidation and decreases organ dysfunction and mortality in experimental sepsis. PLos ONE,11(4), 153607.CrossRef Gonçalves-de-Albuquerque, C. F., Medeiros-de-Moraes, I. M., Oliveira, F. M. J., Burth, P., Bozza, P. T., Faria, M. V. C., et al. (2016). Omega-9 oleic acid induces fatty acid oxidation and decreases organ dysfunction and mortality in experimental sepsis. PLos ONE,11(4), 153607.CrossRef
12.
go back to reference Hamann, I., Petroll, K., Hou, X., Anwar-Mohamed, A., El-Kadi, A. O., & Klotz, L. O. (2014). Acute and long-term effects of arsenite in HepG2 cells: Modulation of insulin signaling. BioMetals,27(2), 317–332.PubMedCrossRef Hamann, I., Petroll, K., Hou, X., Anwar-Mohamed, A., El-Kadi, A. O., & Klotz, L. O. (2014). Acute and long-term effects of arsenite in HepG2 cells: Modulation of insulin signaling. BioMetals,27(2), 317–332.PubMedCrossRef
13.
go back to reference Herum, K. M., Lunde, I. G., Skrbic, B., Florholmen, G., Behmen, D., Sjaastad, I., et al. (2013). Syndecan-4 signaling via NFAT regulates extracellular matrix production and cardiac myofibroblast differentiation in response to mechanical stress. Journal of Molecular and Cellular Cardiology,54, 73–81.PubMedCrossRef Herum, K. M., Lunde, I. G., Skrbic, B., Florholmen, G., Behmen, D., Sjaastad, I., et al. (2013). Syndecan-4 signaling via NFAT regulates extracellular matrix production and cardiac myofibroblast differentiation in response to mechanical stress. Journal of Molecular and Cellular Cardiology,54, 73–81.PubMedCrossRef
14.
go back to reference Davis, Jennifer, Burr, Adam R., Davis, Gregory F., Birnbaumer, Lutz, & Molkentin, Jeffery D. (2012). A TRPC6-dependent pathway for myofibroblast transdifferentiation and wound healing in vivo. Developmental Cell,23(4), 705–715.PubMedPubMedCentralCrossRef Davis, Jennifer, Burr, Adam R., Davis, Gregory F., Birnbaumer, Lutz, & Molkentin, Jeffery D. (2012). A TRPC6-dependent pathway for myofibroblast transdifferentiation and wound healing in vivo. Developmental Cell,23(4), 705–715.PubMedPubMedCentralCrossRef
15.
go back to reference Kris-Etherton, P. M. (1999). Monounsaturated fatty acids and risk of cardiovascular disease. Circulation,100, 1253–1258.PubMedCrossRef Kris-Etherton, P. M. (1999). Monounsaturated fatty acids and risk of cardiovascular disease. Circulation,100, 1253–1258.PubMedCrossRef
16.
go back to reference Li, H. L., Yin, R., Chen, D., Liu, D., Wang, D., Yang, Q., et al. (2007). Long-term activation of adenosine monophosphate-activated protein kinase attenuates pressure-overload-induced cardiac hypertrophy. Journal of Cellular Biochemistry,100, 1086–1099.PubMedCrossRef Li, H. L., Yin, R., Chen, D., Liu, D., Wang, D., Yang, Q., et al. (2007). Long-term activation of adenosine monophosphate-activated protein kinase attenuates pressure-overload-induced cardiac hypertrophy. Journal of Cellular Biochemistry,100, 1086–1099.PubMedCrossRef
17.
go back to reference Liu, B., Pan, S., Dong, X., Qiao, H., Jiang, H., Krissansen, G. W., et al. (2006). Opposing effects of arsenic trioxide on hepatocellular carcinomas in mice. Cancer Science,97, 675–681.PubMedCrossRef Liu, B., Pan, S., Dong, X., Qiao, H., Jiang, H., Krissansen, G. W., et al. (2006). Opposing effects of arsenic trioxide on hepatocellular carcinomas in mice. Cancer Science,97, 675–681.PubMedCrossRef
18.
go back to reference Livingstone, K. M., Lovegrove, J. A., & Givens, D. I. (2012). The impact of substituting SFA in dairy products with MUFA or PUFA on CVD risk: Evidence from human intervention studies. Nutrition Research Reviews,25(2), 193–206.PubMedCrossRef Livingstone, K. M., Lovegrove, J. A., & Givens, D. I. (2012). The impact of substituting SFA in dairy products with MUFA or PUFA on CVD risk: Evidence from human intervention studies. Nutrition Research Reviews,25(2), 193–206.PubMedCrossRef
19.
