Skip to main content
Top
Published in: Cardiovascular Toxicology 3/2020

01-06-2020

Arbutin Attenuates Isoproterenol-Induced Cardiac Hypertrophy by Inhibiting TLR-4/NF-κB Pathway in Mice

Authors: Nasiruddin Nalban, Rajendra Sangaraju, Sateesh Alavala, Salma Mukhtar Mir, Mahesh Kumar Jerald, Ramakrishna Sistla

Published in: Cardiovascular Toxicology | Issue 3/2020

Login to get access

Abstract

Arbutin is a glycoside reported for its anti-oxidant, anti-inflammatory and anti-tumor properties. However, the cardioprotective effect of Arbutin is not well established. The study aims to understand the effect of arbutin on isoproterenol (ISO)-induced cardiac hypertrophy in mice. The animals were pretreated with Arbutin for a week and ISO was administered for 10 days and then sacrificed. Cardiac injury markers such as creatinine kinase and lactate dehydrogenase concentrations were measured in the serum. The mRNA expression of cardiac hypertrophy markers namely atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) were measured using qRT-PCR. The levels of pro-inflammatory cytokines TNF-α and IL-6 were quantified by ELISA in isolated tissues and serum. Other tissue anti-oxidant parameters such as GST, GSH, SOD and TBARS were also measured. TUNEL assay was performed to detect apoptosis. Histology studies were performed using H & E and Masson trichome staining. Immunoblot analysis was used to quantify the protein expression of TLR-4 and NF-κB. ISO-alone-treated group showed significant increase in CK-MB, LDH along with increase in hypertrophic markers ANP and BNP, TNF-α and IL-6 levels in serum and tissues and increased cardiomyocyte apoptosis. Anti-oxidant parameters were significantly decreased and TLR-4 and NF-κB protein expression was found to be upregulated in comparison to the control group. Pretreatment with Arbutin-exhibited significant inhibition of TLR-4/NF-κB pathway with decreased levels of pro-inflammatory cytokines and enhanced myocardial anti-oxidant status. Our study demonstrated that pretreatment with Arbutin exhibits marked protective effects on ISO-induced cardiac hypertrophy in mice. Thus, Arbutin may be used as potential pharmacological interventions in the management of cardiac hypertrophy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Deatona, Christi, Froelicher, Erika Sivarajan, Wuc, Lai Har, Hod, Camille, Shishani, Kawkab, & Jaarsmaf, Tiny. (2011). The global burden of cardiovascular disease. European Journal of Cardiovascular Nursing,10(2), S5–S13. Deatona, Christi, Froelicher, Erika Sivarajan, Wuc, Lai Har, Hod, Camille, Shishani, Kawkab, & Jaarsmaf, Tiny. (2011). The global burden of cardiovascular disease. European Journal of Cardiovascular Nursing,10(2), S5–S13.
3.
go back to reference Rohini, A., Agrawal, N., Koyani, C. N., & Singh, R. (2010). Molecular targets and regulators of cardiac hypertrophy. Pharmacological Research,61(4), 269–280.PubMed Rohini, A., Agrawal, N., Koyani, C. N., & Singh, R. (2010). Molecular targets and regulators of cardiac hypertrophy. Pharmacological Research,61(4), 269–280.PubMed
4.
go back to reference Nadal-Ginard, B., Kajstura, J., Leri, A., & Anversa, P. (2003). Myocyte death, growth, and regeneration in cardiac hypertrophy and failure. Circulation Research,92(2), 139–150.PubMed Nadal-Ginard, B., Kajstura, J., Leri, A., & Anversa, P. (2003). Myocyte death, growth, and regeneration in cardiac hypertrophy and failure. Circulation Research,92(2), 139–150.PubMed
5.
