Skip to main content
Top
Published in: Cardiovascular Toxicology 3/2019

01-06-2019 | Combustion

Combustion Particle-Induced Changes in Calcium Homeostasis: A Contributing Factor to Vascular Disease?

Authors: Jørn A. Holme, Bendik C. Brinchmann, Eric Le Ferrec, Dominique Lagadic-Gossmann, Johan Øvrevik

Published in: Cardiovascular Toxicology | Issue 3/2019

Login to get access

Abstract

Air pollution is the leading environmental risk factor for disease and premature death in the world. This is mainly due to exposure to urban air particle matter (PM), in particular, fine and ultrafine combustion-derived particles (CDP) from traffic-related air pollution. PM and CDP, including particles from diesel exhaust (DEP), and cigarette smoke have been linked to various cardiovascular diseases (CVDs) including atherosclerosis, but the underlying cellular mechanisms remain unclear. Moreover, CDP typically consist of carbon cores with a complex mixture of organic chemicals such as polycyclic aromatic hydrocarbons (PAHs) adhered. The relative contribution of the carbon core and adhered soluble components to cardiovascular effects of CDP is still a matter of discussion. In the present review, we summarize evidence showing that CDP affects intracellular calcium regulation, and argue that CDP-induced impairment of normal calcium control may be a critical cellular event through which CDP exposure contributes to development or exacerbation of cardiovascular disease. Furthermore, we highlight in vitro research suggesting that adhered organic chemicals such as PAHs may be key drivers of these responses. CDP, extractable organic material from CDP (CDP-EOM), and PAHs may increase intracellular calcium levels by interacting with calcium channels like transient receptor potential (TRP) channels, and receptors such as G protein-coupled receptors (GPCR; e.g., beta-adrenergic receptors [βAR] and protease-activated receptor 2 [PAR-2]) and the aryl hydrocarbon receptor (AhR). Clarifying a possible role of calcium signaling and mechanisms involved may increase our understanding of how air pollution contributes to CVD.
Literature
1.
go back to reference WHO. (2016). Ambient air pollution: A global assesment of exposure and burden of disease. Geneva: World Health Organization. WHO. (2016). Ambient air pollution: A global assesment of exposure and burden of disease. Geneva: World Health Organization.
2.
go back to reference Siponen, T., Yli-Tuomi, T., Aurela, M., Dufva, H., Hillamo, R., Hirvonen, M. R., et al. (2015). Source-specific fine particulate air pollution and systemic inflammation in ischaemic heart disease patients. Occupational and Environmental Medicine, 72(4), 277–283.CrossRefPubMed Siponen, T., Yli-Tuomi, T., Aurela, M., Dufva, H., Hillamo, R., Hirvonen, M. R., et al. (2015). Source-specific fine particulate air pollution and systemic inflammation in ischaemic heart disease patients. Occupational and Environmental Medicine, 72(4), 277–283.CrossRefPubMed
3.
go back to reference Schneider, A., Neas, L. M., Graff, D. W., Herbst, M. C., Cascio, W. E., Schmitt, M. T., et al. (2010). Association of cardiac and vascular changes with ambient PM2.5 in diabetic individuals. Particle and Fibre Toxicology, 7, 14.CrossRefPubMedPubMedCentral Schneider, A., Neas, L. M., Graff, D. W., Herbst, M. C., Cascio, W. E., Schmitt, M. T., et al. (2010). Association of cardiac and vascular changes with ambient PM2.5 in diabetic individuals. Particle and Fibre Toxicology, 7, 14.CrossRefPubMedPubMedCentral
4.
go back to reference Pope, C. A., Bhatnagar, A., McCracken, J. P., Abplanalp, W., Conklin, D. J., & O’Toole, T. (2016). Exposure to fine particulate air pollution is associated with endothelial injury and systemic inflammation. Circulation Research, 119(11), 1204–1214.CrossRefPubMedPubMedCentral Pope, C. A., Bhatnagar, A., McCracken, J. P., Abplanalp, W., Conklin, D. J., & O’Toole, T. (2016). Exposure to fine particulate air pollution is associated with endothelial injury and systemic inflammation. Circulation Research, 119(11), 1204–1214.CrossRefPubMedPubMedCentral
5.
go back to reference Fariss, M. W., Gilmour, M. I., Reilly, C. A., Liedtke, W., & Ghio, A. J. (2013). Emerging mechanistic targets in lung injury induced by combustion-generated particles. Toxicological Science, 132(2), 253–267.CrossRef Fariss, M. W., Gilmour, M. I., Reilly, C. A., Liedtke, W., & Ghio, A. J. (2013). Emerging mechanistic targets in lung injury induced by combustion-generated particles. Toxicological Science, 132(2), 253–267.CrossRef
6.
go back to reference Cassee, F. R., Heroux, M. E., Gerlofs-Nijland, M. E., & Kelly, F. J. (2013). Particulate matter beyond mass: Recent health evidence on the role of fractions, chemical constituents and sources of emission. Inhalation Toxicology, 25(14), 802–812.CrossRefPubMedPubMedCentral Cassee, F. R., Heroux, M. E., Gerlofs-Nijland, M. E., & Kelly, F. J. (2013). Particulate matter beyond mass: Recent health evidence on the role of fractions, chemical constituents and sources of emission. Inhalation Toxicology, 25(14), 802–812.CrossRefPubMedPubMedCentral
7.
go back to reference Lewtas, J. (2007). Air pollution combustion emissions: Characterization of causative agents and mechanisms associated with cancer, reproductive, and cardiovascular effects. Mutation Research, 636(1–3), 95–133.CrossRefPubMed Lewtas, J. (2007). Air pollution combustion emissions: Characterization of causative agents and mechanisms associated with cancer, reproductive, and cardiovascular effects. Mutation Research, 636(1–3), 95–133.CrossRefPubMed
8.
go back to reference Kawasaki, S., Takizawa, H., Takami, K., Desaki, M., Okazaki, H., Kasama, T., et al. (2001). Benzene-extracted components are important for the major activity of diesel exhaust particles. American Journal of Respiratory Cell and Molecular Biology, 24, 419–426.CrossRefPubMed Kawasaki, S., Takizawa, H., Takami, K., Desaki, M., Okazaki, H., Kasama, T., et al. (2001). Benzene-extracted components are important for the major activity of diesel exhaust particles. American Journal of Respiratory Cell and Molecular Biology, 24, 419–426.CrossRefPubMed
9.
go back to reference Bonvallot, V., Baeza-Squiban, A., Baulig, A., Brulant, S., Boland, S., Muzeau, F., et al. (2001). Organic compounds from diesel exhaust particles elicit a proinflammatory response in human airway epithelial cells and induce cytochrome p450 1A1 expression. American Journal of Respiratory Cell and Molecular Biology, 25, 515–521.CrossRefPubMed Bonvallot, V., Baeza-Squiban, A., Baulig, A., Brulant, S., Boland, S., Muzeau, F., et al. (2001). Organic compounds from diesel exhaust particles elicit a proinflammatory response in human airway epithelial cells and induce cytochrome p450 1A1 expression. American Journal of Respiratory Cell and Molecular Biology, 25, 515–521.CrossRefPubMed
10.
go back to reference Totlandsdal, A. I., Herseth, J. I., Bolling, A. K., Kubatova, A., Braun, A., Cochran, R. E., et al. (2012). Differential effects of the particle core and organic extract of diesel exhaust particles. Toxicology Letters, 208(3), 262–268.CrossRefPubMed Totlandsdal, A. I., Herseth, J. I., Bolling, A. K., Kubatova, A., Braun, A., Cochran, R. E., et al. (2012). Differential effects of the particle core and organic extract of diesel exhaust particles. Toxicology Letters, 208(3), 262–268.CrossRefPubMed
11.
go back to reference Ma, J. Y., & Ma, J. K. (2002). The dual effect of the particulate and organic components of diesel exhaust particles on the alteration of pulmonary immune/inflammatory responses and metabolic enzymes. Journal of Environmental Science Health Part C, 20(2), 117–147.CrossRef Ma, J. Y., & Ma, J. K. (2002). The dual effect of the particulate and organic components of diesel exhaust particles on the alteration of pulmonary immune/inflammatory responses and metabolic enzymes. Journal of Environmental Science Health Part C, 20(2), 117–147.CrossRef
12.
go back to reference Keebaugh, A. J., Sioutas, C., Pakbin, P., Schauer, J. J., Mendez, L. B., & Kleinman, M. T. (2015). Is atherosclerotic disease associated with organic components of ambient fine particles? Science Total Environment, 533, 69–75.CrossRef Keebaugh, A. J., Sioutas, C., Pakbin, P., Schauer, J. J., Mendez, L. B., & Kleinman, M. T. (2015). Is atherosclerotic disease associated with organic components of ambient fine particles? Science Total Environment, 533, 69–75.CrossRef
13.
go back to reference Brinchmann, B. C., Le Ferrec, E., Podechard, N., Lagadic-Gossmann, D., Shoji, K. F., Penna, A., et al. (2018). Lipophilic chemicals from diesel exhaust particles trigger calcium response in human endothelial cells via aryl hydrocarbon receptor non-genomic signalling. International Journal of Molecular Science, 19(5), 1429.CrossRef Brinchmann, B. C., Le Ferrec, E., Podechard, N., Lagadic-Gossmann, D., Shoji, K. F., Penna, A., et al. (2018). Lipophilic chemicals from diesel exhaust particles trigger calcium response in human endothelial cells via aryl hydrocarbon receptor non-genomic signalling. International Journal of Molecular Science, 19(5), 1429.CrossRef
14.
go back to reference Shapiro, D., Deering-Rice, C. E., Romero, E. G., Hughen, R. W., Light, A. R., Veranth, J. M., et al. (2013). Activation of transient receptor potential ankyrin-1 (TRPA1) in lung cells by wood smoke particulate material. Chemical Research in Toxicology, 26(5), 750–758.CrossRefPubMedPubMedCentral Shapiro, D., Deering-Rice, C. E., Romero, E. G., Hughen, R. W., Light, A. R., Veranth, J. M., et al. (2013). Activation of transient receptor potential ankyrin-1 (TRPA1) in lung cells by wood smoke particulate material. Chemical Research in Toxicology, 26(5), 750–758.CrossRefPubMedPubMedCentral
15.
