Skip to main content
Top
Published in: Cardiovascular Toxicology 6/2019

01-12-2019

Acylated Ghrelin Protects the Hearts of Rats from Doxorubicin-Induced Fas/FasL Apoptosis by Stimulating SERCA2a Mediated by Activation of PKA and Akt

Authors: Ali A. Shati, M. Dallak

Published in: Cardiovascular Toxicology | Issue 6/2019

Login to get access

Abstract

This study investigated if the cardioprotective effect of acylated ghrelin (AG) against doxorubicin (DOX)-induced cardiac toxicity in rats involves inhibition of Fas/FasL-mediated cell death. It also investigated if such an effect is mediated by restoring Ca+2 homeostasis from the aspect of stimulation of SERCA2a receptors. Adult male Wistar rats were divided into 4 groups (20 rats/each) as control, control + AG, DOX, and DOX + AG. AG was co-administered to all rats consecutively for 35 days. In addition, isolated cardiomyocytes were cultured and treated with AG in the presence or absence of DOX with or without pre-incubation with [d-Lys3]-GHRP-6 (a AG receptor antagonist), VIII (]an Akt inhibitor), or KT-5720 (a PKA inhibitor). AG increased LVSP, dp/dtmax, and dp/dtmin in both control and DOX-treated animals and improved cardiac ultrastructural changes in DOX-treated rats. It also inhibited ROS in control rats and lowered LVEDP, intracellular levels of ROS and Ca2+, and activity of calcineurin in LVs of DOX-treated rats. Concomitantly, it inhibited LV NFAT-4 nuclear translocation and downregulated their protein levels of Fas and FasL. Mechanistically, in control or DOX-treated hearts or cells, AG upregulated the levels of SERCA2a and increased the activities of PKA and Akt, leading to increase phosphorylation of phospholamban at Ser16 and Thr17. All these effects were abolished by d-Lys3-GHRP-6, VIII, or KT-5720 and were independent of food intake or GH/IGF-1. In conclusion, AG cardioprotection against DOX involves inhibition of extrinsic cell death and restoring normal Ca+2 homeostasis.
Literature
1.
go back to reference Shi, J., Abdelwahid, E., & Wei, L. (2011). Apoptosis in anthracycline cardiomyopathy. Current Pediatric Reviews, 7, 329–336.PubMedPubMedCentral Shi, J., Abdelwahid, E., & Wei, L. (2011). Apoptosis in anthracycline cardiomyopathy. Current Pediatric Reviews, 7, 329–336.PubMedPubMedCentral
2.
go back to reference Thorn, C. F., Oshiro, C., Marsh, S., Hernandez-Boussard, T., McLeod, H., Klein, T. E., et al. (2011). Doxorubicin pathways: Pharmacodynamics and adverse effects. Pharmacogenetics and Genomics, 21, 440–446.PubMedPubMedCentral Thorn, C. F., Oshiro, C., Marsh, S., Hernandez-Boussard, T., McLeod, H., Klein, T. E., et al. (2011). Doxorubicin pathways: Pharmacodynamics and adverse effects. Pharmacogenetics and Genomics, 21, 440–446.PubMedPubMedCentral
3.
go back to reference Wallace, K. B. (2007). Adriamycin-induced interference with cardiac mitochondrial calcium homeostasis. Cardiovascular Toxicology, 7, 101–107.PubMed Wallace, K. B. (2007). Adriamycin-induced interference with cardiac mitochondrial calcium homeostasis. Cardiovascular Toxicology, 7, 101–107.PubMed
4.
go back to reference Niu, J., Azfer, A., Wang, K., Wang, X., & Kolattukudy, P. E. (2009). Cardiac-targeted expression of soluble Fas attenuates doxorubicin-induced cardiotoxicity in mice. Journal of Pharmacology and Experimental Therapeutics, 328, 740–748.PubMed Niu, J., Azfer, A., Wang, K., Wang, X., & Kolattukudy, P. E. (2009). Cardiac-targeted expression of soluble Fas attenuates doxorubicin-induced cardiotoxicity in mice. Journal of Pharmacology and Experimental Therapeutics, 328, 740–748.PubMed
5.
go back to reference Kalivendi, S. V., Konorev, E. A., Cunningham, S., Vanamala, S. K., Kaji, E. H., Joseph, J., et al. (2005). Doxorubicin activates nuclear factor of activated T-lymphocytes and Fas ligand transcription: Role of mitochondrial reactive oxygen species and calcium. Biochemical Journal, 389, 527–539.PubMedPubMedCentral Kalivendi, S. V., Konorev, E. A., Cunningham, S., Vanamala, S. K., Kaji, E. H., Joseph, J., et al. (2005). Doxorubicin activates nuclear factor of activated T-lymphocytes and Fas ligand transcription: Role of mitochondrial reactive oxygen species and calcium. Biochemical Journal, 389, 527–539.PubMedPubMedCentral
6.
go back to reference Tsutamoto, T., Wada, A., Maeda, K., Mabuchi, N., Hayashi, M., Tsutsui, T., et al. (2001). Relationship between plasma levels of cardiac natriuretic peptides and soluble Fas: Plasma soluble Fas as a prognostic predictor in patients with congestive heart failure. J Card Fail., 7, 322–328.PubMed Tsutamoto, T., Wada, A., Maeda, K., Mabuchi, N., Hayashi, M., Tsutsui, T., et al. (2001). Relationship between plasma levels of cardiac natriuretic peptides and soluble Fas: Plasma soluble Fas as a prognostic predictor in patients with congestive heart failure. J Card Fail., 7, 322–328.PubMed
7.