go back to reference Manna, P., Sinha, M., & Sil, P. C. (2008). Arsenic-induced oxidative myocardial injury: Protective role of arjunolic acid. Archives of Toxicology,82, 137–149.PubMedCrossRef Manna, P., Sinha, M., & Sil, P. C. (2008). Arsenic-induced oxidative myocardial injury: Protective role of arjunolic acid. Archives of Toxicology,82, 137–149.PubMedCrossRef
21.
go back to reference Miao, X., Tang, Z., Wang, Y., Su, G., Sun, W., Wei, W., et al. (2013). Metallothionein prevention of arsenic trioxide-induced cardiac cell death is associated with its inhibition of mitogen-activated protein kinases activation in vitro and in vivo. Toxicology Letters,220, 277–285.PubMedCrossRef Miao, X., Tang, Z., Wang, Y., Su, G., Sun, W., Wei, W., et al. (2013). Metallothionein prevention of arsenic trioxide-induced cardiac cell death is associated with its inhibition of mitogen-activated protein kinases activation in vitro and in vivo. Toxicology Letters,220, 277–285.PubMedCrossRef
22.
go back to reference Moon, K., Guallar, E., & Navas-Acien, A. (2012). Arsenic exposure and cardiovascular disease: An updated systematic review. Current Atherosclerosis Reports,14(6), 542–555.PubMedPubMedCentralCrossRef Moon, K., Guallar, E., & Navas-Acien, A. (2012). Arsenic exposure and cardiovascular disease: An updated systematic review. Current Atherosclerosis Reports,14(6), 542–555.PubMedPubMedCentralCrossRef
23.
go back to reference Ni, Y. G., Berenji, K., Wang, N., Oh, M., Sachan, N., Dey, A., et al. (2006). Foxo transcription factors blunt cardiac hypertrophy by inhibiting calcineurin signaling. Circulation,114(11), 1159–1168.PubMedPubMedCentralCrossRef Ni, Y. G., Berenji, K., Wang, N., Oh, M., Sachan, N., Dey, A., et al. (2006). Foxo transcription factors blunt cardiac hypertrophy by inhibiting calcineurin signaling. Circulation,114(11), 1159–1168.PubMedPubMedCentralCrossRef
24.
go back to reference Pace, C., Dagda, R., & Angermann, J. (2017). Antioxidants protect against arsenic induced mitochondrial cardio-toxicity. Toxics,5(4), 38.PubMedCentralCrossRef Pace, C., Dagda, R., & Angermann, J. (2017). Antioxidants protect against arsenic induced mitochondrial cardio-toxicity. Toxics,5(4), 38.PubMedCentralCrossRef
25.
go back to reference Phan, N. N., Wang, C. Y., & Lin, Y. C. (2014). The novel regulations of MEF2A, CAMKK2, CALM3, and TNNI3 in ventricular hypertrophy induced by arsenic exposure in rats. Toxicology,324, 123–135.PubMedCrossRef Phan, N. N., Wang, C. Y., & Lin, Y. C. (2014). The novel regulations of MEF2A, CAMKK2, CALM3, and TNNI3 in ventricular hypertrophy induced by arsenic exposure in rats. Toxicology,324, 123–135.PubMedCrossRef
26.
go back to reference Li, Qing, Dong, Qiu-Ting, Yang, Yue-Jin, Tian, Xia-Qiu, Jin, Chen, Huang, Pei-Sen, et al. (2016). AMPK-mediated cardioprotection of atorvastatin relates to the reduction of apoptosis and activation of autophagy in infarcted rat hearts. American Journal of Translational Research,8(10), 4160–4171.PubMedPubMedCentral Li, Qing, Dong, Qiu-Ting, Yang, Yue-Jin, Tian, Xia-Qiu, Jin, Chen, Huang, Pei-Sen, et al. (2016). AMPK-mediated cardioprotection of atorvastatin relates to the reduction of apoptosis and activation of autophagy in infarcted rat hearts. American Journal of Translational Research,8(10), 4160–4171.PubMedPubMedCentral
27.