go back to reference Zhang, Y., Xu, J., Long, Z., Wang, C., Wang, L., Sun, P., et al. (2016). Hydrogen (H2) inhibits isoproterenol-induced cardiac hypertrophy via antioxidative pathways. Frontiers in Pharmacology,7, 392.PubMedPubMedCentral Zhang, Y., Xu, J., Long, Z., Wang, C., Wang, L., Sun, P., et al. (2016). Hydrogen (H2) inhibits isoproterenol-induced cardiac hypertrophy via antioxidative pathways. Frontiers in Pharmacology,7, 392.PubMedPubMedCentral
6.
go back to reference Ho, Y. L., Wu, C. C., Lin, L. C., Huang, C. H., Chen, W. J., Chen, M. F., et al. (1998). Assessment of the coronary artery disease and systolic dysfunction in hypertensive patients with the dobutamine-atropine stress echocardiography: Effect of the left ventricular hypertrophy. Cardiology,89(1), 52–58.PubMed Ho, Y. L., Wu, C. C., Lin, L. C., Huang, C. H., Chen, W. J., Chen, M. F., et al. (1998). Assessment of the coronary artery disease and systolic dysfunction in hypertensive patients with the dobutamine-atropine stress echocardiography: Effect of the left ventricular hypertrophy. Cardiology,89(1), 52–58.PubMed
7.
go back to reference Li, J. M., Gall, N. P., Grieve, D. J., Chen, M., & Shah, A. M. (2002). Activation of NADPH oxidase during progression of cardiac hypertrophy to failure. Hypertension,40(4), 477–484.PubMed Li, J. M., Gall, N. P., Grieve, D. J., Chen, M., & Shah, A. M. (2002). Activation of NADPH oxidase during progression of cardiac hypertrophy to failure. Hypertension,40(4), 477–484.PubMed
8.
go back to reference Zhang, Y., Zhang, X. J., & Li, H. (2017). Targeting interferon regulatory factor for cardiometabolic diseases: Opportunities and challenges. Current Drug Targets,18(15), 1754–1778.PubMed Zhang, Y., Zhang, X. J., & Li, H. (2017). Targeting interferon regulatory factor for cardiometabolic diseases: Opportunities and challenges. Current Drug Targets,18(15), 1754–1778.PubMed
9.
go back to reference Gutierrez, S. H., Kuri, M. R., & del Castillo, E. R. (2008). Cardiac role of the transcription factor NF-κB. Cardiovascular & Haematological Disorders-Drug Targets (Formerly Current Drug Targets-Cardiovascular &Hematological Disorders),8(2), 153–160. Gutierrez, S. H., Kuri, M. R., & del Castillo, E. R. (2008). Cardiac role of the transcription factor NF-κB. Cardiovascular & Haematological Disorders-Drug Targets (Formerly Current Drug Targets-Cardiovascular &Hematological Disorders),8(2), 153–160.
10.
go back to reference Frieler, R. A., & Mortensen, R. M. (2015). Immune cell and other noncardiomyocyte regulation of cardiac hypertrophy and remodeling. Circulation,131(11), 1019–1030.PubMedPubMedCentral Frieler, R. A., & Mortensen, R. M. (2015). Immune cell and other noncardiomyocyte regulation of cardiac hypertrophy and remodeling. Circulation,131(11), 1019–1030.PubMedPubMedCentral
11.
go back to reference Yang, J., Wang, H. X., Zhang, Y. J., Yang, Y. H., Lu, M. L., Zhang, J., et al. (2013). Astragaloside IV attenuates inflammatory cytokines by inhibiting TLR4/NF-кBsignaling pathway in isoproterenol-induced myocardial hypertrophy. Journal of Ethnopharmacology,150(3), 1062–1070.PubMed Yang, J., Wang, H. X., Zhang, Y. J., Yang, Y. H., Lu, M. L., Zhang, J., et al. (2013). Astragaloside IV attenuates inflammatory cytokines by inhibiting TLR4/NF-кBsignaling pathway in isoproterenol-induced myocardial hypertrophy. Journal of Ethnopharmacology,150(3), 1062–1070.PubMed
12.
