Skip to main content
Top
Published in: Cardiovascular Toxicology 1/2020

01-02-2020 | Glibenclamide

Role of ATP-Sensitive Potassium Channel (KATP) and eNOS in Mediating the Protective Effect of Nicorandil in Cyclophosphamide-Induced Cardiotoxicity

Authors: Marwa M. M. Refaie, Sayed Shehata, Maram El-Hussieny, Wedad M. Abdelraheem, Asmaa M. A. Bayoumi

Published in: Cardiovascular Toxicology | Issue 1/2020

Login to get access

Abstract

Cyclophosphamide (CP) is a widely used chemotherapeutic agent but its clinical usefulness is challenged with different forms of toxicities. No studies have evaluated the possible protective effect of nicorandil (NIC) in CP-induced cardiotoxicity. Our study aimed to investigate this effect by using NIC (3 mg/kg/day) orally for 5 days, in the presence or absence of cardiotoxicity induced by intraperitoneal (i.p.) injection of CP (150 mg/kg) on 4th and 5th days. We confirmed the role of ATP-sensitive potassium channel (KATP) by coadministration of glibenclamide (GP) (5 mg/kg/day) 2 h before NIC (3 mg/kg/day) for 5 days. Moreover, the role of endothelial nitric oxide synthase (eNOS) was confirmed by coadministration of nitro-ω-l-arginine (l-NNA) (25 mg/kg/day) for 5 days. Results showed that CP succeeded in induction of cardiotoxicity which manifested by a significant increase in heart weights, creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), troponin I, cardiac tissue malondialdehyde (MDA), tumor necrosis factor alpha (TNF-α), interleukin 1β (IL1 β), and caspase-3 levels. Furthermore, CP group showed toxic histopathological changes of marked cardiac damage in addition to a significant decrease in total antioxidant capacity (TAC), superoxide dismutase (SOD), eNOS gene expression, and B cell lymphoma 2 (Bcl2) immunoexpression. NIC succeeded in reversing CP-induced cardiotoxicity by its potassium channel opening effect, stimulating eNOS gene expression, anti-inflammatory, antiapoptotic, and antioxidant properties. Coadministration of GP or l-NNA could diminish the protective effect of NIC. This proves the important role of KATP and eNOS in mediating such protection.
Literature
1.
go back to reference Mahipal, P., & Pawar, R. S. (2017). Nephroprotective effect of Murraya koenigii on cyclophosphamide induced nephrotoxicity in rats. Asian Pacific Journal of Tropical Medicine,10, 808–812.CrossRef Mahipal, P., & Pawar, R. S. (2017). Nephroprotective effect of Murraya koenigii on cyclophosphamide induced nephrotoxicity in rats. Asian Pacific Journal of Tropical Medicine,10, 808–812.CrossRef
2.
go back to reference Fouad, A. A., Qutub, H. O., & Al-Melhim, W. N. (2016). Punicalagin alleviates hepatotoxicity in rats challenged with cyclophosphamide. Environmental Toxicology and Pharmacology,45, 158–162.CrossRef Fouad, A. A., Qutub, H. O., & Al-Melhim, W. N. (2016). Punicalagin alleviates hepatotoxicity in rats challenged with cyclophosphamide. Environmental Toxicology and Pharmacology,45, 158–162.CrossRef
3.
go back to reference Avci, H., Epikmen, E. T., Ipek, E., Tunca, R., Birincioglu, S. S., Aksit, H., et al. (2017). Protective effects of silymarin and curcumin on cyclophosphamide-induced cardiotoxicity. Experimental and Toxicologic Pathology,69, 317–327.CrossRef Avci, H., Epikmen, E. T., Ipek, E., Tunca, R., Birincioglu, S. S., Aksit, H., et al. (2017). Protective effects of silymarin and curcumin on cyclophosphamide-induced cardiotoxicity. Experimental and Toxicologic Pathology,69, 317–327.CrossRef
4.
go back to reference El-Kashef, D. H. (2018). Role of venlafaxine in prevention of cyclophosphamide-induced lung toxicity and airway hyperactivity in rats. Environmental Toxicology and Pharmacology,58, 70–76.CrossRef El-Kashef, D. H. (2018). Role of venlafaxine in prevention of cyclophosphamide-induced lung toxicity and airway hyperactivity in rats. Environmental Toxicology and Pharmacology,58, 70–76.CrossRef
5.