go back to reference Roehrl, M. H. A., Kang, S., Aramburu, J., Wagner, G., Rao, A., & Hogan, P. G. (2004). Selective inhibition of calcineurin-NFAT signaling by blocking protein–protein interaction with small organic molecules. PNAS,101(20), 7554–7559.PubMedCrossRef Roehrl, M. H. A., Kang, S., Aramburu, J., Wagner, G., Rao, A., & Hogan, P. G. (2004). Selective inhibition of calcineurin-NFAT signaling by blocking protein–protein interaction with small organic molecules. PNAS,101(20), 7554–7559.PubMedCrossRef
28.
go back to reference Rooij, E. V., Doevendans, P. A., Theije, C. C., Babiker, F. A., Molkentin, J. D., & Windt, L. J. D. (2002). Requirement of nuclear factor of activated T-cells in calcineurin-mediated cardiomyocyte hypertrophy. Journal of Biological Chemistry,277(50), 48617–48626.PubMedCrossRef Rooij, E. V., Doevendans, P. A., Theije, C. C., Babiker, F. A., Molkentin, J. D., & Windt, L. J. D. (2002). Requirement of nuclear factor of activated T-cells in calcineurin-mediated cardiomyocyte hypertrophy. Journal of Biological Chemistry,277(50), 48617–48626.PubMedCrossRef
29.
go back to reference Salvadó, L., Coll, T., Gómez-Foix, A. M., Salmerón, E., Barroso, E., Palomer, X., et al. (2013). Oleate prevents saturated-fatty-acid-induced ER stress, inflammation and insulin resistance in skeletal muscle cells through an AMPK-dependent mechanism. Diabetologia,56, 1372–1382.PubMedCrossRef Salvadó, L., Coll, T., Gómez-Foix, A. M., Salmerón, E., Barroso, E., Palomer, X., et al. (2013). Oleate prevents saturated-fatty-acid-induced ER stress, inflammation and insulin resistance in skeletal muscle cells through an AMPK-dependent mechanism. Diabetologia,56, 1372–1382.PubMedCrossRef
30.
go back to reference Sanchez-Soria, P., Broka, D., Monks, S. L., & Camenisch, T. D. (2012). Chronic low-level arsenite exposure through drinking water increases blood pressure and promotes concentric left ventricular hypertrophy in female mice. Toxicologic Pathology,40(3), 504–512.PubMedPubMedCentralCrossRef Sanchez-Soria, P., Broka, D., Monks, S. L., & Camenisch, T. D. (2012). Chronic low-level arsenite exposure through drinking water increases blood pressure and promotes concentric left ventricular hypertrophy in female mice. Toxicologic Pathology,40(3), 504–512.PubMedPubMedCentralCrossRef
31.
go back to reference Sengupta, A., Kalinichenko, V. V., & Yutzey, K. E. (2013). FoxO and FoxM1 transcription factors have antagonistic functions in neonatal cardiomyocyte cell cycle withdrawal and IGF1 gene regulation. Circulation Research,112(2), 267–277.PubMedCrossRef Sengupta, A., Kalinichenko, V. V., & Yutzey, K. E. (2013). FoxO and FoxM1 transcription factors have antagonistic functions in neonatal cardiomyocyte cell cycle withdrawal and IGF1 gene regulation. Circulation Research,112(2), 267–277.PubMedCrossRef
32.
go back to reference Sengupta, A., Molkentin, J. D., Paik, J. H., Pinho, R. A. D., & Yutzey, K. E. (2011). FoxO transcription factors promote cardiomyocyte survival upon induction of oxidative stress. The Journal of Biological Chemistry,286(9), 7468–7478.PubMedCrossRef Sengupta, A., Molkentin, J. D., Paik, J. H., Pinho, R. A. D., & Yutzey, K. E. (2011). FoxO transcription factors promote cardiomyocyte survival upon induction of oxidative stress. The Journal of Biological Chemistry,286(9), 7468–7478.PubMedCrossRef
33.
go back to reference States, J. C., Srivastava, S., Chen, Y., & Barchowsky, A. (2009). Arsenic and cardiovascular disease. Toxicological Sciences,107(2), 312–323.PubMedCrossRef States, J. C., Srivastava, S., Chen, Y., & Barchowsky, A. (2009). Arsenic and cardiovascular disease. Toxicological Sciences,107(2), 312–323.PubMedCrossRef
34.