go back to reference Yamaguchi, S., Suzuki, T., Okuyama, M., Nitobe, J., Nakamura, N., Mitsui, Y., et al. (2000). Apoptosis in rat cardiac myocytes induced by Fas ligand: Priming for Fas-mediated apoptosis with doxorubicin. Journal of Molecular and Cellular Cardiology, 32, 881–889.PubMed Yamaguchi, S., Suzuki, T., Okuyama, M., Nitobe, J., Nakamura, N., Mitsui, Y., et al. (2000). Apoptosis in rat cardiac myocytes induced by Fas ligand: Priming for Fas-mediated apoptosis with doxorubicin. Journal of Molecular and Cellular Cardiology, 32, 881–889.PubMed
8.
go back to reference Wehrens, X. H., & Marks, A. R. (2004). Novel therapeutic approaches for heart failure by normalizing calcium cycling’. Nature Reviews Drug Discovery, 3, 565–573.PubMed Wehrens, X. H., & Marks, A. R. (2004). Novel therapeutic approaches for heart failure by normalizing calcium cycling’. Nature Reviews Drug Discovery, 3, 565–573.PubMed
9.
go back to reference Schmidt, U., Hajjar, R. J., Helm, P. A., Kim, C. S., Doye, A. A., & Gwathmey, J. K. (1998). Contribution of abnormal sarcoplasmic reticulum ATPase activity to systolic and diastolic dysfunction in human heart failure. Journal of Molecular and Cellular Cardiology., 30, 1929–1937.PubMed Schmidt, U., Hajjar, R. J., Helm, P. A., Kim, C. S., Doye, A. A., & Gwathmey, J. K. (1998). Contribution of abnormal sarcoplasmic reticulum ATPase activity to systolic and diastolic dysfunction in human heart failure. Journal of Molecular and Cellular Cardiology., 30, 1929–1937.PubMed
10.
go back to reference Schmidt, U., Hajjar, R. J., Kim, C. S., Lebeche, D., Doye, A. A., & Gwathmey, J. K. (1999). Human heart failure: cAMP stimulation of SR Ca(2+)-ATPase activity and phosphorylation level of phospholamban. American Journal of Physiology, 277, H474–H480.PubMed Schmidt, U., Hajjar, R. J., Kim, C. S., Lebeche, D., Doye, A. A., & Gwathmey, J. K. (1999). Human heart failure: cAMP stimulation of SR Ca(2+)-ATPase activity and phosphorylation level of phospholamban. American Journal of Physiology, 277, H474–H480.PubMed
11.
go back to reference Marks, A. R. (2013). Calcium cycling proteins and heart failure: Mechanisms and therapeutics. The Journal of Clinical Investigation, 123, 46–52.PubMedPubMedCentral Marks, A. R. (2013). Calcium cycling proteins and heart failure: Mechanisms and therapeutics. The Journal of Clinical Investigation, 123, 46–52.PubMedPubMedCentral
12.
go back to reference Seth, M., Sumbilla, C., Mullen, S. P., Lewis, D., Klein, M. G., Hussain, A., et al. (2004). Sarco(endo)plasmic reticulum Ca2+ATPase (SERCA) gene silencing and remodeling of the Ca2+ signaling mechanism in cardiac myocytes. Proceedings of the National academy of Sciences of the United States of America, 101, 16683–16688.PubMedPubMedCentral Seth, M., Sumbilla, C., Mullen, S. P., Lewis, D., Klein, M. G., Hussain, A., et al. (2004). Sarco(endo)plasmic reticulum Ca2+ATPase (SERCA) gene silencing and remodeling of the Ca2+ signaling mechanism in cardiac myocytes. Proceedings of the National academy of Sciences of the United States of America, 101, 16683–16688.PubMedPubMedCentral
13.
go back to reference Dodd, D. A., Atkinson, J. B., Olson, R. D., Buck, S., Cusack, B. J., Fleischer, S., et al. (1993). Doxorubicin cardiomyopathy is associated with a decrease in calcium release channel of the sarcoplasmic reticulum in a chronic rabbit model. J Clin Invest., 91, 1697–1705.PubMedPubMedCentral Dodd, D. A., Atkinson, J. B., Olson, R. D., Buck, S., Cusack, B. J., Fleischer, S., et al. (1993). Doxorubicin cardiomyopathy is associated with a decrease in calcium release channel of the sarcoplasmic reticulum in a chronic rabbit model. J Clin Invest., 91, 1697–1705.PubMedPubMedCentral
14.
go back to reference Arai, M., Tomaru, K., Takizawa, T., Sekiguchi, K., Yokoyama, T., Suzuki, T., et al. (1998). Sarcoplasmic reticulum genes are selectively down-regulated in cardiomyopathy produced by doxorubicin in rabbits. Journal of Molecular and Cellular Cardiology, 30, 243–254.PubMed Arai, M., Tomaru, K., Takizawa, T., Sekiguchi, K., Yokoyama, T., Suzuki, T., et al. (1998). Sarcoplasmic reticulum genes are selectively down-regulated in cardiomyopathy produced by doxorubicin in rabbits. Journal of Molecular and Cellular Cardiology, 30, 243–254.PubMed
15.
go back to reference Arai, M., Yoguchi, A., Takizawa, T., Yokoyama, T., Kanda, T., Kurabayashi, M., et al. (2000). Mechanism of doxorubicin-induced inhibition of sarcoplasmic reticulum Ca21-ATPase Gene transcription. Circulation Research, 86, 8–14.PubMed Arai, M., Yoguchi, A., Takizawa, T., Yokoyama, T., Kanda, T., Kurabayashi, M., et al. (2000). Mechanism of doxorubicin-induced inhibition of sarcoplasmic reticulum Ca21-ATPase Gene transcription. Circulation Research, 86, 8–14.PubMed
16.
go back to reference Tada, M. (2003). Calcium cycling proteins of the cardiac sarcoplasmic reticulum. Circulation Journal, 67, 729–737.PubMed Tada, M. (2003). Calcium cycling proteins of the cardiac sarcoplasmic reticulum. Circulation Journal, 67, 729–737.PubMed
17.