go back to reference Achek, A., Yesudhas, D., & Choi, S. (2016). Toll-like receptors: Promising therapeutic targets for inflammatory diseases. Archives of Pharmacal Research,39(8), 1032–1049.PubMed Achek, A., Yesudhas, D., & Choi, S. (2016). Toll-like receptors: Promising therapeutic targets for inflammatory diseases. Archives of Pharmacal Research,39(8), 1032–1049.PubMed
13.
go back to reference Ma, D., Zhang, J., Zhang, Y., Zhang, X., Han, X., Song, T., et al. (2018). Inhibition of myocardial hypertrophy by magnesium isoglycyrrhizinate through the TLR4/NF-κB signaling pathway in mice. International Immunopharmacology,55, 237–244.PubMed Ma, D., Zhang, J., Zhang, Y., Zhang, X., Han, X., Song, T., et al. (2018). Inhibition of myocardial hypertrophy by magnesium isoglycyrrhizinate through the TLR4/NF-κB signaling pathway in mice. International Immunopharmacology,55, 237–244.PubMed
14.
go back to reference Katare, P. B., Bagul, P. K., Dinda, A. K., & Banerjee, S. K. (2017). Toll-like receptor 4 inhibition improves oxidative stress and mitochondrial health in isoproterenol-induced cardiac hypertrophy in rats. Frontiers in Immunology,8, 719.PubMedPubMedCentral Katare, P. B., Bagul, P. K., Dinda, A. K., & Banerjee, S. K. (2017). Toll-like receptor 4 inhibition improves oxidative stress and mitochondrial health in isoproterenol-induced cardiac hypertrophy in rats. Frontiers in Immunology,8, 719.PubMedPubMedCentral
15.
go back to reference Kumar, S., Alam, M. J., Prabhakar, P., Ahmad, S., Maulik, S. K., Sharma, M., et al. (2017). Proteomic analysis of the protective effects of aqueous bark extract of Terminalia arjuna (Roxb.) on isoproterenol-induced cardiac hypertrophy in rats. Journal of Ethnopharmacology,198, 98–108.PubMed Kumar, S., Alam, M. J., Prabhakar, P., Ahmad, S., Maulik, S. K., Sharma, M., et al. (2017). Proteomic analysis of the protective effects of aqueous bark extract of Terminalia arjuna (Roxb.) on isoproterenol-induced cardiac hypertrophy in rats. Journal of Ethnopharmacology,198, 98–108.PubMed
17.
go back to reference Zhang, S., Tang, F., Yang, Y., Lu, M., Luan, A., Zhang, J., et al. (2015). Astragaloside IV protects against isoproterenol-induced cardiac hypertrophy by regulating NF-κB/PGC-1α signaling mediated energy biosynthesis. PLoS ONE,10(3), e0118759.PubMedPubMedCentral Zhang, S., Tang, F., Yang, Y., Lu, M., Luan, A., Zhang, J., et al. (2015). Astragaloside IV protects against isoproterenol-induced cardiac hypertrophy by regulating NF-κB/PGC-1α signaling mediated energy biosynthesis. PLoS ONE,10(3), e0118759.PubMedPubMedCentral
18.
go back to reference Edwards, S. E., Rocha, I., Heinrich, M., & Williamson, E. M. (2015). Phytopharmacy: An evidence-based guide to herbal medicinal products. Chichester: Wiley. Edwards, S. E., Rocha, I., Heinrich, M., & Williamson, E. M. (2015). Phytopharmacy: An evidence-based guide to herbal medicinal products. Chichester: Wiley.
19.
go back to reference Migas, P., & Krauze-Baranowska, M. (2015). The significance of Arbutin and its derivatives in therapy and cosmetics. Phytochemistry Letters,13, 35–40. Migas, P., & Krauze-Baranowska, M. (2015). The significance of Arbutin and its derivatives in therapy and cosmetics. Phytochemistry Letters,13, 35–40.