go back to reference Mahmoud, A. M. (2014). Hesperidin protects against cyclophosphamide-induced hepatotoxicity by upregulation of PPARgamma and abrogation of oxidative stress and inflammation. Canadian Journal of Physiology and Pharmacology,92, 717–724.CrossRef Mahmoud, A. M. (2014). Hesperidin protects against cyclophosphamide-induced hepatotoxicity by upregulation of PPARgamma and abrogation of oxidative stress and inflammation. Canadian Journal of Physiology and Pharmacology,92, 717–724.CrossRef
6.
go back to reference Nafees, S., Rashid, S., Ali, N., Hasan, S. K., & Sultana, S. (2015). Rutin ameliorates cyclophosphamide induced oxidative stress and inflammation in Wistar rats: Role of NFkappaB/MAPK pathway. Chemico-Biological Interactions,231, 98–107.CrossRef Nafees, S., Rashid, S., Ali, N., Hasan, S. K., & Sultana, S. (2015). Rutin ameliorates cyclophosphamide induced oxidative stress and inflammation in Wistar rats: Role of NFkappaB/MAPK pathway. Chemico-Biological Interactions,231, 98–107.CrossRef
7.
go back to reference Refaie, M. M. M., El-Hussieny, M., & Zenhom, N. M. (2018). Protective role of nebivolol in cadmium-induced hepatotoxicity via downregulation of oxidative stress, apoptosis and inflammatory pathways. Environmental Toxicology and Pharmacology,58, 212–219.CrossRef Refaie, M. M. M., El-Hussieny, M., & Zenhom, N. M. (2018). Protective role of nebivolol in cadmium-induced hepatotoxicity via downregulation of oxidative stress, apoptosis and inflammatory pathways. Environmental Toxicology and Pharmacology,58, 212–219.CrossRef
8.
go back to reference Potnuri, A. G., Allakonda, L., & Lahkar, M. (2018). Crocin attenuates cyclophosphamide induced testicular toxicity by preserving glutathione redox system. Biomedicine & Pharmacotherapy,101, 174–180.CrossRef Potnuri, A. G., Allakonda, L., & Lahkar, M. (2018). Crocin attenuates cyclophosphamide induced testicular toxicity by preserving glutathione redox system. Biomedicine & Pharmacotherapy,101, 174–180.CrossRef
9.
go back to reference Omole, J. G., Ayoka, O. A., Alabi, Q. K., Adefisayo, M. A., Asafa, M. A., Olubunmi, B. O., et al. (2018). Protective effect of kolaviron on cyclophosphamide-induced cardiac toxicity in rats. Journal of Evidence-Based Integrative Medicine,23, 2156587218757649.CrossRef Omole, J. G., Ayoka, O. A., Alabi, Q. K., Adefisayo, M. A., Asafa, M. A., Olubunmi, B. O., et al. (2018). Protective effect of kolaviron on cyclophosphamide-induced cardiac toxicity in rats. Journal of Evidence-Based Integrative Medicine,23, 2156587218757649.CrossRef
10.
go back to reference Ravindran, S., Swaminathan, K., Ramesh, A., & Kurian, G. A. (2017). Nicorandil attenuates neuronal mitochondrial dysfunction and oxidative stress associated with murine model of vascular calcification. Acta Neurobiologiae Experimentalis (Wars),77, 57–67.CrossRef Ravindran, S., Swaminathan, K., Ramesh, A., & Kurian, G. A. (2017). Nicorandil attenuates neuronal mitochondrial dysfunction and oxidative stress associated with murine model of vascular calcification. Acta Neurobiologiae Experimentalis (Wars),77, 57–67.CrossRef
11.
go back to reference Wu, H., Ye, M., Yang, J., Ding, J., Yang, J., Dong, W., et al. (2015). Nicorandil protects the heart from ischemia/reperfusion injury by attenuating endoplasmic reticulum response-induced apoptosis through PI3K/Akt signaling pathway. Cellular Physiology and Biochemistry,35, 2320–2332.CrossRef Wu, H., Ye, M., Yang, J., Ding, J., Yang, J., Dong, W., et al. (2015). Nicorandil protects the heart from ischemia/reperfusion injury by attenuating endoplasmic reticulum response-induced apoptosis through PI3K/Akt signaling pathway. Cellular Physiology and Biochemistry,35, 2320–2332.CrossRef
12.