go back to reference Vangheluwe, P., Sipido, K. R., Raeymaekers, L., & Wuytack, F. (2006). New perspectives on the role of SERCA2′s Ca2+ affinity in cardiac function. Biochimica et Biophysica Acta, 1763, 1216–1228.PubMed Vangheluwe, P., Sipido, K. R., Raeymaekers, L., & Wuytack, F. (2006). New perspectives on the role of SERCA2′s Ca2+ affinity in cardiac function. Biochimica et Biophysica Acta, 1763, 1216–1228.PubMed
18.
go back to reference Fearnley, C. J., Roderick, H. L., & Bootman, M. D. (2011). Calcium signaling in cardiac myocytes. Cold Spring Harbor Perspectives in Biology, 3, a004242.PubMedPubMedCentral Fearnley, C. J., Roderick, H. L., & Bootman, M. D. (2011). Calcium signaling in cardiac myocytes. Cold Spring Harbor Perspectives in Biology, 3, a004242.PubMedPubMedCentral
19.
go back to reference Jo, S. H., Leblais, V., Wang, P. H., Crow, M. T., & Xiao, R. P. (2002). Phosphatidylinositol 3-kinase functionally compartmentalizes the concurrent G(s) signaling during beta2-adrenergic stimulation. Circulation Research, 91, 46–53.PubMed Jo, S. H., Leblais, V., Wang, P. H., Crow, M. T., & Xiao, R. P. (2002). Phosphatidylinositol 3-kinase functionally compartmentalizes the concurrent G(s) signaling during beta2-adrenergic stimulation. Circulation Research, 91, 46–53.PubMed
20.
go back to reference Gao, M. H., Tang, T., Guo, T., Miyanohara, A., Yajima, T., Pestonjamasp, K., et al. (2008). Adenylyl cyclase type VI increases Akt activity and phospholamban phosphorylation in cardiac myocytes. The Journal of Biological Chemistry., 283, 33527–33535.PubMedPubMedCentral Gao, M. H., Tang, T., Guo, T., Miyanohara, A., Yajima, T., Pestonjamasp, K., et al. (2008). Adenylyl cyclase type VI increases Akt activity and phospholamban phosphorylation in cardiac myocytes. The Journal of Biological Chemistry., 283, 33527–33535.PubMedPubMedCentral
21.
go back to reference Catalucci, D., Latronico, M. V., Ceci, M., Rusconi, F., Young, H. S., Gallo, P., et al. (2009). Akt increases sarcoplasmic reticulum Ca2+ cycling by direct phosphorylation of phospholamban at Thr17. The Journal of Biological Chemistry, 284, 28180–28187.PubMedPubMedCentral Catalucci, D., Latronico, M. V., Ceci, M., Rusconi, F., Young, H. S., Gallo, P., et al. (2009). Akt increases sarcoplasmic reticulum Ca2+ cycling by direct phosphorylation of phospholamban at Thr17. The Journal of Biological Chemistry, 284, 28180–28187.PubMedPubMedCentral
22.
go back to reference Zhang, Y., Chen, Y., Zhang, M., Tang, Y., Xie, Y., Huang, X., et al. (2014). Doxorubicin induces sarcoplasmic reticulum calcium regulation dysfunction via the decrease of SERCA2 and phospholamban expressions in rats. Cell Biochemistry and Biophysics, 70, 1791–1798.PubMed Zhang, Y., Chen, Y., Zhang, M., Tang, Y., Xie, Y., Huang, X., et al. (2014). Doxorubicin induces sarcoplasmic reticulum calcium regulation dysfunction via the decrease of SERCA2 and phospholamban expressions in rats. Cell Biochemistry and Biophysics, 70, 1791–1798.PubMed
23.
go back to reference Zhang, G., Yin, X., Qi, Y., Pendyala, L., Chen, J., Hou, D., et al. (2010). Ghrelin and cardiovascular diseases. Current Cardiology Reviews, 6, 62–70.PubMedPubMedCentral Zhang, G., Yin, X., Qi, Y., Pendyala, L., Chen, J., Hou, D., et al. (2010). Ghrelin and cardiovascular diseases. Current Cardiology Reviews, 6, 62–70.PubMedPubMedCentral
24.
go back to reference Eid, R. A., Alkhateeb, M. A., Eleawa, S., Al-Hashem, F. H., Al-Shraim, M., El-Kott, A. F., et al. (2018). Cardioprotective effect of ghrelin against myocardial infarction-induced left ventricular injury via inhibition of SOCS3 and activation of JAK2/STAT3 signaling. Basic Research in Cardiology, 113, 13.PubMed Eid, R. A., Alkhateeb, M. A., Eleawa, S., Al-Hashem, F. H., Al-Shraim, M., El-Kott, A. F., et al. (2018). Cardioprotective effect of ghrelin against myocardial infarction-induced left ventricular injury via inhibition of SOCS3 and activation of JAK2/STAT3 signaling. Basic Research in Cardiology, 113, 13.PubMed
25.
go back to reference Gnanapavan, S., Kola, B., Bustin, S. A., Morris, D. G., McGee, P., Fairclough, P., et al. (2002). The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans. Journal of Clinical Endocrinology and Metabolism, 87, 2988.PubMed Gnanapavan, S., Kola, B., Bustin, S. A., Morris, D. G., McGee, P., Fairclough, P., et al. (2002). The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans. Journal of Clinical Endocrinology and Metabolism, 87, 2988.PubMed
26.
go back to reference Iglesias, M. J., Piñeiro, R., Blanco, M., Gallego, R., Diéguez, C., Gualillo, O., et al. (2004). Lago F growth hormone releasing peptide (ghrelin) is synthesized and secreted by cardiomyocytes. Cardiovascular Research, 62, 481–488.PubMed Iglesias, M. J., Piñeiro, R., Blanco, M., Gallego, R., Diéguez, C., Gualillo, O., et al. (2004). Lago F growth hormone releasing peptide (ghrelin) is synthesized and secreted by cardiomyocytes. Cardiovascular Research, 62, 481–488.PubMed
27.