20.
go back to reference Ahmadian, S. R., GhaS, E., Mi-Kasman, M., Pouramir, M., & Sadeghi, F. (2019). Arbutin attenuates cognitive impairment and inflammatory response in pentylenetetrazol-induced kindling model of epilepsy. Neuropharmacology,146, 117–127.PubMed Ahmadian, S. R., GhaS, E., Mi-Kasman, M., Pouramir, M., & Sadeghi, F. (2019). Arbutin attenuates cognitive impairment and inflammatory response in pentylenetetrazol-induced kindling model of epilepsy. Neuropharmacology,146, 117–127.PubMed
21.
go back to reference Taha, M. M. E., Salga, M. S., Ali, H. M., Abdulla, M. A., Abdelwahab, S. I., & Hadi, A. H. A. (2012). Gastroprotective activities of Turnera diffusa Willd. exSchult. revisited: Role of Arbutin. Journal of Ethnopharmacology,141(1), 273–281.PubMed Taha, M. M. E., Salga, M. S., Ali, H. M., Abdulla, M. A., Abdelwahab, S. I., & Hadi, A. H. A. (2012). Gastroprotective activities of Turnera diffusa Willd. exSchult. revisited: Role of Arbutin. Journal of Ethnopharmacology,141(1), 273–281.PubMed
22.
go back to reference Wu, L. H., Li, P., Zhao, Q. L., Piao, J. L., Jiao, Y. F., Kadowaki, M., et al. (2014). Arbutin, an intracellular hydroxyl radical scavenger, protects radiation-induced apoptosis in human lymphoma U937 cells. Apoptosis,19(11), 1654–1663.PubMed Wu, L. H., Li, P., Zhao, Q. L., Piao, J. L., Jiao, Y. F., Kadowaki, M., et al. (2014). Arbutin, an intracellular hydroxyl radical scavenger, protects radiation-induced apoptosis in human lymphoma U937 cells. Apoptosis,19(11), 1654–1663.PubMed
23.
go back to reference Lee, H. J., & Kim, K. W. (2012). Anti-inflammatory effects of Arbutin in lipopolysaccharide-stimulated BV2 microglial cells. Inflammation Research,61(8), 817–825.PubMed Lee, H. J., & Kim, K. W. (2012). Anti-inflammatory effects of Arbutin in lipopolysaccharide-stimulated BV2 microglial cells. Inflammation Research,61(8), 817–825.PubMed
24.
go back to reference Dadgar, M., Pouramir, M., Dastan, Z., Ghasemi-Kasman, M., Mi-Kasman, M., Ashrafpour, M., et al. (2018). Arbutin attenuates behavioral impairment and oxidative stress in an animal model of Parkinson’s disease. Avicenna Journal of Phytomedicine,8(6), 533.PubMedPubMedCentral Dadgar, M., Pouramir, M., Dastan, Z., Ghasemi-Kasman, M., Mi-Kasman, M., Ashrafpour, M., et al. (2018). Arbutin attenuates behavioral impairment and oxidative stress in an animal model of Parkinson’s disease. Avicenna Journal of Phytomedicine,8(6), 533.PubMedPubMedCentral
25.
go back to reference Zhou, N., Zeng, M. N., Li, K., Yang, Y. Y., Bai, Z. Y., Zheng, X. K., et al. (2018). An integrated metabolomic strategy for the characterization of the effects of Chinese yam and its three active components on septic cardiomyopathy. Food & Function,9(9), 4989–4997. Zhou, N., Zeng, M. N., Li, K., Yang, Y. Y., Bai, Z. Y., Zheng, X. K., et al. (2018). An integrated metabolomic strategy for the characterization of the effects of Chinese yam and its three active components on septic cardiomyopathy. Food & Function,9(9), 4989–4997.
26.
go back to reference Patel, S. (2016). Plant-derived cardiac glycosides: Role in heart ailments and cancer management. Biomedicine & Pharmacotherapy,84, 1036–1041. Patel, S. (2016). Plant-derived cardiac glycosides: Role in heart ailments and cancer management. Biomedicine & Pharmacotherapy,84, 1036–1041.