go back to reference Tseng, C. H., Chong, C. K., Tseng, C. P., Hsueh, Y. M., Chiou, H. Y., Tseng, C. C., et al. (2003). Long-term arsenic exposure and ischemic heart disease in arseniasis-hyperendemic villages in Taiwan. Toxicology Letters,137(1–2), 15–21.PubMedCrossRef Tseng, C. H., Chong, C. K., Tseng, C. P., Hsueh, Y. M., Chiou, H. Y., Tseng, C. C., et al. (2003). Long-term arsenic exposure and ischemic heart disease in arseniasis-hyperendemic villages in Taiwan. Toxicology Letters,137(1–2), 15–21.PubMedCrossRef
35.
go back to reference Wang, K., Long, B., Zhou, J., & Li, P. F. (2010). miR-9 and NFATc3 regulate myocardin in cardiac hypertrophy. The Journal of Biological Chemistry,285, 11903–11912.PubMedPubMedCentralCrossRef Wang, K., Long, B., Zhou, J., & Li, P. F. (2010). miR-9 and NFATc3 regulate myocardin in cardiac hypertrophy. The Journal of Biological Chemistry,285, 11903–11912.PubMedPubMedCentralCrossRef
36.
go back to reference Wilkins, B. J., De Windt, L. J., Bueno, O. F., Braz, J. C., Glascock, B. J., Kimball, T. F., et al. (2002). Targeted disruption of NFATc3, but not NFATc4, reveals an intrinsic defect in calcineurin-mediated cardiac hypertrophic growth. Molecular and Cellular Biology,22(21), 7603–7613.PubMedPubMedCentralCrossRef Wilkins, B. J., De Windt, L. J., Bueno, O. F., Braz, J. C., Glascock, B. J., Kimball, T. F., et al. (2002). Targeted disruption of NFATc3, but not NFATc4, reveals an intrinsic defect in calcineurin-mediated cardiac hypertrophic growth. Molecular and Cellular Biology,22(21), 7603–7613.PubMedPubMedCentralCrossRef
37.
go back to reference Yu, H., Berkel, T. J. C., & Biessen, E. A. L. (2007). Therapeutic potential of VIVIT, a selective peptide inhibitor of nuclear factor of activated T cells, in cardiovascular disorders. Cardiovascular Drug Reviews,25(2), 175–187.PubMedCrossRef Yu, H., Berkel, T. J. C., & Biessen, E. A. L. (2007). Therapeutic potential of VIVIT, a selective peptide inhibitor of nuclear factor of activated T cells, in cardiovascular disorders. Cardiovascular Drug Reviews,25(2), 175–187.PubMedCrossRef
38.
go back to reference Yun, H., Park, S., Kim, M. J., Yang, W. K., Im, D. U., Yang, K. R., et al. (2014). AMP-activated protein kinase mediates the antioxidant effects of resveratrol through regulation of the transcription factor FoxO1. The FEBS Journal,281, 4421–4438.PubMedCrossRef Yun, H., Park, S., Kim, M. J., Yang, W. K., Im, D. U., Yang, K. R., et al. (2014). AMP-activated protein kinase mediates the antioxidant effects of resveratrol through regulation of the transcription factor FoxO1. The FEBS Journal,281, 4421–4438.PubMedCrossRef
39.
go back to reference Zhao, X. Y., Li, G. Y., Liu, Y., Chai, L. M., Chen, J. X., Zhang, Y., et al. (2008). Reseveratrol protects against arsenic trioxide-induced cardiotoxicity in vitro and in vivo. British Journal of Pharmacology,154, 105–113.PubMedPubMedCentralCrossRef Zhao, X. Y., Li, G. Y., Liu, Y., Chai, L. M., Chen, J. X., Zhang, Y., et al. (2008). Reseveratrol protects against arsenic trioxide-induced cardiotoxicity in vitro and in vivo. British Journal of Pharmacology,154, 105–113.PubMedPubMedCentralCrossRef
Metadata
Title
Oleic Acid Protects from Arsenic-Induced Cardiac Hypertrophy via AMPK/FoxO/NFATc3 Pathway
Authors
Jayeeta Samanta
Arunima Mondal
Srimoyee Saha
Santanu Chakraborty
Arunima Sengupta
Publication date
01-06-2020
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 3/2020
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-019-09550-9

Other articles of this Issue 3/2020

Cardiovascular Toxicology 3/2020 Go to the issue