go back to reference Mayati, A., Le Ferrec, E., Lagadic-Gossmann, D., & Fardel, O. (2012). Aryl hydrocarbon receptor-independent up-regulation of intracellular calcium concentration by environmental polycyclic aromatic hydrocarbons in human endothelial HMEC-1 cells. Environmental Toxicology, 27(9), 556–562.CrossRefPubMed Mayati, A., Le Ferrec, E., Lagadic-Gossmann, D., & Fardel, O. (2012). Aryl hydrocarbon receptor-independent up-regulation of intracellular calcium concentration by environmental polycyclic aromatic hydrocarbons in human endothelial HMEC-1 cells. Environmental Toxicology, 27(9), 556–562.CrossRefPubMed
16.
go back to reference McLaren, J. E., Michael, D. R., Ashlin, T. G., & Ramji, D. P. (2011). Cytokines, macrophage lipid metabolism and foam cells: Implications for cardiovascular disease therapy. Progress in Lipid Research, 50(4), 331–347.CrossRefPubMed McLaren, J. E., Michael, D. R., Ashlin, T. G., & Ramji, D. P. (2011). Cytokines, macrophage lipid metabolism and foam cells: Implications for cardiovascular disease therapy. Progress in Lipid Research, 50(4), 331–347.CrossRefPubMed
17.
go back to reference Ramji, D. P., & Davies, T. S. (2015). Cytokines in atherosclerosis: Key players in all stages of disease and promising therapeutic targets. Cytokine & Growth Factor Reviews, 26(6), 673–685.CrossRef Ramji, D. P., & Davies, T. S. (2015). Cytokines in atherosclerosis: Key players in all stages of disease and promising therapeutic targets. Cytokine & Growth Factor Reviews, 26(6), 673–685.CrossRef
18.
go back to reference Donaldson, K., Stone, V., Borm, P. J. A., Jimenez, L. A., Gilmour, P. S., Schins, R. P. F., et al. (2003). Oxidative stress and calcium signaling in the adverse effects of environmental particles (PM10). Free Radical Biology & Medicine, 34(11), 1369–1382.CrossRef Donaldson, K., Stone, V., Borm, P. J. A., Jimenez, L. A., Gilmour, P. S., Schins, R. P. F., et al. (2003). Oxidative stress and calcium signaling in the adverse effects of environmental particles (PM10). Free Radical Biology & Medicine, 34(11), 1369–1382.CrossRef
19.
go back to reference Donaldson, K., Stone, V., Seaton, A., & MacNee, W. (2001). Ambient particle inhalation and the cardiovascular system: Potential mechanisms. Environmental Health Perspectives, 109, 523–527.PubMedPubMedCentral Donaldson, K., Stone, V., Seaton, A., & MacNee, W. (2001). Ambient particle inhalation and the cardiovascular system: Potential mechanisms. Environmental Health Perspectives, 109, 523–527.PubMedPubMedCentral
20.
go back to reference de Kok, T. M., Driece, H. A., Hogervorst, J. G., & Briede, J. J. (2006). Toxicological assessment of ambient and traffic-related particulate matter: A review of recent studies. Mutation Research, 613(2–3), 103–122.CrossRefPubMed de Kok, T. M., Driece, H. A., Hogervorst, J. G., & Briede, J. J. (2006). Toxicological assessment of ambient and traffic-related particulate matter: A review of recent studies. Mutation Research, 613(2–3), 103–122.CrossRefPubMed
21.
go back to reference Maier, K. L., Alessandrini, F., Beck-Speier, I., Hofer, T. P., Diabate, S., Bitterle, E., et al. (2008). Health effects of ambient particulate matter–biological mechanisms and inflammatory responses to in vitro and in vivo particle exposures. Inhalation Toxicology, 20(3), 319–337.CrossRefPubMed Maier, K. L., Alessandrini, F., Beck-Speier, I., Hofer, T. P., Diabate, S., Bitterle, E., et al. (2008). Health effects of ambient particulate matter–biological mechanisms and inflammatory responses to in vitro and in vivo particle exposures. Inhalation Toxicology, 20(3), 319–337.CrossRefPubMed
22.
go back to reference Li, N., Hao, M., Phalen, R. F., Hinds, W. C., & Nel, A. E. (2003). Particulate air pollutants and asthma A paradigm for the role of oxidative stress in PM-induced adverse health effects. Clinical Immunology, 109, 250–265.CrossRefPubMed Li, N., Hao, M., Phalen, R. F., Hinds, W. C., & Nel, A. E. (2003). Particulate air pollutants and asthma A paradigm for the role of oxidative stress in PM-induced adverse health effects. Clinical Immunology, 109, 250–265.CrossRefPubMed
23.
go back to reference Sauer, H., Wartenberg, M., & Hescheler, J. (2001). Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cellular Physiology and Biochemistry, 11, 173–186.CrossRefPubMed Sauer, H., Wartenberg, M., & Hescheler, J. (2001). Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cellular Physiology and Biochemistry, 11, 173–186.CrossRefPubMed
24.
go back to reference Ovrevik, J., Refsnes, M., Lag, M., Holme, J. A., & Schwarze, P. E. (2015). Activation of proinflammatory responses in cells of the airway mucosa by particulate matter: Oxidant- and non-oxidant-mediated triggering mechanisms. Biomolecules, 5(3), 1399–1440.CrossRefPubMedPubMedCentral Ovrevik, J., Refsnes, M., Lag, M., Holme, J. A., & Schwarze, P. E. (2015). Activation of proinflammatory responses in cells of the airway mucosa by particulate matter: Oxidant- and non-oxidant-mediated triggering mechanisms. Biomolecules, 5(3), 1399–1440.CrossRefPubMedPubMedCentral
25.
go back to reference Vogel, C. F. A., Sciullo, E., Wong, P., Kuzmicky, P., Kado, N., & Matsumura, F. (2005). Induction of proinflammatory cytokines and C-Reactive protein in human macrophage cell line U937 exposed to air pollution particulates. Environmental Health Perspectives, 113(11), 1536–1541.CrossRefPubMedPubMedCentral Vogel, C. F. A., Sciullo, E., Wong, P., Kuzmicky, P., Kado, N., & Matsumura, F. (2005). Induction of proinflammatory cytokines and C-Reactive protein in human macrophage cell line U937 exposed to air pollution particulates. Environmental Health Perspectives, 113(11), 1536–1541.CrossRefPubMedPubMedCentral
26.
go back to reference Mills, N. L., Tornqvist, H., Gonzalez, M. C., Vink, E., Robinson, S. D., Soderberg, S., et al. (2007). Ischemic and thrombotic effects of dilute diesel-exhaust inhalation in men with coronary heart disease. The New England journal of medicine, 357(11), 1075–1082.CrossRefPubMed Mills, N. L., Tornqvist, H., Gonzalez, M. C., Vink, E., Robinson, S. D., Soderberg, S., et al. (2007). Ischemic and thrombotic effects of dilute diesel-exhaust inhalation in men with coronary heart disease. The New England journal of medicine, 357(11), 1075–1082.CrossRefPubMed
27.
go back to reference Mills, N. L., Tornqvist, H., Robinson, S. D., Gonzalez, M., Darnley, K., MacNee, W., et al. (2005). Diesel exhaust inhalation causes vascular dysfunction and impaired endogenous fibrinolysis. Circulation, 112(25), 3930–3936.CrossRefPubMed Mills, N. L., Tornqvist, H., Robinson, S. D., Gonzalez, M., Darnley, K., MacNee, W., et al. (2005). Diesel exhaust inhalation causes vascular dysfunction and impaired endogenous fibrinolysis. Circulation, 112(25), 3930–3936.CrossRefPubMed
28.
go back to reference Lucking, A. J., Lundback, M., Mills, N. L., Faratian, D., Barath, S. L., Pourazar, J., et al. (2008). Diesel exhaust inhalation increases thrombus formation in man. European Heart Journal, 29(24), 3043–3051.CrossRefPubMed Lucking, A. J., Lundback, M., Mills, N. L., Faratian, D., Barath, S. L., Pourazar, J., et al. (2008). Diesel exhaust inhalation increases thrombus formation in man. European Heart Journal, 29(24), 3043–3051.CrossRefPubMed
29.
go back to reference Araujo, J. A., & Nel, A. E. (2009). Particulate matter and atherosclerosis: Role of particle size, composition and oxidative stress. Particle and Fibre Toxicology, 6, 24.CrossRefPubMedPubMedCentral Araujo, J. A., & Nel, A. E. (2009). Particulate matter and atherosclerosis: Role of particle size, composition and oxidative stress. Particle and Fibre Toxicology, 6, 24.CrossRefPubMedPubMedCentral
30.
go back to reference Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep, K., et al. (2017). Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. The Lancet, 389(10082), 1907–1918.CrossRef Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep, K., et al. (2017). Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. The Lancet, 389(10082), 1907–1918.CrossRef
31.
go back to reference Brook, R. D., Rajagopalan, S., Pope, C. A., 3rd, Brook, J. R., Bhatnagar, A., Diez-Roux, A. V., et al. (2010). Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation, 121(21), 2331–2378.CrossRefPubMed Brook, R. D., Rajagopalan, S., Pope, C. A., 3rd, Brook, J. R., Bhatnagar, A., Diez-Roux, A. V., et al. (2010). Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation, 121(21), 2331–2378.CrossRefPubMed
32.
go back to reference Perez, C. M., Hazari, M. S., & Farraj, A. K. (2015). Role of autonomic reflex arcs in cardiovascular responses to air pollution exposure. Cardiovascular Toxicology, 15(1), 69–78.CrossRefPubMedPubMedCentral Perez, C. M., Hazari, M. S., & Farraj, A. K. (2015). Role of autonomic reflex arcs in cardiovascular responses to air pollution exposure. Cardiovascular Toxicology, 15(1), 69–78.CrossRefPubMedPubMedCentral
33.