27.
go back to reference Ye, Jinyan, Guan, Minqiang, Yao, Lu, Zhang, Dan, Li, Chengye, & Zhou, Caicun. (2019). Arbutin attenuates LPS-induced lung injury via Sirt1/Nrf2/NF-κBp65 pathway. Pulmonary Pharmacology & Therapeutics,54, 53–59. Ye, Jinyan, Guan, Minqiang, Yao, Lu, Zhang, Dan, Li, Chengye, & Zhou, Caicun. (2019). Arbutin attenuates LPS-induced lung injury via Sirt1/Nrf2/NF-κBp65 pathway. Pulmonary Pharmacology & Therapeutics,54, 53–59.
28.
go back to reference Sahu, B. D., Tatireddy, S., Koneru, M., Borkar, R. M., Kumar, J. M., Kuncha, M., et al. (2014). Naringin ameliorates gentamicin-induced nephrotoxicity and associated mitochondrial dysfunction, apoptosis and inflammation in rats: Possible mechanism of nephroprotection. Toxicology and Applied Pharmacology,277(1), 8–20.PubMed Sahu, B. D., Tatireddy, S., Koneru, M., Borkar, R. M., Kumar, J. M., Kuncha, M., et al. (2014). Naringin ameliorates gentamicin-induced nephrotoxicity and associated mitochondrial dysfunction, apoptosis and inflammation in rats: Possible mechanism of nephroprotection. Toxicology and Applied Pharmacology,277(1), 8–20.PubMed
29.
go back to reference Mir, S. M., Ravuri, H. G., Pradhan, R. K., Narra, S., Kumar, J. M., Kuncha, M., et al. (2018). Ferulic acid protects lipopolysaccharide-induced acute kidney injury by suppressing inflammatory events and upregulating antioxidant defenses in Balb/c mice. Biomedicine & Pharmacotherapy,100, 304–315. Mir, S. M., Ravuri, H. G., Pradhan, R. K., Narra, S., Kumar, J. M., Kuncha, M., et al. (2018). Ferulic acid protects lipopolysaccharide-induced acute kidney injury by suppressing inflammatory events and upregulating antioxidant defenses in Balb/c mice. Biomedicine & Pharmacotherapy,100, 304–315.
30.
go back to reference Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry,95(2), 351–358.PubMed Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry,95(2), 351–358.PubMed
31.
go back to reference Sahu, B. D., Kumar, J. M., & Sistla, R. (2016). Fisetin, a dietary flavonoid, ameliorates experimental colitis in mice: Relevance of NF-κB signaling. The Journal of Nutritional Biochemistry,28, 171–182.PubMed Sahu, B. D., Kumar, J. M., & Sistla, R. (2016). Fisetin, a dietary flavonoid, ameliorates experimental colitis in mice: Relevance of NF-κB signaling. The Journal of Nutritional Biochemistry,28, 171–182.PubMed
32.
go back to reference Yeh, Y. L., Tsai, H. I., Cheng, S. M., Pai, P., Ho, T. J., Chen, R. J., et al. (2016). Mechanism of Taiwan Mingjian Oolong tea to inhibit isoproterenol-induced hypertrophy and apoptosis in cardiomyoblasts. The American Journal of Chinese Medicine,44(01), 77–86.PubMed Yeh, Y. L., Tsai, H. I., Cheng, S. M., Pai, P., Ho, T. J., Chen, R. J., et al. (2016). Mechanism of Taiwan Mingjian Oolong tea to inhibit isoproterenol-induced hypertrophy and apoptosis in cardiomyoblasts. The American Journal of Chinese Medicine,44(01), 77–86.PubMed
33.
go back to reference Feng, X. J., Gao, H., Gao, S., Li, Z., Li, H., Lu, J., et al. (2015). The orphan receptor NOR1 participates in isoprenaline-induced cardiac hypertrophy by regulating PARP-1. British Journal of Pharmacology,172(11), 2852–2863.PubMedPubMedCentral Feng, X. J., Gao, H., Gao, S., Li, Z., Li, H., Lu, J., et al. (2015). The orphan receptor NOR1 participates in isoprenaline-induced cardiac hypertrophy by regulating PARP-1. British Journal of Pharmacology,172(11), 2852–2863.PubMedPubMedCentral
34.