go back to reference Abdel-Raheem, I. T., Taye, A., & Abouzied, M. M. (2013). Cardioprotective effects of nicorandil, a mitochondrial potassium channel opener against doxorubicin-induced cardiotoxicity in rats. Basic & Clinical Pharmacology & Toxicology,113, 158–166.CrossRef Abdel-Raheem, I. T., Taye, A., & Abouzied, M. M. (2013). Cardioprotective effects of nicorandil, a mitochondrial potassium channel opener against doxorubicin-induced cardiotoxicity in rats. Basic & Clinical Pharmacology & Toxicology,113, 158–166.CrossRef
13.
go back to reference Zhai, X., Yang, X., Zou, P., Shao, Y., Yuan, S., Abd El-Aty, A. M., et al. (2018). Protective effect of chitosan oligosaccharides against cyclophosphamide-induced immunosuppression and irradiation injury in mice. Journal of Food Science,83, 535–542.CrossRef Zhai, X., Yang, X., Zou, P., Shao, Y., Yuan, S., Abd El-Aty, A. M., et al. (2018). Protective effect of chitosan oligosaccharides against cyclophosphamide-induced immunosuppression and irradiation injury in mice. Journal of Food Science,83, 535–542.CrossRef
14.
go back to reference Gunes, S., Sahinturk, V., Uslu, S., Ayhanci, A., Kacar, S., & Uyar, R. (2018). Protective effects of selenium on cyclophosphamide-induced oxidative stress and kidney injury. Biological Trace Element Research,185, 116–123.CrossRef Gunes, S., Sahinturk, V., Uslu, S., Ayhanci, A., Kacar, S., & Uyar, R. (2018). Protective effects of selenium on cyclophosphamide-induced oxidative stress and kidney injury. Biological Trace Element Research,185, 116–123.CrossRef
15.
go back to reference Saito, M., Ohmasa, F., Tsounapi, P., Inoue, S., Dimitriadis, F., Kinoshita, Y., et al. (2012). Nicorandil ameliorates hypertension-related bladder dysfunction in the rat. Neurourology and Urodynamics,31, 695–701.CrossRef Saito, M., Ohmasa, F., Tsounapi, P., Inoue, S., Dimitriadis, F., Kinoshita, Y., et al. (2012). Nicorandil ameliorates hypertension-related bladder dysfunction in the rat. Neurourology and Urodynamics,31, 695–701.CrossRef
16.
go back to reference Ahmed, L. A., El-Maraghy, S. A., & Rizk, S. M. (2015). Role of the KATP channel in the protective effect of nicorandil on cyclophosphamide-induced lung and testicular toxicity in rats. Scientific Reports,5, 14043.CrossRef Ahmed, L. A., El-Maraghy, S. A., & Rizk, S. M. (2015). Role of the KATP channel in the protective effect of nicorandil on cyclophosphamide-induced lung and testicular toxicity in rats. Scientific Reports,5, 14043.CrossRef
17.
go back to reference Ibrahim, M. A., Geddawy, A., & Abdel-Wahab, S. (2018). Sitagliptin prevents isoproterenol-induced myocardial infarction in rats by modulating nitric oxide synthase enzymes. European Journal of Pharmacology,829, 63–69.CrossRef Ibrahim, M. A., Geddawy, A., & Abdel-Wahab, S. (2018). Sitagliptin prevents isoproterenol-induced myocardial infarction in rats by modulating nitric oxide synthase enzymes. European Journal of Pharmacology,829, 63–69.CrossRef
18.
go back to reference Mihara, M., & Uchiyama, M. (1983). Properties of thiobarbituric acid-reactive materials obtained from lipid peroxide and tissue homogenate. Chemical and Pharmaceutical Bulletin (Tokyo),31, 605–611.CrossRef Mihara, M., & Uchiyama, M. (1983). Properties of thiobarbituric acid-reactive materials obtained from lipid peroxide and tissue homogenate. Chemical and Pharmaceutical Bulletin (Tokyo),31, 605–611.CrossRef
19.
go back to reference Nishikimi, M., Appaji, N., & Yagi, K. (1972). The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochemical and Biophysical Research Communications,46, 849–854.CrossRef Nishikimi, M., Appaji, N., & Yagi, K. (1972). The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochemical and Biophysical Research Communications,46, 849–854.CrossRef
20.