go back to reference Carll, A. P., Hazari, M. S., Perez, C. M., Krantz, Q. T., King, C. J., Winsett, D. W., et al. (2012). Whole and particle-free diesel exhausts differentially affect cardiac electrophysiology, blood pressure, and autonomic balance in heart failure-prone rats. Toxicological Sciences, 128(2), 490–499.CrossRefPubMedPubMedCentral Carll, A. P., Hazari, M. S., Perez, C. M., Krantz, Q. T., King, C. J., Winsett, D. W., et al. (2012). Whole and particle-free diesel exhausts differentially affect cardiac electrophysiology, blood pressure, and autonomic balance in heart failure-prone rats. Toxicological Sciences, 128(2), 490–499.CrossRefPubMedPubMedCentral
34.
go back to reference Kodavanti, U. P. (2016). Stretching the stress boundary: Linking air pollution health effects to a neurohormonal stress response. Biochimica et Biophysica Acta, 1860(12), 2880–2890.CrossRefPubMed Kodavanti, U. P. (2016). Stretching the stress boundary: Linking air pollution health effects to a neurohormonal stress response. Biochimica et Biophysica Acta, 1860(12), 2880–2890.CrossRefPubMed
35.
go back to reference Hazari, M. S., Haykal-Coates, N., Winsett, D. W., Krantz, Q. T., King, C., Costa, D. L., et al. (2011). TRPA1 and sympathetic activation contribute to increased risk of triggered cardiac arrhythmias in hypertensive rats exposed to diesel exhaust. Environmental Health Perspectives, 119(7), 951–957.CrossRefPubMedPubMedCentral Hazari, M. S., Haykal-Coates, N., Winsett, D. W., Krantz, Q. T., King, C., Costa, D. L., et al. (2011). TRPA1 and sympathetic activation contribute to increased risk of triggered cardiac arrhythmias in hypertensive rats exposed to diesel exhaust. Environmental Health Perspectives, 119(7), 951–957.CrossRefPubMedPubMedCentral
36.
go back to reference Araujo, J. A., Barajas, B., Kleinman, M., Wang, X., Bennett, B. J., Gong, K. W., et al. (2008). Ambient particulate pollutants in the ultrafine range promote early atherosclerosis and systemic oxidative stress. Circulation Research, 102(5), 589–596.CrossRefPubMedPubMedCentral Araujo, J. A., Barajas, B., Kleinman, M., Wang, X., Bennett, B. J., Gong, K. W., et al. (2008). Ambient particulate pollutants in the ultrafine range promote early atherosclerosis and systemic oxidative stress. Circulation Research, 102(5), 589–596.CrossRefPubMedPubMedCentral
37.
go back to reference Borm, P. J., Robbins, D., Haubold, S., Kuhlbusch, T., Fissan, H., Donaldson, K., et al. (2006). The potential risks of nanomaterials: A review carried out for ECETOC. Particle and Fibre Toxicology, 3, 11.CrossRefPubMedPubMedCentral Borm, P. J., Robbins, D., Haubold, S., Kuhlbusch, T., Fissan, H., Donaldson, K., et al. (2006). The potential risks of nanomaterials: A review carried out for ECETOC. Particle and Fibre Toxicology, 3, 11.CrossRefPubMedPubMedCentral
38.
go back to reference Miller, M. R., Raftis, J. B., Langrish, J. P., McLean, S. G., Samutrtai, P., Connell, S. P., et al. (2017). Inhaled Nanoparticles accumulate at sites of vascular disease. ACS Nano, 11(5), 4542–4552.CrossRefPubMedPubMedCentral Miller, M. R., Raftis, J. B., Langrish, J. P., McLean, S. G., Samutrtai, P., Connell, S. P., et al. (2017). Inhaled Nanoparticles accumulate at sites of vascular disease. ACS Nano, 11(5), 4542–4552.CrossRefPubMedPubMedCentral
39.
go back to reference Miller, M. R., Raftis, J. B., Langrish, J. P., McLean, S. G., Samutrtai, P., Connell, S. P., et al. (2017). Correction to”Inhaled nanoparticles accumulate at sites of vascular disease”. ACS Nano, 11(10), 10623–10624.CrossRefPubMedPubMedCentral Miller, M. R., Raftis, J. B., Langrish, J. P., McLean, S. G., Samutrtai, P., Connell, S. P., et al. (2017). Correction to”Inhaled nanoparticles accumulate at sites of vascular disease”. ACS Nano, 11(10), 10623–10624.CrossRefPubMedPubMedCentral
40.
go back to reference Penn, A., Murphy, G., Barker, S., Henk, W., & Penn, L. (2005). Combustion-derived ultrafine particles transport organic toxicants to target respiratory cells. Environmental Health Perspectives, 113(8), 956–963.CrossRefPubMedPubMedCentral Penn, A., Murphy, G., Barker, S., Henk, W., & Penn, L. (2005). Combustion-derived ultrafine particles transport organic toxicants to target respiratory cells. Environmental Health Perspectives, 113(8), 956–963.CrossRefPubMedPubMedCentral
41.
go back to reference Gerde, P., Muggenburg, B. A., Lundborg, M., & Dahl, A. R. (2001). The rapid alveolar absorption of diesel soot-adsorbed benzo[a]pyrene: Bioavailability, metabolism and dosimetry of an inhaled particle-borne carcinogen. Carcinogenesis, 22(5), 741–749.CrossRefPubMed Gerde, P., Muggenburg, B. A., Lundborg, M., & Dahl, A. R. (2001). The rapid alveolar absorption of diesel soot-adsorbed benzo[a]pyrene: Bioavailability, metabolism and dosimetry of an inhaled particle-borne carcinogen. Carcinogenesis, 22(5), 741–749.CrossRefPubMed
42.
go back to reference Bostrom, C. E., Gerde, P., Hanberg, A., Jernstrom, B., Johansson, C., Kyrklund, T., et al. (2002). Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environmental Health Perspectives, 110(Suppl 3), 451–488.CrossRefPubMedPubMedCentral Bostrom, C. E., Gerde, P., Hanberg, A., Jernstrom, B., Johansson, C., Kyrklund, T., et al. (2002). Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environmental Health Perspectives, 110(Suppl 3), 451–488.CrossRefPubMedPubMedCentral
43.
go back to reference Zhang, Y. J., Weksler, B. B., Wang, L., Schwartz, J., & Santella, R. M. (1998). Immunohistochemical detection of polycyclic aromatic hydrocarbon-DNA damage in human blood vessels of smokers and non-smokers. Atherosclerosis, 140(2), 325–331.CrossRefPubMed Zhang, Y. J., Weksler, B. B., Wang, L., Schwartz, J., & Santella, R. M. (1998). Immunohistochemical detection of polycyclic aromatic hydrocarbon-DNA damage in human blood vessels of smokers and non-smokers. Atherosclerosis, 140(2), 325–331.CrossRefPubMed
44.
go back to reference Korashy, H. M., & El-Kadi, A. O. S. (2008). The role of aryl hydrocarbon receptor in the pathogenesis of cardiovascular diseases. Drug Metabolism Reviews, 38(3), 411–450.CrossRef Korashy, H. M., & El-Kadi, A. O. S. (2008). The role of aryl hydrocarbon receptor in the pathogenesis of cardiovascular diseases. Drug Metabolism Reviews, 38(3), 411–450.CrossRef
45.
go back to reference Brinchmann, B. C., Skuland, T., Rambol, M. H., Szoke, K., Brinchmann, J. E., Gutleb, A. C., et al. (2018). Lipophilic components of diesel exhaust particles induce pro-inflammatory responses in human endothelial cells through AhR dependent pathway(s). Particle and Fibre Toxicology, 15(1), 21.CrossRefPubMedPubMedCentral Brinchmann, B. C., Skuland, T., Rambol, M. H., Szoke, K., Brinchmann, J. E., Gutleb, A. C., et al. (2018). Lipophilic components of diesel exhaust particles induce pro-inflammatory responses in human endothelial cells through AhR dependent pathway(s). Particle and Fibre Toxicology, 15(1), 21.CrossRefPubMedPubMedCentral
46.
go back to reference Klein, S. G., Cambier, S., Hennen, J., Legay, S., Serchi, T., Nelissen, I., et al. (2017). Endothelial responses of the alveolar barrier in vitro in a dose-controlled exposure to diesel exhaust particulate matter. Particle and Fibre Toxicology, 14(1), 7.CrossRefPubMedPubMedCentral Klein, S. G., Cambier, S., Hennen, J., Legay, S., Serchi, T., Nelissen, I., et al. (2017). Endothelial responses of the alveolar barrier in vitro in a dose-controlled exposure to diesel exhaust particulate matter. Particle and Fibre Toxicology, 14(1), 7.CrossRefPubMedPubMedCentral
47.
go back to reference Forchhammer, L., Loft, S., Roursgaard, M., Cao, Y., Riddervold, I. S., Sigsgaard, T., et al. (2012). Expression of adhesion molecules, monocyte interactions and oxidative stress in human endothelial cells exposed to wood smoke and diesel exhaust particulate matter. Toxicology Letters, 209(2), 121–128.CrossRefPubMed Forchhammer, L., Loft, S., Roursgaard, M., Cao, Y., Riddervold, I. S., Sigsgaard, T., et al. (2012). Expression of adhesion molecules, monocyte interactions and oxidative stress in human endothelial cells exposed to wood smoke and diesel exhaust particulate matter. Toxicology Letters, 209(2), 121–128.CrossRefPubMed
48.
go back to reference Lawal, A. O., Zhang, M., Dittmar, M., Lulla, A., & Araujo, J. A. (2015). Heme oxygenase-1 protects endothelial cells from the toxicity of air pollutant chemicals. Toxicology and Applied Pharmacology, 284(3), 281–291.CrossRefPubMedPubMedCentral Lawal, A. O., Zhang, M., Dittmar, M., Lulla, A., & Araujo, J. A. (2015). Heme oxygenase-1 protects endothelial cells from the toxicity of air pollutant chemicals. Toxicology and Applied Pharmacology, 284(3), 281–291.CrossRefPubMedPubMedCentral
49.