go back to reference Baldanzi, G., Filigheddu, N., Cutrupi, S., Catapano, F., Bonissoni, S., Fubini, A., et al. (2002). Ghrelin and des-acyl ghrelin inhibit cell death in cardiomyocytes and endothelial cells through ERK1/2 and PI 3-kinase/AKT. Journal of Cell Biology, 159, 1029–1037.PubMedPubMedCentral Baldanzi, G., Filigheddu, N., Cutrupi, S., Catapano, F., Bonissoni, S., Fubini, A., et al. (2002). Ghrelin and des-acyl ghrelin inhibit cell death in cardiomyocytes and endothelial cells through ERK1/2 and PI 3-kinase/AKT. Journal of Cell Biology, 159, 1029–1037.PubMedPubMedCentral
28.
go back to reference Xu, Z., Lin, S., Wu, W., Tan, H., Wang, Z., Cheng, C., et al. (2008). Ghrelin prevents doxorubicin-induced cardiotoxicity through TNF-alpha/NF-kappaB pathways and mitochondrial protective mechanisms. Toxicology, 247, 133–138.PubMed Xu, Z., Lin, S., Wu, W., Tan, H., Wang, Z., Cheng, C., et al. (2008). Ghrelin prevents doxorubicin-induced cardiotoxicity through TNF-alpha/NF-kappaB pathways and mitochondrial protective mechanisms. Toxicology, 247, 133–138.PubMed
29.
go back to reference Fang, H., Hong, Z., Zhang, J., Shen, D. F., Gao, F. F., Sugiyama, K., et al. (2012). Effects of ghrelin on the intracellular calcium concentration in rat aorta vascular smooth muscle cells. Cellular Physiology and Biochemistry., 30, 1299–1309.PubMed Fang, H., Hong, Z., Zhang, J., Shen, D. F., Gao, F. F., Sugiyama, K., et al. (2012). Effects of ghrelin on the intracellular calcium concentration in rat aorta vascular smooth muscle cells. Cellular Physiology and Biochemistry., 30, 1299–1309.PubMed
31.
go back to reference Lou, H., Danelisen, I., & Singal, P. K. (2005). Involvement of mitogen-activated protein kinases in adriamycininduced cardiomyopathy. The American Journal of Physiology-Heart and Circulatory Physiology, 288, 1925–1930. Lou, H., Danelisen, I., & Singal, P. K. (2005). Involvement of mitogen-activated protein kinases in adriamycininduced cardiomyopathy. The American Journal of Physiology-Heart and Circulatory Physiology, 288, 1925–1930.
32.
go back to reference Dallak, M. (2018). Acylated ghrelin induces but deacylated ghrelin prevents hepatic steatosis and insulin resistance in lean rats: Effects on DAG/PKC/JNK pathway. Biomedicine & Pharmacotherapy, 105, 299–311. Dallak, M. (2018). Acylated ghrelin induces but deacylated ghrelin prevents hepatic steatosis and insulin resistance in lean rats: Effects on DAG/PKC/JNK pathway. Biomedicine & Pharmacotherapy, 105, 299–311.
33.
go back to reference Li, Y., Hai, J., Li, L., Chen, X., Peng, H., Cao, M., et al. (2013). Administration of ghrelin improves inflammation, oxidative stress, and apoptosis during and after non-alcoholic fatty liver disease development. Endocrin., 43, 376–386. Li, Y., Hai, J., Li, L., Chen, X., Peng, H., Cao, M., et al. (2013). Administration of ghrelin improves inflammation, oxidative stress, and apoptosis during and after non-alcoholic fatty liver disease development. Endocrin., 43, 376–386.
34.
go back to reference Işeri, S. O., Sener, G., Saglam, B., Ercan, F., Gedik, N., & Yeğen, B. C. (2008). Ghrelin alleviates biliary obstruction-induced chronic hepatic injury in rats. Regulatory Peptides, 146, 73–79.PubMed Işeri, S. O., Sener, G., Saglam, B., Ercan, F., Gedik, N., & Yeğen, B. C. (2008). Ghrelin alleviates biliary obstruction-induced chronic hepatic injury in rats. Regulatory Peptides, 146, 73–79.PubMed
35.
go back to reference Donthi, R. V., Huisamen, B., & Lochner, A. (2000). Effect of vanadate and insulin on glucose transport in isolated adult rat cardiomyocytes. Cardiovascular Drugs and Therapy, 14, 463–470.PubMed Donthi, R. V., Huisamen, B., & Lochner, A. (2000). Effect of vanadate and insulin on glucose transport in isolated adult rat cardiomyocytes. Cardiovascular Drugs and Therapy, 14, 463–470.PubMed
36.
go back to reference Pentassuglia, L., Heim, P., Lebboukh, S., Morandi, C., Xu, L., & Brink, M. (2016). Neuregulin-1β promotes glucose uptake via PI3K/Akt in neonatal rat cardiomyocytes. American Journal of Physiology Endocrinology and Metabolism, 310, E782–E794.PubMed Pentassuglia, L., Heim, P., Lebboukh, S., Morandi, C., Xu, L., & Brink, M. (2016). Neuregulin-1β promotes glucose uptake via PI3K/Akt in neonatal rat cardiomyocytes. American Journal of Physiology Endocrinology and Metabolism, 310, E782–E794.PubMed
37.
go back to reference Dong, J., Gao, C., Liu, J., Cao, Y., & Tian, L. (2016). TSH inhibits SERCA2a and the PKA/PLN pathway in rat cardiomyocytes. Oncotarget, 7, 39207–39215.PubMedPubMedCentral Dong, J., Gao, C., Liu, J., Cao, Y., & Tian, L. (2016). TSH inhibits SERCA2a and the PKA/PLN pathway in rat cardiomyocytes. Oncotarget, 7, 39207–39215.PubMedPubMedCentral
38.
