Skip to main content
Top
Published in: Cardiovascular Toxicology 1/2020

01-02-2020 | Atrial Fibrillation

Action Potential Triangulation Explains Acute Proarrhythmic Effect of Aliskiren in a Whole-Heart Model of Atrial Fibrillation

Authors: Christian Ellermann, André Mittelstedt, Julian Wolfes, Kevin Willy, Patrick Leitz, Florian Reinke, Lars Eckardt, Gerrit Frommeyer

Published in: Cardiovascular Toxicology | Issue 1/2020

Login to get access

Abstract

Recent experimental studies showed a protective effect of the renin inhibitor aliskiren regarding atrial structural remodeling. Purpose of this study was to assess acute electrophysiologic effects of aliskiren in a whole-heart model of atrial fibrillation (AF) and to investigate its impact on the ventricle. Twelve rabbit hearts were excised, retrogradely perfused, and paced at different cycle lengths. To enhance atrial vulnerability, a combination of acetylcholine (ACh) and isoproterenol (Iso) was infused and significantly reduced atrial action potential duration (aAPD90) and atrial effective refractory period (aERP). Additional infusion of aliskiren prolonged aAPD90 but did not alter aERP. A triangulation of action potential with ACh/Iso and a further triangulation after treatment with aliskiren were noted. Vulnerability to AF was tested by employing trains of burst pacing. Administration of ACh/Iso provoked more episodes of AF (baseline: 26 episodes, Iso/Ach: 48 episodes). Additional treatment with aliskiren induced AF significantly more often (108 episodes). Another nine hearts were perfused with aliskiren to examine its ventricular effects. Infusion with aliskiren abbreviated ventricular APD90 and ERP. Utilizing programmed ventricular stimulation, a trend towards more ventricular arrhythmias in aliskiren-treated hearts was observed. Though aliskiren did not reduce aAPD90 or aERP, acute treatment with aliskiren promoted AF. Triangulation of atrial action potentials, which is an established risk factor for ventricular proarrhythmia, may contribute to the increased atrial vulnerability. This effect may interfere with its recently demonstrated beneficial properties in atrial remodeling. Of note, aliskiren might have a proarrhythmic effect on the ventricular level.
Literature
1.
go back to reference Kirchhof, P., Benussi, S., Kotecha, D., Ahlsson, A., Atar, D., Casadei, B., et al. (2016). 2016 ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Europace,18, 1609–1678.CrossRef Kirchhof, P., Benussi, S., Kotecha, D., Ahlsson, A., Atar, D., Casadei, B., et al. (2016). 2016 ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Europace,18, 1609–1678.CrossRef
2.
go back to reference Musini, V. M., Lawrence, K. A., Fortin, P. M., Bassett, K., & Wright, J. M. (2017). Blood pressure lowering efficacy of renin inhibitors for primary hypertension. Cochrane Database Systematic Review,4, CD007066. Musini, V. M., Lawrence, K. A., Fortin, P. M., Bassett, K., & Wright, J. M. (2017). Blood pressure lowering efficacy of renin inhibitors for primary hypertension. Cochrane Database Systematic Review,4, CD007066.
3.
go back to reference Satoh, A., Niwano, S., Niwano, H., Kishihara, J., Aoyama, Y., Oikawa, J., et al. (2017). Aliskiren suppresses atrial electrical and structural remodeling in a canine model of atrial fibrillation. Heart and Vessels,32, 90–100.CrossRef Satoh, A., Niwano, S., Niwano, H., Kishihara, J., Aoyama, Y., Oikawa, J., et al. (2017). Aliskiren suppresses atrial electrical and structural remodeling in a canine model of atrial fibrillation. Heart and Vessels,32, 90–100.CrossRef
4.
go back to reference Tsai, C.-F., Chen, Y.-C., Lin, Y.-K., Chen, S.-A., & Chen, Y.-J. (2011). Electromechanical effects of the direct renin inhibitor (aliskiren) on the pulmonary vein and atrium. Basic Research in Cardiology,106, 979–993.CrossRef Tsai, C.-F., Chen, Y.-C., Lin, Y.-K., Chen, S.-A., & Chen, Y.-J. (2011). Electromechanical effects of the direct renin inhibitor (aliskiren) on the pulmonary vein and atrium. Basic Research in Cardiology,106, 979–993.CrossRef
5.
go back to reference Zhao, Z., Chen, Y., Li, W., Wang, X., Li, J., Yang, W., et al. (2016). Aliskiren protecting atrial structural remodeling from rapid atrial pacing in a canine model. Naunyn Schmiedebergs Arch Pharmacol,389, 863–871.CrossRef Zhao, Z., Chen, Y., Li, W., Wang, X., Li, J., Yang, W., et al. (2016). Aliskiren protecting atrial structural remodeling from rapid atrial pacing in a canine model. Naunyn Schmiedebergs Arch Pharmacol,389, 863–871.CrossRef