go back to reference Cao, Y., Long, J., Ji, Y., Chen, G., Shen, Y., Gong, Y., et al. (2016). Foam cell formation by particulate matter (PM) exposure: A review. Inhalation Toxicology, 28(13), 583–590.CrossRefPubMed Cao, Y., Long, J., Ji, Y., Chen, G., Shen, Y., Gong, Y., et al. (2016). Foam cell formation by particulate matter (PM) exposure: A review. Inhalation Toxicology, 28(13), 583–590.CrossRefPubMed
50.
go back to reference Krishnan, R. M., Adar, S. D., Szpiro, A. A., Jorgensen, N. W., Van Hee, V. C., Barr, R. G., et al. (2012). Vascular responses to long- and short-term exposure to fine particulate matter: MESA Air (Multi-Ethnic Study of Atherosclerosis and Air Pollution). Journal of the American College of Cardiology, 60(21), 2158–2166.CrossRefPubMedPubMedCentral Krishnan, R. M., Adar, S. D., Szpiro, A. A., Jorgensen, N. W., Van Hee, V. C., Barr, R. G., et al. (2012). Vascular responses to long- and short-term exposure to fine particulate matter: MESA Air (Multi-Ethnic Study of Atherosclerosis and Air Pollution). Journal of the American College of Cardiology, 60(21), 2158–2166.CrossRefPubMedPubMedCentral
51.
go back to reference Van Eeden, S., Leipsic, J., Paul Man, S. F., & Sin, D. D. (2012). The relationship between lung inflammation and cardiovascular disease. American Journal of Respiratory and Critical Care Medicine, 186(1), 11–16.CrossRefPubMed Van Eeden, S., Leipsic, J., Paul Man, S. F., & Sin, D. D. (2012). The relationship between lung inflammation and cardiovascular disease. American Journal of Respiratory and Critical Care Medicine, 186(1), 11–16.CrossRefPubMed
52.
go back to reference Brauner, E. V., Forchhammer, L., Moller, P., Simonsen, J., Glasius, M., Wahlin, P., et al. (2007). Exposure to ultrafine particles from ambient air and oxidative stress-induced DNA damage. Environmental Health Perspectives, 115(8), 1177–1182.CrossRefPubMedPubMedCentral Brauner, E. V., Forchhammer, L., Moller, P., Simonsen, J., Glasius, M., Wahlin, P., et al. (2007). Exposure to ultrafine particles from ambient air and oxidative stress-induced DNA damage. Environmental Health Perspectives, 115(8), 1177–1182.CrossRefPubMedPubMedCentral
53.
go back to reference Sorensen, M., Daneshvar, B., Hansen, M., Dragsted, L. O., Hertel, O., Knudsen, L., et al. (2003). Personal PM2.5 exposure and markers of oxidative stress in blood. Environmental Health Perspectives, 111(2), 161–166.CrossRefPubMedPubMedCentral Sorensen, M., Daneshvar, B., Hansen, M., Dragsted, L. O., Hertel, O., Knudsen, L., et al. (2003). Personal PM2.5 exposure and markers of oxidative stress in blood. Environmental Health Perspectives, 111(2), 161–166.CrossRefPubMedPubMedCentral
54.
go back to reference Moller, P., Christophersen, D. V., Jacobsen, N. R., Skovmand, A., Gouveia, A. C., Andersen, M. H., et al. (2016). Atherosclerosis and vasomotor dysfunction in arteries of animals after exposure to combustion-derived particulate matter or nanomaterials. Critical Reviews in Toxicology, 46(5), 437–476.CrossRefPubMed Moller, P., Christophersen, D. V., Jacobsen, N. R., Skovmand, A., Gouveia, A. C., Andersen, M. H., et al. (2016). Atherosclerosis and vasomotor dysfunction in arteries of animals after exposure to combustion-derived particulate matter or nanomaterials. Critical Reviews in Toxicology, 46(5), 437–476.CrossRefPubMed
56.
go back to reference Conway, J. D., Bartolotta, T., Abdullah, L. H., & Davis, C. W. (2003). Regulation of mucin secretion from human bronchial epithelial cells grown in murine hosted xenografts. American Journal of Physiology. Lung Cellular and Molecular Physiology, 284(6), L945–954.CrossRefPubMed Conway, J. D., Bartolotta, T., Abdullah, L. H., & Davis, C. W. (2003). Regulation of mucin secretion from human bronchial epithelial cells grown in murine hosted xenografts. American Journal of Physiology. Lung Cellular and Molecular Physiology, 284(6), L945–954.CrossRefPubMed
57.
go back to reference Haller, T., Ortmayr, J., Friedrich, F., Volkl, H., & Dietl, P. (1998). Dynamics of surfactant release in alveolar type II cells. Proceedings of the National academy of Sciences of the United States of America, 95(4), 1579–1584.CrossRefPubMedPubMedCentral Haller, T., Ortmayr, J., Friedrich, F., Volkl, H., & Dietl, P. (1998). Dynamics of surfactant release in alveolar type II cells. Proceedings of the National academy of Sciences of the United States of America, 95(4), 1579–1584.CrossRefPubMedPubMedCentral
58.
go back to reference Lansley, A. B., & Sanderson, M. J. (1999). Regulation of airway ciliary activity by Ca2+ : Simultaneous measurement of beat frequency and intracellular Ca2+. Biophysical Journal, 77(1), 629–638.CrossRefPubMedPubMedCentral Lansley, A. B., & Sanderson, M. J. (1999). Regulation of airway ciliary activity by Ca2+ : Simultaneous measurement of beat frequency and intracellular Ca2+. Biophysical Journal, 77(1), 629–638.CrossRefPubMedPubMedCentral
59.
go back to reference Racioppi, L., & Means, A. R. (2012). Calcium/calmodulin-dependent protein kinase kinase 2: Roles in signaling and pathophysiology. Journal of Biological Chemistry, 287(38), 31658–31665.CrossRefPubMedPubMedCentral Racioppi, L., & Means, A. R. (2012). Calcium/calmodulin-dependent protein kinase kinase 2: Roles in signaling and pathophysiology. Journal of Biological Chemistry, 287(38), 31658–31665.CrossRefPubMedPubMedCentral
61.
go back to reference Yao, X., & Garland, C. J. (2005). Recent developments in vascular endothelial cell transient receptor potential channels. Circulation Research, 97(9), 853–863.CrossRefPubMed Yao, X., & Garland, C. J. (2005). Recent developments in vascular endothelial cell transient receptor potential channels. Circulation Research, 97(9), 853–863.CrossRefPubMed
62.
go back to reference Sandow, S. L., Senadheera, S., Grayson, T. H., Welsh, D. G., & Murphy, T. V. (2012). Calcium and endothelium-mediated vasodilator signaling. Advances in Experimental Medicine and Biology, 740, 811–831.CrossRefPubMed Sandow, S. L., Senadheera, S., Grayson, T. H., Welsh, D. G., & Murphy, T. V. (2012). Calcium and endothelium-mediated vasodilator signaling. Advances in Experimental Medicine and Biology, 740, 811–831.CrossRefPubMed
63.
go back to reference Sandow, S. L., Haddock, R. E., Hill, C. E., Chadha, P. S., Kerr, P. M., Welsh, D. G., et al. (2009). What’s where and why at a vascular myoendothelial microdomain signalling complex. Clinical and Experimental Pharmacology and Physiology, 36(1), 67–76.CrossRefPubMed Sandow, S. L., Haddock, R. E., Hill, C. E., Chadha, P. S., Kerr, P. M., Welsh, D. G., et al. (2009). What’s where and why at a vascular myoendothelial microdomain signalling complex. Clinical and Experimental Pharmacology and Physiology, 36(1), 67–76.CrossRefPubMed
64.
go back to reference Bagher, P., & Segal, S. S. (2011). Regulation of blood flow in the microcirculation: Role of conducted vasodilation. Acta physiologica (Oxford, England), 202(3), 271–284.CrossRefPubMedCentral Bagher, P., & Segal, S. S. (2011). Regulation of blood flow in the microcirculation: Role of conducted vasodilation. Acta physiologica (Oxford, England), 202(3), 271–284.CrossRefPubMedCentral
65.
go back to reference Straub, A. C., Zeigler, A. C., & Isakson, B. E. (2014). The myoendothelial junction: connections that deliver the message. Physiology (Bethesda), 29(4), 242–249. Straub, A. C., Zeigler, A. C., & Isakson, B. E. (2014). The myoendothelial junction: connections that deliver the message. Physiology (Bethesda), 29(4), 242–249.