go back to reference El-Agamy, D. S., Abo-Haded, H. M., & Elkablawy, M. A. (2016). Cardioprotective effects of sitagliptin against doxorubicin-induced cardiotoxicity in rats. Experimental Biology and Medicine (Maywood),241, 1577–1587.CrossRef El-Agamy, D. S., Abo-Haded, H. M., & Elkablawy, M. A. (2016). Cardioprotective effects of sitagliptin against doxorubicin-induced cardiotoxicity in rats. Experimental Biology and Medicine (Maywood),241, 1577–1587.CrossRef
21.
go back to reference VanGuilder, H. D., Vrana, K. E., & Freeman, W. M. (2008). Twenty-five years of quantitative PCR for gene expression analysis. BioTechniques,44, 619–626.CrossRef VanGuilder, H. D., Vrana, K. E., & Freeman, W. M. (2008). Twenty-five years of quantitative PCR for gene expression analysis. BioTechniques,44, 619–626.CrossRef
23.
go back to reference Gonzalez-Moles, M. A., Bascones-Ilundain, C., Gil Montoya, J. A., Ruiz-Avila, I., Delgado-Rodriguez, M., & Bascones-Martinez, A. (2006). Cell cycle regulating mechanisms in oral lichen planus: Molecular bases in epithelium predisposed to malignant transformation. Archives of Oral Biology,51, 1093–1103.CrossRef Gonzalez-Moles, M. A., Bascones-Ilundain, C., Gil Montoya, J. A., Ruiz-Avila, I., Delgado-Rodriguez, M., & Bascones-Martinez, A. (2006). Cell cycle regulating mechanisms in oral lichen planus: Molecular bases in epithelium predisposed to malignant transformation. Archives of Oral Biology,51, 1093–1103.CrossRef
24.
go back to reference Sherif, I. O. (2018). The effect of natural antioxidants in cyclophosphamide-induced hepatotoxicity: Role of Nrf2/HO-1 pathway. International Immunopharmacology,61, 29–36.CrossRef Sherif, I. O. (2018). The effect of natural antioxidants in cyclophosphamide-induced hepatotoxicity: Role of Nrf2/HO-1 pathway. International Immunopharmacology,61, 29–36.CrossRef
25.
go back to reference Mansour, D. F., Saleh, D. O., & Mostafa, R. E. (2017). Genistein ameliorates cyclophosphamide—induced hepatotoxicity by modulation of oxidative stress and inflammatory mediators. Open Access Macedonian Journal of Medical Sciences,5, 836–843.CrossRef Mansour, D. F., Saleh, D. O., & Mostafa, R. E. (2017). Genistein ameliorates cyclophosphamide—induced hepatotoxicity by modulation of oxidative stress and inflammatory mediators. Open Access Macedonian Journal of Medical Sciences,5, 836–843.CrossRef
26.
go back to reference Elshater, A. A., Haridy, M. A. M., Salman, M. M. A., Fayyad, A. S., & Hammad, S. (2018). Fullerene C60 nanoparticles ameliorated cyclophosphamide-induced acute hepatotoxicity in rats. Biomedicine & Pharmacotherapy,97, 53–59.CrossRef Elshater, A. A., Haridy, M. A. M., Salman, M. M. A., Fayyad, A. S., & Hammad, S. (2018). Fullerene C60 nanoparticles ameliorated cyclophosphamide-induced acute hepatotoxicity in rats. Biomedicine & Pharmacotherapy,97, 53–59.CrossRef
27.
go back to reference Bertinchant, J. P., Polge, A., Juan, J. M., Oliva-Lauraire, M. C., Giuliani, I., Marty-Double, C., et al. (2003). Evaluation of cardiac troponin I and T levels as markers of myocardial damage in doxorubicin-induced cardiomyopathy rats, and their relationship with echocardiographic and histological findings. Clinica Chimica Acta,329, 39–51.CrossRef Bertinchant, J. P., Polge, A., Juan, J. M., Oliva-Lauraire, M. C., Giuliani, I., Marty-Double, C., et al. (2003). Evaluation of cardiac troponin I and T levels as markers of myocardial damage in doxorubicin-induced cardiomyopathy rats, and their relationship with echocardiographic and histological findings. Clinica Chimica Acta,329, 39–51.CrossRef
28.