go back to reference Wang, S. B., Tian, S., Yang, F., Yang, H. G., Yang, X. Y., & Du, G. H. (2009). Cardioprotective effect of salvianolic acid A on isoproterenol-induced myocardial infarction in rats. European Journal of Pharmacology,615(1–3), 125–132.PubMed Wang, S. B., Tian, S., Yang, F., Yang, H. G., Yang, X. Y., & Du, G. H. (2009). Cardioprotective effect of salvianolic acid A on isoproterenol-induced myocardial infarction in rats. European Journal of Pharmacology,615(1–3), 125–132.PubMed
35.
go back to reference Li, H., Xie, Y. H., Yang, Q., Wang, S. W., Zhang, B. L., Wang, J. B., et al. (2012). Cardioprotective effect of paeonol and danshensu combination on isoproterenol-induced myocardial injury in rats. PLoS ONE,7(11), e48872.PubMedPubMedCentral Li, H., Xie, Y. H., Yang, Q., Wang, S. W., Zhang, B. L., Wang, J. B., et al. (2012). Cardioprotective effect of paeonol and danshensu combination on isoproterenol-induced myocardial injury in rats. PLoS ONE,7(11), e48872.PubMedPubMedCentral
36.
go back to reference Gupta, D. K., & Wang, T. J. (2015). Natriuretic peptides and cardiometabolic health. Circulation Journal,79(8), 1647–1655.PubMedPubMedCentral Gupta, D. K., & Wang, T. J. (2015). Natriuretic peptides and cardiometabolic health. Circulation Journal,79(8), 1647–1655.PubMedPubMedCentral
37.
go back to reference Kuhn, M. (2015). Cardiology: A big-hearted molecule. Nature,519(7544), 416.PubMed Kuhn, M. (2015). Cardiology: A big-hearted molecule. Nature,519(7544), 416.PubMed
38.
go back to reference Mao, H. P., Wang, X. Y., Chang, Y. X., Chen, L., Niu, Z. C., Ai, J. Q., et al. (2016). Danhong injection attenuates isoproterenol-induced cardiac hypertrophy by regulating p38 and NF-κb pathway. Journal of Ethnopharmacology,186, 20–29.PubMed Mao, H. P., Wang, X. Y., Chang, Y. X., Chen, L., Niu, Z. C., Ai, J. Q., et al. (2016). Danhong injection attenuates isoproterenol-induced cardiac hypertrophy by regulating p38 and NF-κb pathway. Journal of Ethnopharmacology,186, 20–29.PubMed
39.
go back to reference Ryu, Y., Jin, L., Kee, H. J., Piao, Z. H., Cho, J. Y., Kim, G. R., et al. (2016). Gallic acid prevents isoproterenol-induced cardiac hypertrophy and fibrosis through regulation of JNK2 signaling and Smad3 binding activity. Scientific Reports,6, 34790.PubMedPubMedCentral Ryu, Y., Jin, L., Kee, H. J., Piao, Z. H., Cho, J. Y., Kim, G. R., et al. (2016). Gallic acid prevents isoproterenol-induced cardiac hypertrophy and fibrosis through regulation of JNK2 signaling and Smad3 binding activity. Scientific Reports,6, 34790.PubMedPubMedCentral
40.
go back to reference Angeloni, C., Leoncini, E., Malaguti, M., Angelini, S., Hrelia, P., & Hrelia, S. (2009). Modulation of phase II enzymes by sulforaphane: Implications for its cardioprotective potential. Journal of Agricultural and Food Chemistry,57(12), 5615–5622.PubMed Angeloni, C., Leoncini, E., Malaguti, M., Angelini, S., Hrelia, P., & Hrelia, S. (2009). Modulation of phase II enzymes by sulforaphane: Implications for its cardioprotective potential. Journal of Agricultural and Food Chemistry,57(12), 5615–5622.PubMed
41.