66.
go back to reference Tiruppathi, C., Minshall, R. D., Paria, B. C., Vogel, S. M., & Malik, A. B. (2002). Role of Ca2 + signaling in the regulation of endothelial permeability. Vascular Pharmacology, 39(4–5), 173–185.CrossRefPubMed Tiruppathi, C., Minshall, R. D., Paria, B. C., Vogel, S. M., & Malik, A. B. (2002). Role of Ca2 + signaling in the regulation of endothelial permeability. Vascular Pharmacology, 39(4–5), 173–185.CrossRefPubMed
67.
go back to reference Tiruppathi, C., Ahmmed, G. U., Vogel, S. M., & Malik, A. B. (2006). Ca2 + signaling, TRP channels, and endothelial permeability. Microcirculation, 13(8), 693–708.CrossRefPubMed Tiruppathi, C., Ahmmed, G. U., Vogel, S. M., & Malik, A. B. (2006). Ca2 + signaling, TRP channels, and endothelial permeability. Microcirculation, 13(8), 693–708.CrossRefPubMed
68.
go back to reference Barbado, M., Fablet, K., Ronjat, M., & De Waard, M. (2009). Gene regulation by voltage-dependent calcium channels. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1793(6), 1096–1104.CrossRef Barbado, M., Fablet, K., Ronjat, M., & De Waard, M. (2009). Gene regulation by voltage-dependent calcium channels. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1793(6), 1096–1104.CrossRef
69.
go back to reference Goswami, R., Merth, M., Sharma, S., Alharbi, M. O., Aranda-Espinoza, H., Zhu, X., et al. (2017). TRPV4 calcium-permeable channel is a novel regulator of oxidized LDL-induced macrophage foam cell formation. Free Radical Biology and Medicine, 110, 142–150.CrossRefPubMed Goswami, R., Merth, M., Sharma, S., Alharbi, M. O., Aranda-Espinoza, H., Zhu, X., et al. (2017). TRPV4 calcium-permeable channel is a novel regulator of oxidized LDL-induced macrophage foam cell formation. Free Radical Biology and Medicine, 110, 142–150.CrossRefPubMed
70.
go back to reference Mendes-Silverio, C. B., Alexandre, E. M., Lescano, C. H., Antunes, E., & Monica, F. Z. (2018). Mirabegron, a beta3-adrenoceptor agonist reduced platelet aggregation through cyclic adenosine monophosphate accumulation. European Journal of Pharmacology, 829, 79–84.CrossRefPubMed Mendes-Silverio, C. B., Alexandre, E. M., Lescano, C. H., Antunes, E., & Monica, F. Z. (2018). Mirabegron, a beta3-adrenoceptor agonist reduced platelet aggregation through cyclic adenosine monophosphate accumulation. European Journal of Pharmacology, 829, 79–84.CrossRefPubMed
71.
go back to reference Neri, T., Pergoli, L., Petrini, S., Gravendonk, L., Balia, C., Scalise, V., et al. (2016). Particulate matter induces prothrombotic microparticle shedding by human mononuclear and endothelial cells. Toxicology in Vitro, 32, 333–338.CrossRefPubMed Neri, T., Pergoli, L., Petrini, S., Gravendonk, L., Balia, C., Scalise, V., et al. (2016). Particulate matter induces prothrombotic microparticle shedding by human mononuclear and endothelial cells. Toxicology in Vitro, 32, 333–338.CrossRefPubMed
72.
go back to reference Ramsey, I. S., Delling, M., & Clapham, D. E. (2006). An introduction to TRP channels. Annual Review of Physiology, 68, 619–647.CrossRefPubMed Ramsey, I. S., Delling, M., & Clapham, D. E. (2006). An introduction to TRP channels. Annual Review of Physiology, 68, 619–647.CrossRefPubMed
73.
go back to reference Caterina, M. J., & Julius, D. (2001). The vanilloid receptor: a molecular gateway to the pain pathway. Annual Review of Neuroscience, 24, 487–517.CrossRefPubMed Caterina, M. J., & Julius, D. (2001). The vanilloid receptor: a molecular gateway to the pain pathway. Annual Review of Neuroscience, 24, 487–517.CrossRefPubMed
74.
go back to reference Chakraborty, S., & Hasan, G. (2012). IP3R, store-operated Ca2+ entry and neuronal Ca2+ homoeostasis in Drosophila. Biochemical Society Transactions, 40(1), 279–281.CrossRefPubMed Chakraborty, S., & Hasan, G. (2012). IP3R, store-operated Ca2+ entry and neuronal Ca2+ homoeostasis in Drosophila. Biochemical Society Transactions, 40(1), 279–281.CrossRefPubMed
75.
go back to reference Liao, Y., Erxleben, C., Abramowitz, J., Flockerzi, V., Zhu, M. X., Armstrong, D. L., et al. (2008). Functional interactions among Orai1, TRPCs, and STIM1 suggest a STIM-regulated heteromeric Orai/TRPC model for SOCE/Icrac channels. Proceedings of the National academy of Sciences of the United States of America, 105(8), 2895–2900.CrossRefPubMedPubMedCentral Liao, Y., Erxleben, C., Abramowitz, J., Flockerzi, V., Zhu, M. X., Armstrong, D. L., et al. (2008). Functional interactions among Orai1, TRPCs, and STIM1 suggest a STIM-regulated heteromeric Orai/TRPC model for SOCE/Icrac channels. Proceedings of the National academy of Sciences of the United States of America, 105(8), 2895–2900.CrossRefPubMedPubMedCentral
76.
go back to reference Ong, H. L., & Ambudkar, I. S. (2017). STIM-TRP Pathways and Microdomain Organization: Contribution of TRPC1 in Store-Operated Ca(2 +) Entry: Impact on Ca(2 +) Signaling and Cell Function. Advances in Experimental Medicine and Biology, 993, 159–188.CrossRefPubMed Ong, H. L., & Ambudkar, I. S. (2017). STIM-TRP Pathways and Microdomain Organization: Contribution of TRPC1 in Store-Operated Ca(2 +) Entry: Impact on Ca(2 +) Signaling and Cell Function. Advances in Experimental Medicine and Biology, 993, 159–188.CrossRefPubMed
77.
go back to reference Altier, C. (2012). GPCR and voltage-gated calcium channels (VGCC) signaling complexes. Sub-cellular Biochemistry, 63, 241–262.CrossRefPubMed Altier, C. (2012). GPCR and voltage-gated calcium channels (VGCC) signaling complexes. Sub-cellular Biochemistry, 63, 241–262.CrossRefPubMed
78.
go back to reference Zamponi, G. W. (2015). Calcium channel signaling complexes with receptors and channels. Current Molecular Pharmacology, 8(1), 8–11.CrossRefPubMed Zamponi, G. W. (2015). Calcium channel signaling complexes with receptors and channels. Current Molecular Pharmacology, 8(1), 8–11.CrossRefPubMed
79.
go back to reference Bylund, D. B., Eikenberg, D. C., Hieble, J. P., Langer, S. Z., Lefkowitz, R. J., Minneman, K. P., et al. (1994). International Union of Pharmacology nomenclature of adrenoceptors. Pharmacological Reviews, 46(2), 121–136.PubMed Bylund, D. B., Eikenberg, D. C., Hieble, J. P., Langer, S. Z., Lefkowitz, R. J., Minneman, K. P., et al. (1994). International Union of Pharmacology nomenclature of adrenoceptors. Pharmacological Reviews, 46(2), 121–136.PubMed
80.
go back to reference Lowell, B. B., & Flier, J. S. (1997). Brown adipose tissue, beta 3-adrenergic receptors, and obesity. Annual Review of Medicine, 48, 307–316.CrossRefPubMed Lowell, B. B., & Flier, J. S. (1997). Brown adipose tissue, beta 3-adrenergic receptors, and obesity. Annual Review of Medicine, 48, 307–316.CrossRefPubMed
81.
go back to reference Hirano, K. (2007). The roles of proteinase-activated receptors in the vascular physiology and pathophysiology. Arteriosclerosis, Thrombosis, and Vascular Biology, 27(1), 27–36.CrossRefPubMed Hirano, K. (2007). The roles of proteinase-activated receptors in the vascular physiology and pathophysiology. Arteriosclerosis, Thrombosis, and Vascular Biology, 27(1), 27–36.CrossRefPubMed
82.
go back to reference Alberelli, M. A., & De Candia, E. (2014). Functional role of protease activated receptors in vascular biology. Vascular Pharmacology, 62(2), 72–81.CrossRefPubMed Alberelli, M. A., & De Candia, E. (2014). Functional role of protease activated receptors in vascular biology. Vascular Pharmacology, 62(2), 72–81.CrossRefPubMed
83.
go back to reference Esser, C., & Rannug, A. (2015). The aryl hydrocarbon receptor in barrier organ physiology, immunology, and toxicology. Pharmacological Reviews, 67(2), 259–279.CrossRefPubMed Esser, C., & Rannug, A. (2015). The aryl hydrocarbon receptor in barrier organ physiology, immunology, and toxicology. Pharmacological Reviews, 67(2), 259–279.CrossRefPubMed
84.
go back to reference Barouki, R., Aggerbeck, M., Aggerbeck, L., & Coumoul, X. (2012). The aryl hydrocarbon receptor system. Drug Metabolism and Drug Interactions, 27(1), 3–8.CrossRefPubMed Barouki, R., Aggerbeck, M., Aggerbeck, L., & Coumoul, X. (2012). The aryl hydrocarbon receptor system. Drug Metabolism and Drug Interactions, 27(1), 3–8.CrossRefPubMed
85.
go back to reference Tian, Y., Rabson, A. B., & Gallo, M. A. (2002). Ah receptor and NF-kappaB interactions: Mechanisms and physiological implications. Chemico-Biological Interactions, 141(1–2), 97–115.CrossRefPubMed Tian, Y., Rabson, A. B., & Gallo, M. A. (2002). Ah receptor and NF-kappaB interactions: Mechanisms and physiological implications. Chemico-Biological Interactions, 141(1–2), 97–115.CrossRefPubMed
86.
go back to reference Vogel, C. F., & Matsumura, F. (2009). A new cross-talk between the aryl hydrocarbon receptor and RelB, a member of the NF-kappaB family. Biochemical Pharmacology, 77(4), 734–745.CrossRefPubMed Vogel, C. F., & Matsumura, F. (2009). A new cross-talk between the aryl hydrocarbon receptor and RelB, a member of the NF-kappaB family. Biochemical Pharmacology, 77(4), 734–745.CrossRefPubMed
87.
go back to reference Denison, M. S., Soshilov, A. A., He, G., DeGroot, D. E., & Zhao, B. (2011). Exactly the same but different: Promiscuity and diversity in the molecular mechanisms of action of the aryl hydrocarbon (dioxin) receptor. Toxicological Sciences, 124(1), 1–22.CrossRefPubMedPubMedCentral Denison, M. S., Soshilov, A. A., He, G., DeGroot, D. E., & Zhao, B. (2011). Exactly the same but different: Promiscuity and diversity in the molecular mechanisms of action of the aryl hydrocarbon (dioxin) receptor. Toxicological Sciences, 124(1), 1–22.CrossRefPubMedPubMedCentral
88.