go back to reference Xu, J., Han, Q., Shi, H., Liu, W., Chu, T., & Li, H. (2017). Role of PKA in the process of neonatal cardiomyocyte hypertrophy induced by urotensin II. International Journal of Molecular Medicine, 40, 499–504.PubMed Xu, J., Han, Q., Shi, H., Liu, W., Chu, T., & Li, H. (2017). Role of PKA in the process of neonatal cardiomyocyte hypertrophy induced by urotensin II. International Journal of Molecular Medicine, 40, 499–504.PubMed
39.
go back to reference Frutos, M. G., Cacicedo, L., Méndez, C. F., Vicent, D., González, M., & Sánchez-Franco, F. (2007). Pituitary alterations involved in the decline of growth hormone gene expression in the pituitary of aging rats. Journals of Gerontology Series A Biological Sciences and Medical Sciences, 62, 585–597.PubMed Frutos, M. G., Cacicedo, L., Méndez, C. F., Vicent, D., González, M., & Sánchez-Franco, F. (2007). Pituitary alterations involved in the decline of growth hormone gene expression in the pituitary of aging rats. Journals of Gerontology Series A Biological Sciences and Medical Sciences, 62, 585–597.PubMed
40.
go back to reference Buehlmeyer, K., Doering, F., Daniel, H., Petridou, A., Mougios, V., Schulz, T., et al. (2007). IGF-1 gene expression in rat colonic mucosa after different exercise volumes. Journal of Sports Science and Medicine, 6, 434–440.PubMedPubMedCentral Buehlmeyer, K., Doering, F., Daniel, H., Petridou, A., Mougios, V., Schulz, T., et al. (2007). IGF-1 gene expression in rat colonic mucosa after different exercise volumes. Journal of Sports Science and Medicine, 6, 434–440.PubMedPubMedCentral
41.
go back to reference Zhao, X., Zhang, J., Tong, N., Chen, Y., & Luo, Y. (2012). Protective effects of berberine on doxorubicin-induced hepatotoxicity in mice. Biological &/and Pharmaceutical Bulletin, 35(5), 796–800. Zhao, X., Zhang, J., Tong, N., Chen, Y., & Luo, Y. (2012). Protective effects of berberine on doxorubicin-induced hepatotoxicity in mice. Biological &/and Pharmaceutical Bulletin, 35(5), 796–800.
42.
go back to reference Mohan, M., Kamble, S., Gadhi, P., & Kasture, S. (2010). Protective effect of Solanum torvum on doxorubicin-induced nephrotoxicity in rats. Food and Chemical Toxicology, 4, 436–440. Mohan, M., Kamble, S., Gadhi, P., & Kasture, S. (2010). Protective effect of Solanum torvum on doxorubicin-induced nephrotoxicity in rats. Food and Chemical Toxicology, 4, 436–440.
43.
go back to reference Jensen, R. A., Acton, E. M., & Peters, H. (1984). Doxorubicin cardiotoxicity in the rat: Comparison of electrocardiogram, transmembrane potential, and structural effect. Journal of Cardiovascular Pharmacology, 6, 186–200.PubMed Jensen, R. A., Acton, E. M., & Peters, H. (1984). Doxorubicin cardiotoxicity in the rat: Comparison of electrocardiogram, transmembrane potential, and structural effect. Journal of Cardiovascular Pharmacology, 6, 186–200.PubMed
44.
go back to reference Siveski-Iliskovic, N., Kaul, N., & Singal, P. K. (1994). Probucol promotes endogenous antioxidants and provides protection against adriamycin-induced cardiomyopathy in rats. Circulation, 89, 2829–2835.PubMed Siveski-Iliskovic, N., Kaul, N., & Singal, P. K. (1994). Probucol promotes endogenous antioxidants and provides protection against adriamycin-induced cardiomyopathy in rats. Circulation, 89, 2829–2835.PubMed
45.
go back to reference Childs, A. C., Phaneuf, S. L., Dirks, A. J., Phillips, T., & Leeuwenburgh, C. (2002). Doxorubicin treatment in vivo causes cytochrome C release and cardiomyocyte apoptosis, as well as increased mitochondrial efficiency, superoxide dismutase activity, and Bcl-2: Bax ratio. Cancer Research, 62, 4592–4598.PubMed Childs, A. C., Phaneuf, S. L., Dirks, A. J., Phillips, T., & Leeuwenburgh, C. (2002). Doxorubicin treatment in vivo causes cytochrome C release and cardiomyocyte apoptosis, as well as increased mitochondrial efficiency, superoxide dismutase activity, and Bcl-2: Bax ratio. Cancer Research, 62, 4592–4598.PubMed
46.
go back to reference Miyata, S., Takemura, G., Kosai, K., Takahashi, T., Esaki, M., Li, L., et al. (2010). Anti-Fas gene therapy prevents doxorubicin-induced acute cardiotoxicity through mechanisms independent of apoptosis. American Journal of Pathology, 176, 687–698.PubMedPubMedCentral Miyata, S., Takemura, G., Kosai, K., Takahashi, T., Esaki, M., Li, L., et al. (2010). Anti-Fas gene therapy prevents doxorubicin-induced acute cardiotoxicity through mechanisms independent of apoptosis. American Journal of Pathology, 176, 687–698.PubMedPubMedCentral
47.
go back to reference Tian, S., Hirshfield, K. M., Jabbour, S., Toppmeyer, D., Haffty, B. G., Khan, A. J., et al. (2014). Serum biomarkers for the detection of cardiac toxicity after chemotherapy and radiation therapy in breast cancer patients. Frontiers in Oncology, 4, 277.PubMedPubMedCentral Tian, S., Hirshfield, K. M., Jabbour, S., Toppmeyer, D., Haffty, B. G., Khan, A. J., et al. (2014). Serum biomarkers for the detection of cardiac toxicity after chemotherapy and radiation therapy in breast cancer patients. Frontiers in Oncology, 4, 277.PubMedPubMedCentral
48.
go back to reference Chatterjee, K., Zhang, J., Honbo, N., & Karlinerb, J. S. (2010). Doxorubicin cardiomyopathy. Cardiology, 115, 155–162.PubMed Chatterjee, K., Zhang, J., Honbo, N., & Karlinerb, J. S. (2010). Doxorubicin cardiomyopathy. Cardiology, 115, 155–162.PubMed
49.
go back to reference Mitry, M. A., & Edwards, J. G. (2016). Doxorubicin induced heart failure: Phenotype and molecular mechanisms. International Journal of Cardiology Heart & Vasculature., 10, 17–24. Mitry, M. A., & Edwards, J. G. (2016). Doxorubicin induced heart failure: Phenotype and molecular mechanisms. International Journal of Cardiology Heart & Vasculature., 10, 17–24.