go back to reference Asiri, Y. A. (2010). Probucol attenuates cyclophosphamide-induced oxidative apoptosis, p53 and Bax signal expression in rat cardiac tissues. Oxidative Medicine and Cellular Longevity,3, 308–316.CrossRef Asiri, Y. A. (2010). Probucol attenuates cyclophosphamide-induced oxidative apoptosis, p53 and Bax signal expression in rat cardiac tissues. Oxidative Medicine and Cellular Longevity,3, 308–316.CrossRef
29.
go back to reference Nagi, M. N., Al-Shabanah, O. A., Hafez, M. M., & Sayed-Ahmed, M. M. (2011). Thymoquinone supplementation attenuates cyclophosphamide-induced cardiotoxicity in rats. Journal of Biochemical and Molecular Toxicology,25, 135–142.CrossRef Nagi, M. N., Al-Shabanah, O. A., Hafez, M. M., & Sayed-Ahmed, M. M. (2011). Thymoquinone supplementation attenuates cyclophosphamide-induced cardiotoxicity in rats. Journal of Biochemical and Molecular Toxicology,25, 135–142.CrossRef
30.
go back to reference Asiri, Y. A. (2010). Probucol attenuates cyclophosphamide-induced oxidative apoptosis, p53 and Bax signal expression in rat cardiac tissues. Oxidative Medicine and Cellular Longevity,3(5), 308–316.CrossRef Asiri, Y. A. (2010). Probucol attenuates cyclophosphamide-induced oxidative apoptosis, p53 and Bax signal expression in rat cardiac tissues. Oxidative Medicine and Cellular Longevity,3(5), 308–316.CrossRef
31.
go back to reference Kupsco, A., & Schlenk, D. (2015). Oxidative stress, unfolded protein response, and apoptosis in developmental toxicity. International Review of Cell and Molecular Biology,317, 1–66.CrossRef Kupsco, A., & Schlenk, D. (2015). Oxidative stress, unfolded protein response, and apoptosis in developmental toxicity. International Review of Cell and Molecular Biology,317, 1–66.CrossRef
32.
go back to reference Lixin, X., Lijun, Y., & Songping, H. (2019). Ganoderic acid A against cyclophosphamide-induced hepatic toxicity in mice. Journal of Biochemical and Molecular Toxicology,33, e22271.CrossRef Lixin, X., Lijun, Y., & Songping, H. (2019). Ganoderic acid A against cyclophosphamide-induced hepatic toxicity in mice. Journal of Biochemical and Molecular Toxicology,33, e22271.CrossRef
33.
go back to reference Has, A. L., Alotaibi, M. F., Bin-Jumah, M., Elgebaly, H., & Mahmoud, A. M. (2019). Olea europaea leaf extract up-regulates Nrf2/ARE/HO-1 signaling and attenuates cyclophosphamide-induced oxidative stress, inflammation and apoptosis in rat kidney. Biomedicine & Pharmacotherapy,111, 676–685.CrossRef Has, A. L., Alotaibi, M. F., Bin-Jumah, M., Elgebaly, H., & Mahmoud, A. M. (2019). Olea europaea leaf extract up-regulates Nrf2/ARE/HO-1 signaling and attenuates cyclophosphamide-induced oxidative stress, inflammation and apoptosis in rat kidney. Biomedicine & Pharmacotherapy,111, 676–685.CrossRef
34.
go back to reference Tang, J., Zhen, H., Wang, N., Yan, Q., Jing, H., & Jiang, Z. (2019). Curdlan oligosaccharides having higher immunostimulatory activity than curdlan in mice treated with cyclophosphamide. Carbohydrate Polymers,207, 131–142.CrossRef Tang, J., Zhen, H., Wang, N., Yan, Q., Jing, H., & Jiang, Z. (2019). Curdlan oligosaccharides having higher immunostimulatory activity than curdlan in mice treated with cyclophosphamide. Carbohydrate Polymers,207, 131–142.CrossRef
35.
go back to reference Dantas, A., Batista-Júnior, F., Macedo, L., Mendes, M., Azevedo, I., & Medeiros, A. (2010). Protective effect of simvastatin in the cyclophosphamide-induced hemohrragic cystitis in rats. Acta Cirúrgica Brasileira,25(1), 43–46.CrossRef Dantas, A., Batista-Júnior, F., Macedo, L., Mendes, M., Azevedo, I., & Medeiros, A. (2010). Protective effect of simvastatin in the cyclophosphamide-induced hemohrragic cystitis in rats. Acta Cirúrgica Brasileira,25(1), 43–46.CrossRef
36.