go back to reference Guyot, E., Chevallier, A., Barouki, R., & Coumoul, X. (2013). The AhR twist: Ligand-dependent AhR signaling and pharmaco-toxicological implications. Drug Discovery Today, 18(9–10), 479–486.CrossRefPubMed Guyot, E., Chevallier, A., Barouki, R., & Coumoul, X. (2013). The AhR twist: Ligand-dependent AhR signaling and pharmaco-toxicological implications. Drug Discovery Today, 18(9–10), 479–486.CrossRefPubMed
89.
go back to reference Matsumura, F. (2009). The significance of the nongenomic pathway in mediating inflammatory signaling of the dioxin-activated Ah receptor to cause toxic effects. Biochemical Pharmacology, 77(4), 608–626.CrossRefPubMed Matsumura, F. (2009). The significance of the nongenomic pathway in mediating inflammatory signaling of the dioxin-activated Ah receptor to cause toxic effects. Biochemical Pharmacology, 77(4), 608–626.CrossRefPubMed
90.
go back to reference Tomkiewicz, C., Herry, L., Bui, L. C., Metayer, C., Bourdeloux, M., Barouki, R., et al. (2013). The aryl hydrocarbon receptor regulates focal adhesion sites through a non-genomic FAK/Src pathway. Oncogene, 32(14), 1811–1820.CrossRefPubMed Tomkiewicz, C., Herry, L., Bui, L. C., Metayer, C., Bourdeloux, M., Barouki, R., et al. (2013). The aryl hydrocarbon receptor regulates focal adhesion sites through a non-genomic FAK/Src pathway. Oncogene, 32(14), 1811–1820.CrossRefPubMed
91.
go back to reference N’Diaye, M., Le Ferrec, E., Lagadic-Gossmann, D., Corre, S., Gilot, D., Lecureur, V., et al. (2006). Aryl hydrocarbon receptor- and calcium-dependent induction of the chemokine CCL1 by the environmental contaminant benzo[a]pyrene. Journal of Biological Chemistry, 281(29), 19906–19915.CrossRefPubMed N’Diaye, M., Le Ferrec, E., Lagadic-Gossmann, D., Corre, S., Gilot, D., Lecureur, V., et al. (2006). Aryl hydrocarbon receptor- and calcium-dependent induction of the chemokine CCL1 by the environmental contaminant benzo[a]pyrene. Journal of Biological Chemistry, 281(29), 19906–19915.CrossRefPubMed
92.
go back to reference Monteiro, P., Gilot, D., Le Ferrec, E., Rauch, C., Lagadic-Gossmann, D., & Fardel, O. (2008). Dioxin-mediated up-regulation of aryl hydrocarbon receptor target genes is dependent on the calcium/calmodulin/CaMKIalpha pathway. Molecular Pharmacology, 73(3), 769–777.CrossRefPubMed Monteiro, P., Gilot, D., Le Ferrec, E., Rauch, C., Lagadic-Gossmann, D., & Fardel, O. (2008). Dioxin-mediated up-regulation of aryl hydrocarbon receptor target genes is dependent on the calcium/calmodulin/CaMKIalpha pathway. Molecular Pharmacology, 73(3), 769–777.CrossRefPubMed
93.
go back to reference Nicolson, G. L. (2014). The Fluid-Mosaic Model of Membrane Structure: Still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochimica et Biophysica Acta, 1838(6), 1451–1466.CrossRefPubMed Nicolson, G. L. (2014). The Fluid-Mosaic Model of Membrane Structure: Still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochimica et Biophysica Acta, 1838(6), 1451–1466.CrossRefPubMed
94.
go back to reference Bastiani, M., & Parton, R. G. (2010). Caveolae at a glance. Journal of Cell Science, 123(Pt 22), 3831–3836.CrossRefPubMed Bastiani, M., & Parton, R. G. (2010). Caveolae at a glance. Journal of Cell Science, 123(Pt 22), 3831–3836.CrossRefPubMed
95.
go back to reference van Deurs, B., Roepstorff, K., Hommelgaard, A. M., & Sandvig, K. (2003). Caveolae: Anchored, multifunctional platforms in the lipid ocean. Trends in Cell Biology, 13(2), 92–100.CrossRefPubMed van Deurs, B., Roepstorff, K., Hommelgaard, A. M., & Sandvig, K. (2003). Caveolae: Anchored, multifunctional platforms in the lipid ocean. Trends in Cell Biology, 13(2), 92–100.CrossRefPubMed
96.
go back to reference Santos, A. L., & Preta, G. (2018). Lipids in the cell: Organisation regulates function. Cellular and Molecular Life Sciences, 75, 1909–1927.CrossRefPubMed Santos, A. L., & Preta, G. (2018). Lipids in the cell: Organisation regulates function. Cellular and Molecular Life Sciences, 75, 1909–1927.CrossRefPubMed
97.
go back to reference Patel, H. H., Murray, F., & Insel, P. A. (2008). Caveolae as organizers of pharmacologically relevant signal transduction molecules. Annual Review of Pharmacology and Toxicology, 48, 359–391.CrossRefPubMedPubMedCentral Patel, H. H., Murray, F., & Insel, P. A. (2008). Caveolae as organizers of pharmacologically relevant signal transduction molecules. Annual Review of Pharmacology and Toxicology, 48, 359–391.CrossRefPubMedPubMedCentral
98.
go back to reference Isshiki, M., & Anderson, R. G. (1999). Calcium signal transduction from caveolae. Cell Calcium, 26(5), 201–208.CrossRefPubMed Isshiki, M., & Anderson, R. G. (1999). Calcium signal transduction from caveolae. Cell Calcium, 26(5), 201–208.CrossRefPubMed
100.
go back to reference Majkova, Z., Toborek, M., & Hennig, B. (2010). The role of caveolae in endothelial cell dysfunction with a focus on nutrition and environmental toxicants. Journal of Cellular and Molecular Medicine, 14(10), 2359–2370.CrossRefPubMedPubMedCentral Majkova, Z., Toborek, M., & Hennig, B. (2010). The role of caveolae in endothelial cell dysfunction with a focus on nutrition and environmental toxicants. Journal of Cellular and Molecular Medicine, 14(10), 2359–2370.CrossRefPubMedPubMedCentral
101.
go back to reference Saini, H. K., Arneja, A. S., & Dhalla, N. S. (2004). Role of cholesterol in cardiovascular dysfunction. Canadian Journal of Cardiology, 20(3), 333–346.PubMed Saini, H. K., Arneja, A. S., & Dhalla, N. S. (2004). Role of cholesterol in cardiovascular dysfunction. Canadian Journal of Cardiology, 20(3), 333–346.PubMed
102.
go back to reference Podechard, N., Chevanne, M., Fernier, M., Tete, A., Collin, A., Cassio, D., et al. (2016). Zebrafish larva as a reliable model for in vivo assessment of membrane remodeling involvement in the hepatotoxicity of chemical agents. Journal of Applied Toxicology, 37, 732–746.CrossRefPubMed Podechard, N., Chevanne, M., Fernier, M., Tete, A., Collin, A., Cassio, D., et al. (2016). Zebrafish larva as a reliable model for in vivo assessment of membrane remodeling involvement in the hepatotoxicity of chemical agents. Journal of Applied Toxicology, 37, 732–746.CrossRefPubMed
103.
go back to reference Tekpli, X., Holme, J. A., Sergent, O., & Lagadic-Gossmann, D. (2011). Importance of plasma membrane dynamics in chemical-induced carcinogenesis. Recent Patents on Anti-Cancer Drug Discovery, 6(3), 347–353.CrossRefPubMed Tekpli, X., Holme, J. A., Sergent, O., & Lagadic-Gossmann, D. (2011). Importance of plasma membrane dynamics in chemical-induced carcinogenesis. Recent Patents on Anti-Cancer Drug Discovery, 6(3), 347–353.CrossRefPubMed
104.
go back to reference Brinchmann, B. C., Ferrec, E. L., Bisson, W. H., Podechard, N., Huitfeldt, H. S., Gallais, I., et al. (2018). Evidence of selective activation of aryl hydrocarbon receptor nongenomic calcium signaling by pyrene. Biochemical Pharmacology, 158, 1–12.CrossRefPubMed Brinchmann, B. C., Ferrec, E. L., Bisson, W. H., Podechard, N., Huitfeldt, H. S., Gallais, I., et al. (2018). Evidence of selective activation of aryl hydrocarbon receptor nongenomic calcium signaling by pyrene. Biochemical Pharmacology, 158, 1–12.CrossRefPubMed
105.
go back to reference Li, J., Kanju, P., Patterson, M., Chew, W. L., Cho, S. H., Gilmour, I., et al. (2011). TRPV4-mediated calcium influx into human bronchial epithelia upon exposure to diesel exhaust particles. Environmental Health Perspectives, 119(6), 784–793.CrossRefPubMedPubMedCentral Li, J., Kanju, P., Patterson, M., Chew, W. L., Cho, S. H., Gilmour, I., et al. (2011). TRPV4-mediated calcium influx into human bronchial epithelia upon exposure to diesel exhaust particles. Environmental Health Perspectives, 119(6), 784–793.CrossRefPubMedPubMedCentral
106.
go back to reference Mayati, A., Levoin, N., Paris, H., N’Diaye, M., Courtois, A., Uriac, P., et al. (2012). Induction of intracellular calcium concentration by environmental benzo(a)pyrene involves a beta2-adrenergic receptor/adenylyl cyclase/Epac-1/inositol 1,4,5-trisphosphate pathway in endothelial cells. Journal of Biological Chemistry, 287(6), 4041–4052.CrossRefPubMed Mayati, A., Levoin, N., Paris, H., N’Diaye, M., Courtois, A., Uriac, P., et al. (2012). Induction of intracellular calcium concentration by environmental benzo(a)pyrene involves a beta2-adrenergic receptor/adenylyl cyclase/Epac-1/inositol 1,4,5-trisphosphate pathway in endothelial cells. Journal of Biological Chemistry, 287(6), 4041–4052.CrossRefPubMed
107.