50.
go back to reference Warpe, V. S., Mali, V. R., Arulmozhi, S., Bodhankar, S. L., & Mahadik, K. R. (2015). Cardioprotective effect of ellagic acid on doxorubicin induced cardiotoxicity in wistar rats. Journal of Acute Medicine, 5, 1–8. Warpe, V. S., Mali, V. R., Arulmozhi, S., Bodhankar, S. L., & Mahadik, K. R. (2015). Cardioprotective effect of ellagic acid on doxorubicin induced cardiotoxicity in wistar rats. Journal of Acute Medicine, 5, 1–8.
51.
go back to reference Nagaya, N., Uematsu, M., Kojima, M., Ikeda, Y., Yoshihara, F., Shimizu, W., et al. (2001). Chronic administration of ghrelin improves left ventricular dysfunction and attenuates development of cardiac cachexia in rats with heart failure. Circulation, 104, 1430–1435.PubMed Nagaya, N., Uematsu, M., Kojima, M., Ikeda, Y., Yoshihara, F., Shimizu, W., et al. (2001). Chronic administration of ghrelin improves left ventricular dysfunction and attenuates development of cardiac cachexia in rats with heart failure. Circulation, 104, 1430–1435.PubMed
52.
go back to reference Chen, Y., Ji, X. W., Zhang, A. Y., Lv, J. C., Zhang, J. G., & Zhao, C. H. (2014). Prognostic value of plasma ghrelin in predicting the outcome of patients with chronic heart failure. Archives of Medical Research, 45, 263–269.PubMed Chen, Y., Ji, X. W., Zhang, A. Y., Lv, J. C., Zhang, J. G., & Zhao, C. H. (2014). Prognostic value of plasma ghrelin in predicting the outcome of patients with chronic heart failure. Archives of Medical Research, 45, 263–269.PubMed
53.
go back to reference Khatib, M. N., Shankar, A., Kirubakaran, R., Agho, K., Simkhada, P., Gaidhane, S., et al. (2015). Effect of ghrelin on mortality and cardiovascular outcomes in experimental rat and mice models of heart failure: A systematic review and meta-analysis. PLoS ONE, 10, e0126697.PubMedPubMedCentral Khatib, M. N., Shankar, A., Kirubakaran, R., Agho, K., Simkhada, P., Gaidhane, S., et al. (2015). Effect of ghrelin on mortality and cardiovascular outcomes in experimental rat and mice models of heart failure: A systematic review and meta-analysis. PLoS ONE, 10, e0126697.PubMedPubMedCentral
54.
go back to reference Pu, W. T., Ma, Q., & Izumo, S. (2003). NFAT transcription factors are critical survival factors that inhibit cardiomyocyte apoptosis during phenylephrine stimulation in vitro. Circulation Research, 92, 725–731.PubMed Pu, W. T., Ma, Q., & Izumo, S. (2003). NFAT transcription factors are critical survival factors that inhibit cardiomyocyte apoptosis during phenylephrine stimulation in vitro. Circulation Research, 92, 725–731.PubMed
55.
go back to reference Tanaka, M., Ito, H., Adachi, S., Akimoto, H., Nishikawa, T., Kasajima, T., et al. (1994). Hypoxia induced apoptosis with enhanced expression of Fas antigen messenger RNA in cultured neonatal rat cardiomyocytes. Circulation Research, 75, 426–433.PubMed Tanaka, M., Ito, H., Adachi, S., Akimoto, H., Nishikawa, T., Kasajima, T., et al. (1994). Hypoxia induced apoptosis with enhanced expression of Fas antigen messenger RNA in cultured neonatal rat cardiomyocytes. Circulation Research, 75, 426–433.PubMed
56.
go back to reference Venkatesan, B., Prabhu, S. D., Venkatachalam, K., Mummidi, S., Valente, A. J., Clark, R. A., et al. (2010). WNT1-inducible signaling pathway protein-1 activates diverse cell survival pathways and blocks doxorubicin-induced cardiomyocyte death. Cellular Signalling, 22, 809–820.PubMedPubMedCentral Venkatesan, B., Prabhu, S. D., Venkatachalam, K., Mummidi, S., Valente, A. J., Clark, R. A., et al. (2010). WNT1-inducible signaling pathway protein-1 activates diverse cell survival pathways and blocks doxorubicin-induced cardiomyocyte death. Cellular Signalling, 22, 809–820.PubMedPubMedCentral
57.
go back to reference Das, J., Ghosh, J., Manna, P., & Sil, P. C. (2011). Taurine suppresses doxorubicin-triggered oxidative stress and cardiac apoptosis in rat via up-regulation of PI3-K/Akt and inhibition of p53, p38-JNK. Biochemical Pharmacology, 81, 891–899.PubMed Das, J., Ghosh, J., Manna, P., & Sil, P. C. (2011). Taurine suppresses doxorubicin-triggered oxidative stress and cardiac apoptosis in rat via up-regulation of PI3-K/Akt and inhibition of p53, p38-JNK. Biochemical Pharmacology, 81, 891–899.PubMed
60.