go back to reference Singh, N., & Kumar, R. (2003). Effect of nicorandil and amlodipine on bio-chemical parameters during isoproterenol induced myocardial necrosis in rats. Indian Journal of Clinical Biochemistry,18, 99–102.CrossRef Singh, N., & Kumar, R. (2003). Effect of nicorandil and amlodipine on bio-chemical parameters during isoproterenol induced myocardial necrosis in rats. Indian Journal of Clinical Biochemistry,18, 99–102.CrossRef
37.
go back to reference Tajima, M., Ishizuka, N., Saitoh, K., & Sakagami, H. (2008). Nicorandil enhances the effect of endothelial nitric oxide under hypoxia-reoxygenation: Role of the KATP channel. European Journal of Pharmacology,579, 86–92.CrossRef Tajima, M., Ishizuka, N., Saitoh, K., & Sakagami, H. (2008). Nicorandil enhances the effect of endothelial nitric oxide under hypoxia-reoxygenation: Role of the KATP channel. European Journal of Pharmacology,579, 86–92.CrossRef
38.
go back to reference Horinaka, S., Kobayashi, N., Higashi, T., Hara, K., Hara, S., & Matsuoka, H. (2001). Nicorandil enhances cardiac endothelial nitric oxide synthase expression via activation of adenosine triphosphate-sensitive K channel in rat. Journal of Cardiovascular Pharmacology,38, 200–210.CrossRef Horinaka, S., Kobayashi, N., Higashi, T., Hara, K., Hara, S., & Matsuoka, H. (2001). Nicorandil enhances cardiac endothelial nitric oxide synthase expression via activation of adenosine triphosphate-sensitive K channel in rat. Journal of Cardiovascular Pharmacology,38, 200–210.CrossRef
39.
go back to reference Lee, T. M., Lin, S. Z., & Chang, N. C. (2018). Nicorandil regulates the macrophage skewing and ameliorates myofibroblasts by inhibition of RhoA/Rho-kinase signalling in infarcted rats. Journal of Cellular and Molecular Medicine,22, 1056–1069.CrossRef Lee, T. M., Lin, S. Z., & Chang, N. C. (2018). Nicorandil regulates the macrophage skewing and ameliorates myofibroblasts by inhibition of RhoA/Rho-kinase signalling in infarcted rats. Journal of Cellular and Molecular Medicine,22, 1056–1069.CrossRef
40.
go back to reference Ahmed, L. A., & El-Maraghy, S. A. (2013). Nicorandil ameliorates mitochondrial dysfunction in doxorubicin-induced heart failure in rats: possible mechanism of cardioprotection. Biochemical Pharmacology,86, 1301–1310.CrossRef Ahmed, L. A., & El-Maraghy, S. A. (2013). Nicorandil ameliorates mitochondrial dysfunction in doxorubicin-induced heart failure in rats: possible mechanism of cardioprotection. Biochemical Pharmacology,86, 1301–1310.CrossRef
41.
go back to reference Afzal, M. Z., Reiter, M., Gastonguay, C., McGivern, J. V., Guan, X., Ge, Z. D., et al. (2016). Nicorandil, a nitric oxide donor and ATP-sensitive potassium channel opener, protects against dystrophin-deficient cardiomyopathy. Journal of Cardiovascular Pharmacology and Therapeutics,21, 549–562.CrossRef Afzal, M. Z., Reiter, M., Gastonguay, C., McGivern, J. V., Guan, X., Ge, Z. D., et al. (2016). Nicorandil, a nitric oxide donor and ATP-sensitive potassium channel opener, protects against dystrophin-deficient cardiomyopathy. Journal of Cardiovascular Pharmacology and Therapeutics,21, 549–562.CrossRef
Metadata
Title
Role of ATP-Sensitive Potassium Channel (KATP) and eNOS in Mediating the Protective Effect of Nicorandil in Cyclophosphamide-Induced Cardiotoxicity
Authors
Marwa M. M. Refaie
Sayed Shehata
Maram El-Hussieny
Wedad M. Abdelraheem
Asmaa M. A. Bayoumi
Publication date
01-02-2020
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 1/2020
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-019-09535-8

Other articles of this Issue 1/2020

Cardiovascular Toxicology 1/2020 Go to the issue