6.
go back to reference Zhao, Z., Wang, X., Li, J., Yang, W., Cheng, L., Chen, Y., et al. (2014). Protective effects of aliskiren on atrial ionic remodeling in a canine model of rapid atrial pacing. Cardiovascular Drugs and Therapy,28, 137–143.CrossRef Zhao, Z., Wang, X., Li, J., Yang, W., Cheng, L., Chen, Y., et al. (2014). Protective effects of aliskiren on atrial ionic remodeling in a canine model of rapid atrial pacing. Cardiovascular Drugs and Therapy,28, 137–143.CrossRef
7.
go back to reference Yamada, C., Kuwahara, K., Yamazaki, M., Nakagawa, Y., Nishikimi, T., Kinoshita, H., et al. (2015). The renin–angiotensin system promotes arrhythmogenic substrates and lethal arrhythmias in mice with non-ischaemic cardiomyopathy. Cardiovascular Research,109, 162–173.CrossRef Yamada, C., Kuwahara, K., Yamazaki, M., Nakagawa, Y., Nishikimi, T., Kinoshita, H., et al. (2015). The renin–angiotensin system promotes arrhythmogenic substrates and lethal arrhythmias in mice with non-ischaemic cardiomyopathy. Cardiovascular Research,109, 162–173.CrossRef
8.
go back to reference Jia, Y.-Y., Bao, Z.-W., Wei, M.-F., Zhu, J.-H., & Le, G. (2013). Aliskiren ameliorates sympathetic nerve sprouting and suppresses the inducibility of ventricular tachyarrhythmia in postinfarcted rat heart. Chinese Medical Journal (England),126, 4707–4714. Jia, Y.-Y., Bao, Z.-W., Wei, M.-F., Zhu, J.-H., & Le, G. (2013). Aliskiren ameliorates sympathetic nerve sprouting and suppresses the inducibility of ventricular tachyarrhythmia in postinfarcted rat heart. Chinese Medical Journal (England),126, 4707–4714.
9.
go back to reference Frommeyer, G., Kohnke, A., Ellermann, C., Dechering, D. G., Kochhäuser, S., Reinke, F., et al. (2017). Acute infusion of levosimendan enhances atrial fibrillation in an experimental whole-heart model. International Journal of Cardiology,236, 423–426.CrossRef Frommeyer, G., Kohnke, A., Ellermann, C., Dechering, D. G., Kochhäuser, S., Reinke, F., et al. (2017). Acute infusion of levosimendan enhances atrial fibrillation in an experimental whole-heart model. International Journal of Cardiology,236, 423–426.CrossRef
11.
go back to reference Milberg, P., Ramtin, S., Mönnig, G., Osada, N., Wasmer, K., Breithardt, G., et al. (2004). Comparison of the in vitro electrophysiologic and proarrhythmic effects of amiodarone and sotalol in a rabbit model of acute atrioventricular block. Journal of Cardiovascular Pharmacology,44, 278–286.CrossRef Milberg, P., Ramtin, S., Mönnig, G., Osada, N., Wasmer, K., Breithardt, G., et al. (2004). Comparison of the in vitro electrophysiologic and proarrhythmic effects of amiodarone and sotalol in a rabbit model of acute atrioventricular block. Journal of Cardiovascular Pharmacology,44, 278–286.CrossRef
12.
go back to reference Frommeyer, G., Milberg, P., Uphaus, T., Kaiser, D., Kaese, S., Breithardt, G., et al. (2013). Antiarrhythmic effect of ranolazine in combination with class III drugs in an experimental whole-heart model of atrial fibrillation. Cardiovascular Therapeutics,31, e63–e71.CrossRef Frommeyer, G., Milberg, P., Uphaus, T., Kaiser, D., Kaese, S., Breithardt, G., et al. (2013). Antiarrhythmic effect of ranolazine in combination with class III drugs in an experimental whole-heart model of atrial fibrillation. Cardiovascular Therapeutics,31, e63–e71.CrossRef
13.
go back to reference Nattel, S., Burstein, B., & Dobrev, D. (2008). Atrial remodeling and atrial fibrillation: Mechanisms and implications. Circulation: Arrhythmia and Electrophysiology,1, 62–73. Nattel, S., Burstein, B., & Dobrev, D. (2008). Atrial remodeling and atrial fibrillation: Mechanisms and implications. Circulation: Arrhythmia and Electrophysiology,1, 62–73.
14.
go back to reference Hondeghem, L., Carlsson, L., & Duker, G. (2001). Instability and triangulation of the action potential predict serious proarrhythmia, but action potential duration prolongation is antiarrhythmic. Circulation,103, 2004–2013.CrossRef Hondeghem, L., Carlsson, L., & Duker, G. (2001). Instability and triangulation of the action potential predict serious proarrhythmia, but action potential duration prolongation is antiarrhythmic. Circulation,103, 2004–2013.CrossRef