go back to reference Seddon, M., Looi, Y. H., & Shah, A. M. (2007). Oxidative stress and redox signalling in cardiac hypertrophy and heart failure. Heart,93(8), 903–907.PubMed Seddon, M., Looi, Y. H., & Shah, A. M. (2007). Oxidative stress and redox signalling in cardiac hypertrophy and heart failure. Heart,93(8), 903–907.PubMed
42.
go back to reference Wong, Z. W., Thanikachalam, P. V., & Ramamurthy, S. (2017). Molecular understanding of the protective role of natural products on isoproterenol-induced myocardial infarction: A review. Biomedicine & Pharmacotherapy,94, 1145–1166. Wong, Z. W., Thanikachalam, P. V., & Ramamurthy, S. (2017). Molecular understanding of the protective role of natural products on isoproterenol-induced myocardial infarction: A review. Biomedicine & Pharmacotherapy,94, 1145–1166.
43.
go back to reference Sahu, B. D., Anubolu, H., Koneru, M., Kumar, J. M., Kuncha, M., Rachamalla, S. S., et al. (2014). Cardioprotective effect of embelin on isoproterenol-induced myocardial injury in rats: Possible involvement of mitochondrial dysfunction and apoptosis. Life Sciences,107(1–2), 59–67.PubMed Sahu, B. D., Anubolu, H., Koneru, M., Kumar, J. M., Kuncha, M., Rachamalla, S. S., et al. (2014). Cardioprotective effect of embelin on isoproterenol-induced myocardial injury in rats: Possible involvement of mitochondrial dysfunction and apoptosis. Life Sciences,107(1–2), 59–67.PubMed
44.
go back to reference Takebayashi, J., Ishii, R., Chen, J., Matsumoto, T., Ishimi, Y., & Tai, A. (2010). Reassessment of antioxidant activity of Arbutin: Multifaceted evaluation using five antioxidant assay systems. Free Radical Research,44(4), 473–478.PubMed Takebayashi, J., Ishii, R., Chen, J., Matsumoto, T., Ishimi, Y., & Tai, A. (2010). Reassessment of antioxidant activity of Arbutin: Multifaceted evaluation using five antioxidant assay systems. Free Radical Research,44(4), 473–478.PubMed
45.
go back to reference Purcell, N. H., Tang, G., Yu, C., Mercurio, F., DiDonato, J. A., & Lin, A. (2001). Activation of NF-κB is required for hypertrophic growth of primary rat neonatal ventricular cardiomyocytes. Proceedings of the National Academy of Sciences,98(12), 6668–6673. Purcell, N. H., Tang, G., Yu, C., Mercurio, F., DiDonato, J. A., & Lin, A. (2001). Activation of NF-κB is required for hypertrophic growth of primary rat neonatal ventricular cardiomyocytes. Proceedings of the National Academy of Sciences,98(12), 6668–6673.
46.
go back to reference Zhang, Y., Bauersachs, J., & Langer, H. F. (2017). Immune mechanisms in heart failure. European Journal of Heart Failure,19(11), 1379–1389.PubMed Zhang, Y., Bauersachs, J., & Langer, H. F. (2017). Immune mechanisms in heart failure. European Journal of Heart Failure,19(11), 1379–1389.PubMed
47.
go back to reference Shirazi, L. F., Bissett, J., Romeo, F., & Mehta, J. L. (2017). Role of inflammation in heart failure. Current Atherosclerosis Reports,19(6), 27.PubMed Shirazi, L. F., Bissett, J., Romeo, F., & Mehta, J. L. (2017). Role of inflammation in heart failure. Current Atherosclerosis Reports,19(6), 27.PubMed
Metadata
Title
Arbutin Attenuates Isoproterenol-Induced Cardiac Hypertrophy by Inhibiting TLR-4/NF-κB Pathway in Mice
Authors
Nasiruddin Nalban
Rajendra Sangaraju
Sateesh Alavala
Salma Mukhtar Mir
Mahesh Kumar Jerald
Ramakrishna Sistla
Publication date
01-06-2020
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 3/2020
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-019-09548-3

Other articles of this Issue 3/2020

Cardiovascular Toxicology 3/2020 Go to the issue