go back to reference Mayati, A., Le Ferrec, E., Holme, J. A., Fardel, O., Lagadic-Gossmann, D., & Ovrevik, J. (2014). Calcium signaling and beta2-adrenergic receptors regulate 1-nitropyrene induced CXCL8 responses in BEAS-2B cells. Toxicology in Vitro, 28(6), 1153–1157.CrossRefPubMed Mayati, A., Le Ferrec, E., Holme, J. A., Fardel, O., Lagadic-Gossmann, D., & Ovrevik, J. (2014). Calcium signaling and beta2-adrenergic receptors regulate 1-nitropyrene induced CXCL8 responses in BEAS-2B cells. Toxicology in Vitro, 28(6), 1153–1157.CrossRefPubMed
108.
go back to reference Deering-Rice, C. E., Romero, E. G., Shapiro, D., Hughen, R. W., Light, A. R., Yost, G. S., et al. (2011). Electrophilic components of diesel exhaust particles (DEP) activate transient receptor potential ankyrin-1 (TRPA1): A probable mechanism of acute pulmonary toxicity for DEP. Chemical Research in Toxicology, 24(6), 950–959.CrossRefPubMedPubMedCentral Deering-Rice, C. E., Romero, E. G., Shapiro, D., Hughen, R. W., Light, A. R., Yost, G. S., et al. (2011). Electrophilic components of diesel exhaust particles (DEP) activate transient receptor potential ankyrin-1 (TRPA1): A probable mechanism of acute pulmonary toxicity for DEP. Chemical Research in Toxicology, 24(6), 950–959.CrossRefPubMedPubMedCentral
109.
go back to reference Roveri, A., Coassin, M., Maiorino, M., Zamburlini, A., van Amsterdam, F. T., Ratti, E., et al. (1992). Effect of hydrogen peroxide on calcium homeostasis in smooth muscle cells. Archives of Biochemistry and Biophysics, 297(2), 265–270.CrossRefPubMed Roveri, A., Coassin, M., Maiorino, M., Zamburlini, A., van Amsterdam, F. T., Ratti, E., et al. (1992). Effect of hydrogen peroxide on calcium homeostasis in smooth muscle cells. Archives of Biochemistry and Biophysics, 297(2), 265–270.CrossRefPubMed
110.
go back to reference Robison, T. W., Zhou, H., & Forman, H. J. (1995). Modulation of ADP-stimulated inositol phosphate metabolism in rat alveolar macrophages by oxidative stress. Archives of Biochemistry and Biophysics, 318(1), 215–220.CrossRefPubMed Robison, T. W., Zhou, H., & Forman, H. J. (1995). Modulation of ADP-stimulated inositol phosphate metabolism in rat alveolar macrophages by oxidative stress. Archives of Biochemistry and Biophysics, 318(1), 215–220.CrossRefPubMed
111.
go back to reference Fusi, F., Saponara, S., Gagov, H., & Sgaragli, G. (2001). 2,5-Di-t-butyl-1,4-benzohydroquinone (BHQ) inhibits vascular L-type Ca(2 +) channel via superoxide anion generation. British Journal of Pharmacology, 133(7), 988–996.CrossRefPubMedPubMedCentral Fusi, F., Saponara, S., Gagov, H., & Sgaragli, G. (2001). 2,5-Di-t-butyl-1,4-benzohydroquinone (BHQ) inhibits vascular L-type Ca(2 +) channel via superoxide anion generation. British Journal of Pharmacology, 133(7), 988–996.CrossRefPubMedPubMedCentral
112.
go back to reference Deering-Rice, C. E., Johansen, M. E., Roberts, J. K., Thomas, K. C., Romero, E. G., Lee, J., et al. (2012). Transient receptor potential vanilloid-1 (TRPV1) is a mediator of lung toxicity for coal fly ash particulate material. Molecular Pharmacology, 81(3), 411–419.CrossRefPubMedPubMedCentral Deering-Rice, C. E., Johansen, M. E., Roberts, J. K., Thomas, K. C., Romero, E. G., Lee, J., et al. (2012). Transient receptor potential vanilloid-1 (TRPV1) is a mediator of lung toxicity for coal fly ash particulate material. Molecular Pharmacology, 81(3), 411–419.CrossRefPubMedPubMedCentral
113.
go back to reference Li, Jinju, Kanju, Patrick, Patterson, Michael, Chew, Wei-Leong, Cho, Seung-Hyun, Gilmour, Ian, et al. (2011). TRPV4-mediated calcium influx into human bronchial epithelia upon exposure to diesel exhaust particles. Environmental Health Perspectives, 119, 784–793.CrossRefPubMedPubMedCentral Li, Jinju, Kanju, Patrick, Patterson, Michael, Chew, Wei-Leong, Cho, Seung-Hyun, Gilmour, Ian, et al. (2011). TRPV4-mediated calcium influx into human bronchial epithelia upon exposure to diesel exhaust particles. Environmental Health Perspectives, 119, 784–793.CrossRefPubMedPubMedCentral
114.
go back to reference Barath, S., Mills, N. L., Lundback, M., Tornqvist, H., Lucking, A. J., Langrish, J. P., et al. (2010). Impaired vascular function after exposure to diesel exhaust generated at urban transient running conditions. Particle and Fibre Toxicology, 7, 19.CrossRefPubMedPubMedCentral Barath, S., Mills, N. L., Lundback, M., Tornqvist, H., Lucking, A. J., Langrish, J. P., et al. (2010). Impaired vascular function after exposure to diesel exhaust generated at urban transient running conditions. Particle and Fibre Toxicology, 7, 19.CrossRefPubMedPubMedCentral
115.
go back to reference Chen, Q., Guo, F., Liu, S., Xiao, J., Wang, C., Snowise, S., et al. (2012). Calcium channel blockers prevent endothelial cell activation in response to necrotic trophoblast debris: Possible relevance to pre-eclampsia. Cardiovascular Research, 96(3), 484–493.CrossRefPubMed Chen, Q., Guo, F., Liu, S., Xiao, J., Wang, C., Snowise, S., et al. (2012). Calcium channel blockers prevent endothelial cell activation in response to necrotic trophoblast debris: Possible relevance to pre-eclampsia. Cardiovascular Research, 96(3), 484–493.CrossRefPubMed
116.
go back to reference Smedlund, K., Bah, M., & Vazquez, G. (2012). On the role of endothelial TRPC3 channels in endothelial dysfunction and cardiovascular disease. Cardiovascular & Hematological Agents in Medicinal Chemistry, 10(3), 265–274.CrossRef Smedlund, K., Bah, M., & Vazquez, G. (2012). On the role of endothelial TRPC3 channels in endothelial dysfunction and cardiovascular disease. Cardiovascular & Hematological Agents in Medicinal Chemistry, 10(3), 265–274.CrossRef
117.
go back to reference Abramowitz, J., & Birnbaumer, L. (2009). Physiology and pathophysiology of canonical transient receptor potential channels. The Faseb Journal, 23(2), 297–328.CrossRefPubMedPubMedCentral Abramowitz, J., & Birnbaumer, L. (2009). Physiology and pathophysiology of canonical transient receptor potential channels. The Faseb Journal, 23(2), 297–328.CrossRefPubMedPubMedCentral
118.
go back to reference Dietrich, A., Kalwa, H., Fuchs, B., Grimminger, F., Weissmann, N., & Gudermann, T. (2007). In vivo TRPC functions in the cardiopulmonary vasculature. Cell Calcium, 42(2), 233–244.CrossRefPubMed Dietrich, A., Kalwa, H., Fuchs, B., Grimminger, F., Weissmann, N., & Gudermann, T. (2007). In vivo TRPC functions in the cardiopulmonary vasculature. Cell Calcium, 42(2), 233–244.CrossRefPubMed
120.
go back to reference Sullivan, M. N., & Earley, S. (2013). TRP channel Ca(2 +) sparklets: Fundamental signals underlying endothelium-dependent hyperpolarization. American Journal of Physiology. Cell Physiology, 305(10), C999–c1008.CrossRefPubMedPubMedCentral Sullivan, M. N., & Earley, S. (2013). TRP channel Ca(2 +) sparklets: Fundamental signals underlying endothelium-dependent hyperpolarization. American Journal of Physiology. Cell Physiology, 305(10), C999–c1008.CrossRefPubMedPubMedCentral
122.
go back to reference Liu, D. Y., Thilo, F., Scholze, A., Wittstock, A., Zhao, Z. G., Harteneck, C., et al. (2007). Increased store-operated and 1-oleoyl-2-acetyl-sn-glycerol-induced calcium influx in monocytes is mediated by transient receptor potential canonical channels in human essential hypertension. Journal of Hypertension, 25(4), 799–808.CrossRefPubMed Liu, D. Y., Thilo, F., Scholze, A., Wittstock, A., Zhao, Z. G., Harteneck, C., et al. (2007). Increased store-operated and 1-oleoyl-2-acetyl-sn-glycerol-induced calcium influx in monocytes is mediated by transient receptor potential canonical channels in human essential hypertension. Journal of Hypertension, 25(4), 799–808.CrossRefPubMed
123.
go back to reference Liu, D. Y., Scholze, A., Kreutz, R., Wehland-von-Trebra, M., Zidek, W., Zhu, Z. M., et al. (2007). Monocytes from spontaneously hypertensive rats show increased store-operated and second messenger-operated calcium influx mediated by transient receptor potential canonical Type 3 channels. American Journal of Hypertension, 20(10), 1111–1118.CrossRefPubMed Liu, D. Y., Scholze, A., Kreutz, R., Wehland-von-Trebra, M., Zidek, W., Zhu, Z. M., et al. (2007). Monocytes from spontaneously hypertensive rats show increased store-operated and second messenger-operated calcium influx mediated by transient receptor potential canonical Type 3 channels. American Journal of Hypertension, 20(10), 1111–1118.CrossRefPubMed
124.
go back to reference De Backer, G. (2003). European guidelines on cardiovascular disease prevention in clinical practice Third Joint Task Force of European and other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of eight societies and by invited experts). European Heart Journal, 24(17), 1601–1610.CrossRefPubMed De Backer, G. (2003). European guidelines on cardiovascular disease prevention in clinical practice Third Joint Task Force of European and other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of eight societies and by invited experts). European Heart Journal, 24(17), 1601–1610.CrossRefPubMed
125.