go back to reference Piddo, A. M., Sánchez, M. I., Sapag-Hagar, M., Corbalán, R., Foncea, R., Ebensperger, R., et al. (1996). Cyclic AMP-dependent protein kinase and mechanical heart function in ventricular hypertrophy induced by pressure overload or secondary to myocardial infarction. Journal of Molecular and Cellular Cardiology, 28, 1073–1083.PubMed Piddo, A. M., Sánchez, M. I., Sapag-Hagar, M., Corbalán, R., Foncea, R., Ebensperger, R., et al. (1996). Cyclic AMP-dependent protein kinase and mechanical heart function in ventricular hypertrophy induced by pressure overload or secondary to myocardial infarction. Journal of Molecular and Cellular Cardiology, 28, 1073–1083.PubMed
61.
go back to reference Zakhary, D. R., Moravec, C. S., Stewart, R. W., & Bond, M. (1999). Protein kinase A (PKA)-dependent troponin-I phosphorylation and PKA regulatory subunits are decreased in human dilated cardiomyopathy. Circulation, 99, 505–510.PubMed Zakhary, D. R., Moravec, C. S., Stewart, R. W., & Bond, M. (1999). Protein kinase A (PKA)-dependent troponin-I phosphorylation and PKA regulatory subunits are decreased in human dilated cardiomyopathy. Circulation, 99, 505–510.PubMed
62.
go back to reference Anand, I., Ferrari, R., Kalra, G., Wahi, P., Poole-Wilson, P., & Harris, P. (1989). Edema of cardiac origin: Studies of body water and sodium, renal function, hemodynamic indexes and plasma hormones in untreated congestive cardiac failure. Circulation, 80, 299–305.PubMed Anand, I., Ferrari, R., Kalra, G., Wahi, P., Poole-Wilson, P., & Harris, P. (1989). Edema of cardiac origin: Studies of body water and sodium, renal function, hemodynamic indexes and plasma hormones in untreated congestive cardiac failure. Circulation, 80, 299–305.PubMed
63.
go back to reference Friberg, L., Werner, S., Eggertsen, G., & Ahnve, S. (2000). Growth hormone and insulin-like growth factor-1 in acute myocardial infarction. European Heart Journal, 21, 1547–1554.PubMed Friberg, L., Werner, S., Eggertsen, G., & Ahnve, S. (2000). Growth hormone and insulin-like growth factor-1 in acute myocardial infarction. European Heart Journal, 21, 1547–1554.PubMed
64.
go back to reference Langer, S. W. (2014). Dexrazoxane for the treatment of chemotherapy-related side effects. Cancer Manag Res., 6, 357–363.PubMedPubMedCentral Langer, S. W. (2014). Dexrazoxane for the treatment of chemotherapy-related side effects. Cancer Manag Res., 6, 357–363.PubMedPubMedCentral
65.
go back to reference Hasinoff, B. B., Kuschak, T. I., Yalowich, J. C., & Creighton, A. M. (1995). A QSAR study comparing the cytotoxicity and DNA topoisomerase II inhibitory effects of bisdioxopiperazine analogs of ICRF-187 (dexrazoxane). Biochemical Pharmacology, 50(7), 953–958.PubMed Hasinoff, B. B., Kuschak, T. I., Yalowich, J. C., & Creighton, A. M. (1995). A QSAR study comparing the cytotoxicity and DNA topoisomerase II inhibitory effects of bisdioxopiperazine analogs of ICRF-187 (dexrazoxane). Biochemical Pharmacology, 50(7), 953–958.PubMed
66.
go back to reference Holcenberg, J. S., Tutsch, K. D., Earhart, R. H., et al. (1986). Phase I study of ICRF-187 in pediatric cancer patients and comparison of its pharmacokinetics in children and adults. Cancer Treatment Reports, 70(6), 703–709.PubMed Holcenberg, J. S., Tutsch, K. D., Earhart, R. H., et al. (1986). Phase I study of ICRF-187 in pediatric cancer patients and comparison of its pharmacokinetics in children and adults. Cancer Treatment Reports, 70(6), 703–709.PubMed
67.
go back to reference Liesmann, J., Belt, R., Haas, C., & Hoogstraten, B. (1981). Phase I evaluation of ICRF-187 (NSC-169780) in patients with advanced malignancy. Cancer, 47(8), 1959–1962.PubMed Liesmann, J., Belt, R., Haas, C., & Hoogstraten, B. (1981). Phase I evaluation of ICRF-187 (NSC-169780) in patients with advanced malignancy. Cancer, 47(8), 1959–1962.PubMed
68.
go back to reference Vogel, C. L., Gorowski, E., Davila, E., et al. (1987). Phase I clinical trial and pharmacokinetics of weekly ICRF-187 (NSC 169780) infusion in patients with solid tumors. Investigational New Drugs, 5(2), 187–198.PubMed Vogel, C. L., Gorowski, E., Davila, E., et al. (1987). Phase I clinical trial and pharmacokinetics of weekly ICRF-187 (NSC 169780) infusion in patients with solid tumors. Investigational New Drugs, 5(2), 187–198.PubMed
69.
go back to reference Marty, M., Espié, M., Llombart, A., Monnier, A., Rapoport, B. L., & Stahalova, V. (2006). Dexrazoxane Study Group multicenter randomized phase III study of the cardioprotective effect of dexrazoxane (Cardioxane) in advanced/metastatic breast cancer patients treated with anthracycline-based chemotherapy. Annals of Oncology, 17(4), 614–622.PubMed Marty, M., Espié, M., Llombart, A., Monnier, A., Rapoport, B. L., & Stahalova, V. (2006). Dexrazoxane Study Group multicenter randomized phase III study of the cardioprotective effect of dexrazoxane (Cardioxane) in advanced/metastatic breast cancer patients treated with anthracycline-based chemotherapy. Annals of Oncology, 17(4), 614–622.PubMed
70.