15.
go back to reference Milberg, P., Hilker, E., Ramtin, S., Cakir, Y., Stypmann, J., Engelen, M. A., et al. (2007). Proarrhythmia as a class effect of quinolones: Increased dispersion of repolarization and triangulation of action potential predict torsades de pointes. Journal of Cardiovascular Electrophysiology,18, 647–654.CrossRef Milberg, P., Hilker, E., Ramtin, S., Cakir, Y., Stypmann, J., Engelen, M. A., et al. (2007). Proarrhythmia as a class effect of quinolones: Increased dispersion of repolarization and triangulation of action potential predict torsades de pointes. Journal of Cardiovascular Electrophysiology,18, 647–654.CrossRef
16.
go back to reference Dobrev, D., & Ravens, U. (2003). Remodeling of cardiomyocyte ion channels in human atrial fibrillation. Basic Research in Cardiology,98, 137–148.CrossRef Dobrev, D., & Ravens, U. (2003). Remodeling of cardiomyocyte ion channels in human atrial fibrillation. Basic Research in Cardiology,98, 137–148.CrossRef
17.
go back to reference Wettwer, E., Hála, O., Christ, T., Heubach, F., Jr., Dobrev, D., Knaut, M., et al. (2004). Role of I Kur in controlling action potential shape and contractility in the human atrium: Influence of chronic atrial fibrillation. Circulation,110, 2299–2306.CrossRef Wettwer, E., Hála, O., Christ, T., Heubach, F., Jr., Dobrev, D., Knaut, M., et al. (2004). Role of I Kur in controlling action potential shape and contractility in the human atrium: Influence of chronic atrial fibrillation. Circulation,110, 2299–2306.CrossRef
18.
go back to reference Frommeyer, G., Kohnke, A., Ellermann, C., Dechering, D. G., Kochhäuser, S., Pott, C., et al. (2017). Experimental evidence for a severe proarrhythmic potential of levosimendan. International Journal of Cardiology,228, 583–587.CrossRef Frommeyer, G., Kohnke, A., Ellermann, C., Dechering, D. G., Kochhäuser, S., Pott, C., et al. (2017). Experimental evidence for a severe proarrhythmic potential of levosimendan. International Journal of Cardiology,228, 583–587.CrossRef
19.
go back to reference Vaidyanathan, S., Jarugula, V., Dieterich, H. A., Howard, D., & Dole, W. P. (2008). Clinical pharmacokinetics and pharmacodynamics of aliskiren. Clinical Pharmacokinetics,47, 515–531.CrossRef Vaidyanathan, S., Jarugula, V., Dieterich, H. A., Howard, D., & Dole, W. P. (2008). Clinical pharmacokinetics and pharmacodynamics of aliskiren. Clinical Pharmacokinetics,47, 515–531.CrossRef
20.
go back to reference Vaidyanathan, S., Jermany, J., Yeh, C., Bizot, M. N., & Camisasca, R. (2006). Aliskiren, a novel orally effective renin inhibitor, exhibits similar pharmacokinetics and pharmacodynamics in Japanese and Caucasian subjects. British Journal of Clinical Pharmacology,62, 690–698.CrossRef Vaidyanathan, S., Jermany, J., Yeh, C., Bizot, M. N., & Camisasca, R. (2006). Aliskiren, a novel orally effective renin inhibitor, exhibits similar pharmacokinetics and pharmacodynamics in Japanese and Caucasian subjects. British Journal of Clinical Pharmacology,62, 690–698.CrossRef
21.
go back to reference Vaidyanathan, S., Camenisch, G., Schuetz, H., Reynolds, C., Yeh, C. M., Bizot, M. N., et al. (2008). Pharmacokinetics of the oral direct renin inhibitor aliskiren in combination with digoxin, atorvastatin, and ketoconazole in healthy subjects: The role of P-glycoprotein in the disposition of aliskiren. Journal of Clinical Pharmacology,48, 1323–1338.CrossRef Vaidyanathan, S., Camenisch, G., Schuetz, H., Reynolds, C., Yeh, C. M., Bizot, M. N., et al. (2008). Pharmacokinetics of the oral direct renin inhibitor aliskiren in combination with digoxin, atorvastatin, and ketoconazole in healthy subjects: The role of P-glycoprotein in the disposition of aliskiren. Journal of Clinical Pharmacology,48, 1323–1338.CrossRef
Metadata
Title
Action Potential Triangulation Explains Acute Proarrhythmic Effect of Aliskiren in a Whole-Heart Model of Atrial Fibrillation
Authors
Christian Ellermann
André Mittelstedt
Julian Wolfes
Kevin Willy
Patrick Leitz
Florian Reinke
Lars Eckardt
Gerrit Frommeyer
Publication date
01-02-2020
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 1/2020
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-019-09533-w

Other articles of this Issue 1/2020

Cardiovascular Toxicology 1/2020 Go to the issue