go back to reference Mouridsen, H. T., Langer, S. W., Buter, J., et al. (2007). Treatment of anthracycline extravasation with Savene (dexrazoxane): Results from two prospective clinical multicentre studies. Annals of Oncology, 18(3), 546–550.PubMed Mouridsen, H. T., Langer, S. W., Buter, J., et al. (2007). Treatment of anthracycline extravasation with Savene (dexrazoxane): Results from two prospective clinical multicentre studies. Annals of Oncology, 18(3), 546–550.PubMed
71.
go back to reference Tebbi, C. K., London, W. B., Friedman, D., et al. (2007). Dexrazoxane-associated risk for acute myeloid leukemia/myelodysplastic syndrome and other secondary malignancies in pediatric Hodgkin’s disease. Journal of Clinical Oncology, 25, 493–500.PubMed Tebbi, C. K., London, W. B., Friedman, D., et al. (2007). Dexrazoxane-associated risk for acute myeloid leukemia/myelodysplastic syndrome and other secondary malignancies in pediatric Hodgkin’s disease. Journal of Clinical Oncology, 25, 493–500.PubMed
72.
go back to reference Garin, M. C., Burns, C. M., Kaul, S., & Cappola, A. R. (2013). The human experience with ghrelin administration. Journal of Clinical Endocrinology and Metabolism, 98(5), 1826–1837.PubMedPubMedCentral Garin, M. C., Burns, C. M., Kaul, S., & Cappola, A. R. (2013). The human experience with ghrelin administration. Journal of Clinical Endocrinology and Metabolism, 98(5), 1826–1837.PubMedPubMedCentral
73.
go back to reference Adachi, S., Takiguchi, S., Okada, K., et al. (2010). Effects of ghrelin administration after total gastrectomy: A prospective, randomized, placebo-controlled phase II study. Gastroenterology, 138, 1312–1320.PubMed Adachi, S., Takiguchi, S., Okada, K., et al. (2010). Effects of ghrelin administration after total gastrectomy: A prospective, randomized, placebo-controlled phase II study. Gastroenterology, 138, 1312–1320.PubMed
74.
go back to reference Hiura, Y., Takiguchi, S., Yamamoto, K., et al. (2012). Fall in plasma ghrelin concentrations after cisplatin-based chemotherapy in esophageal cancer patients. Int J Clin Oncol., 17, 316–323.PubMed Hiura, Y., Takiguchi, S., Yamamoto, K., et al. (2012). Fall in plasma ghrelin concentrations after cisplatin-based chemotherapy in esophageal cancer patients. Int J Clin Oncol., 17, 316–323.PubMed
75.
go back to reference Lambert, E., Lambert, G., Ika-Sari, C., et al. (2011). Ghrelin modulates sympathetic nervous system activity and stress response in lean and overweight men. Hypertension, 58, 43–50.PubMed Lambert, E., Lambert, G., Ika-Sari, C., et al. (2011). Ghrelin modulates sympathetic nervous system activity and stress response in lean and overweight men. Hypertension, 58, 43–50.PubMed
76.
go back to reference Vestergaard, E. T., Hansen, T. K., Gormsen, L. C., et al. (2007). Constant intravenous ghrelin infusion in healthy young men: Clinical pharmacokinetics and metabolic effects. American Journal of Physiology Endocrinology and metabolism, 292, E1829–E1836.PubMed Vestergaard, E. T., Hansen, T. K., Gormsen, L. C., et al. (2007). Constant intravenous ghrelin infusion in healthy young men: Clinical pharmacokinetics and metabolic effects. American Journal of Physiology Endocrinology and metabolism, 292, E1829–E1836.PubMed
77.
go back to reference Kluge, M., Schussler, P., Uhr, M., Yassouridis, A., & Steiger, A. (2007). Ghrelin suppresses secretion of luteinizing hormone in humans. The Journal of Clinical Endocrinology & Metabolism, 92, 3202–3205. Kluge, M., Schussler, P., Uhr, M., Yassouridis, A., & Steiger, A. (2007). Ghrelin suppresses secretion of luteinizing hormone in humans. The Journal of Clinical Endocrinology & Metabolism, 92, 3202–3205.
78.
go back to reference Kluge, M., Uhr, M., Bleninger, P., Yassouridis, A., & Steiger, A. (2009). Ghrelin suppresses secretion of FSH in males. Clinical Endocrinology (Oxford), 70, 920–923. Kluge, M., Uhr, M., Bleninger, P., Yassouridis, A., & Steiger, A. (2009). Ghrelin suppresses secretion of FSH in males. Clinical Endocrinology (Oxford), 70, 920–923.
79.
go back to reference Huda, M. S., Mani, H., Dovey, T., et al. (2010). Ghrelin inhibits autonomic function in healthy controls, but has no effect on obese and vagotomized subjects. Clinical Endocrinology—Oxford, 73, 678–685.PubMed Huda, M. S., Mani, H., Dovey, T., et al. (2010). Ghrelin inhibits autonomic function in healthy controls, but has no effect on obese and vagotomized subjects. Clinical Endocrinology—Oxford, 73, 678–685.PubMed
80.
go back to reference Kluge, M., Schussler, P., Bleninger, P., et al. (2008). Ghrelin alone or co-administered with GHRH or CRH increases non-REM sleep and decreases REM sleep in young males. Psychoneuroendocrinology, 33, 497–506.PubMed Kluge, M., Schussler, P., Bleninger, P., et al. (2008). Ghrelin alone or co-administered with GHRH or CRH increases non-REM sleep and decreases REM sleep in young males. Psychoneuroendocrinology, 33, 497–506.PubMed
Metadata
Title
Acylated Ghrelin Protects the Hearts of Rats from Doxorubicin-Induced Fas/FasL Apoptosis by Stimulating SERCA2a Mediated by Activation of PKA and Akt
Authors
Ali A. Shati
M. Dallak
Publication date
01-12-2019
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 6/2019
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-019-09527-8

Other articles of this Issue 6/2019

Cardiovascular Toxicology 6/2019 Go to the issue