go back to reference Kolmus, K., Tavernier, J., & Gerlo, S. (2015). beta2-Adrenergic receptors in immunity and inflammation: Stressing NF-kappaB. Brain, Behavior, and Immunity, 45, 297–310.CrossRefPubMed Kolmus, K., Tavernier, J., & Gerlo, S. (2015). beta2-Adrenergic receptors in immunity and inflammation: Stressing NF-kappaB. Brain, Behavior, and Immunity, 45, 297–310.CrossRefPubMed
126.
go back to reference Wachter, S. B., & Gilbert, E. M. (2012). Beta-adrenergic receptors, from their discovery and characterization through their manipulation to beneficial clinical application. Cardiology, 122(2), 104–112.CrossRefPubMed Wachter, S. B., & Gilbert, E. M. (2012). Beta-adrenergic receptors, from their discovery and characterization through their manipulation to beneficial clinical application. Cardiology, 122(2), 104–112.CrossRefPubMed
127.
go back to reference Mayati, A., Podechard, N., Rineau, M., Sparfel, L., Lagadic-Gossmann, D., Fardel, O., et al. (2017). Benzo(a)pyrene triggers desensitization of beta2-adrenergic pathway. Scientific Reports, 7(1), 3262.CrossRefPubMedPubMedCentral Mayati, A., Podechard, N., Rineau, M., Sparfel, L., Lagadic-Gossmann, D., Fardel, O., et al. (2017). Benzo(a)pyrene triggers desensitization of beta2-adrenergic pathway. Scientific Reports, 7(1), 3262.CrossRefPubMedPubMedCentral
128.
go back to reference Ovrevik, J., Refsnes, M., Totlandsdal, A. I., Holme, J. A., Schwarze, P. E., & Lag, M. (2011). TACE/TGF-alpha/EGFR regulates CXCL8 in bronchial epithelial cells exposed to particulate matter components. European Respiratory Journal, 38(5), 1189–1199.CrossRefPubMed Ovrevik, J., Refsnes, M., Totlandsdal, A. I., Holme, J. A., Schwarze, P. E., & Lag, M. (2011). TACE/TGF-alpha/EGFR regulates CXCL8 in bronchial epithelial cells exposed to particulate matter components. European Respiratory Journal, 38(5), 1189–1199.CrossRefPubMed
129.
go back to reference Li, J., Ghio, A. J., Cho, S.-H., Brinckerhoff, C. E., Simon, S. A., & Liedtke, W. (2009). Diesel exhaust particles activate the matrix-metalloproteinase-1 gene in human bronchial epithelia in a β-arrestin–dependent manner via activation of RAS. Environmental Health Perspectives, 117(3), 400–409.CrossRefPubMed Li, J., Ghio, A. J., Cho, S.-H., Brinckerhoff, C. E., Simon, S. A., & Liedtke, W. (2009). Diesel exhaust particles activate the matrix-metalloproteinase-1 gene in human bronchial epithelia in a β-arrestin–dependent manner via activation of RAS. Environmental Health Perspectives, 117(3), 400–409.CrossRefPubMed
130.
go back to reference Bach, N., Bolling, A. K., Brinchmann, B. C., Totlandsdal, A. I., Skuland, T., Holme, J. A., et al. (2015). Cytokine responses induced by diesel exhaust particles are suppressed by PAR-2 silencing and antioxidant treatment, and driven by polar and non-polar soluble constituents. Toxicology Letters, 238(2), 72–82.CrossRefPubMed Bach, N., Bolling, A. K., Brinchmann, B. C., Totlandsdal, A. I., Skuland, T., Holme, J. A., et al. (2015). Cytokine responses induced by diesel exhaust particles are suppressed by PAR-2 silencing and antioxidant treatment, and driven by polar and non-polar soluble constituents. Toxicology Letters, 238(2), 72–82.CrossRefPubMed
131.
go back to reference Brinchmann, B. C., Le Ferrec, E., Podechard, N., Lagadic-Gossmann, D., Holme, J. A., & Ovrevik, J. (2018). Organic chemicals from diesel exhaust particles affects intracellular calcium, inflammation and beta-adrenoceptors in endothelial cells. Toxicology Letters, 302, 18–27.CrossRefPubMed Brinchmann, B. C., Le Ferrec, E., Podechard, N., Lagadic-Gossmann, D., Holme, J. A., & Ovrevik, J. (2018). Organic chemicals from diesel exhaust particles affects intracellular calcium, inflammation and beta-adrenoceptors in endothelial cells. Toxicology Letters, 302, 18–27.CrossRefPubMed
132.
go back to reference Puga, A. (1997). Sustained increase in intracellular free calcium and activation of cyclooxygenase-2 expression in mouse hepatoma cells treated with Dioxin. Biochemical Pharmacology, 54, 1287–1296.CrossRefPubMed Puga, A. (1997). Sustained increase in intracellular free calcium and activation of cyclooxygenase-2 expression in mouse hepatoma cells treated with Dioxin. Biochemical Pharmacology, 54, 1287–1296.CrossRefPubMed
133.
go back to reference Karras, J. G., Morris, D. L., Matulka, R. A., Kramer, C. M., & Holsapple, M. P. (1996). 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) elevates basal B-cell intracellular calcium concentration and suppresses surface Ig- but not CD40-induced antibody secretion. Toxicology and Applied Pharmacology, 137(2), 275–284.CrossRefPubMed Karras, J. G., Morris, D. L., Matulka, R. A., Kramer, C. M., & Holsapple, M. P. (1996). 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) elevates basal B-cell intracellular calcium concentration and suppresses surface Ig- but not CD40-induced antibody secretion. Toxicology and Applied Pharmacology, 137(2), 275–284.CrossRefPubMed
134.
go back to reference Morales-Hernandez, A., Sanchez-Martin, F. J., Hortigon-Vinagre, M. P., Henao, F., & Merino, J. M. (2012). 2,3,7,8-Tetrachlorodibenzo-p-dioxin induces apoptosis by disruption of intracellular calcium homeostasis in human neuronal cell line SHSY5Y. Apoptosis: An International Journal on Programmed Cell Death, 17(11), 1170–1181.CrossRef Morales-Hernandez, A., Sanchez-Martin, F. J., Hortigon-Vinagre, M. P., Henao, F., & Merino, J. M. (2012). 2,3,7,8-Tetrachlorodibenzo-p-dioxin induces apoptosis by disruption of intracellular calcium homeostasis in human neuronal cell line SHSY5Y. Apoptosis: An International Journal on Programmed Cell Death, 17(11), 1170–1181.CrossRef
135.
go back to reference Nguyen, L. P., & Bradfield, C. A. (2008). The search for endogenous activators of the aryl hydrocarbon receptor. Chemical Research in Toxicology, 21(1), 102–116.CrossRefPubMed Nguyen, L. P., & Bradfield, C. A. (2008). The search for endogenous activators of the aryl hydrocarbon receptor. Chemical Research in Toxicology, 21(1), 102–116.CrossRefPubMed
136.
go back to reference Savouret, J. F., Berdeaux, A., & Casper, R. F. (2003). The aryl hydrocarbon receptor and its xenobiotic ligands: A fundamental trigger for cardiovascular diseases. Nutrition, Metabolism, and Cardiovascular Diseases: NMCD, 13(2), 104–113.CrossRefPubMed Savouret, J. F., Berdeaux, A., & Casper, R. F. (2003). The aryl hydrocarbon receptor and its xenobiotic ligands: A fundamental trigger for cardiovascular diseases. Nutrition, Metabolism, and Cardiovascular Diseases: NMCD, 13(2), 104–113.CrossRefPubMed
137.
go back to reference Vogel, C. F., Sciullo, E., & Matsumura, F. (2004). Activation of inflammatory mediators and potential role of ah-receptor ligands in foam cell formation. Cardiovascular Toxicology, 4(4), 363–373.CrossRefPubMed Vogel, C. F., Sciullo, E., & Matsumura, F. (2004). Activation of inflammatory mediators and potential role of ah-receptor ligands in foam cell formation. Cardiovascular Toxicology, 4(4), 363–373.CrossRefPubMed
138.
go back to reference Wu, D., Nishimura, N., Kuo, V., Fiehn, O., Shahbaz, S., Van Winkle, L., et al. (2011). Activation of aryl hydrocarbon receptor induces vascular inflammation and promotes atherosclerosis in apolipoprotein E-/- mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(6), 1260–1267.CrossRefPubMedPubMedCentral Wu, D., Nishimura, N., Kuo, V., Fiehn, O., Shahbaz, S., Van Winkle, L., et al. (2011). Activation of aryl hydrocarbon receptor induces vascular inflammation and promotes atherosclerosis in apolipoprotein E-/- mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(6), 1260–1267.CrossRefPubMedPubMedCentral
139.
go back to reference Sciullo, E. M., Vogel, C. F., Li, W., & Matsumura, F. (2008). Initial and extended inflammatory messages of the nongenomic signaling pathway of the TCDD-activated Ah receptor in U937 macrophages. Archives of Biochemistry and Biophysics, 480(2), 143–155.CrossRefPubMed Sciullo, E. M., Vogel, C. F., Li, W., & Matsumura, F. (2008). Initial and extended inflammatory messages of the nongenomic signaling pathway of the TCDD-activated Ah receptor in U937 macrophages. Archives of Biochemistry and Biophysics, 480(2), 143–155.CrossRefPubMed
140.
go back to reference Hanneman, W. H., Legare, M., Barhoumi, R., Burghardt, R., Safe, S., & Tiffany-Castiglioni, E. (1996). Stimulation of calcium uptake in cultured rat hippocampal neurons by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicology, 112(1), 19–28.CrossRefPubMed Hanneman, W. H., Legare, M., Barhoumi, R., Burghardt, R., Safe, S., & Tiffany-Castiglioni, E. (1996). Stimulation of calcium uptake in cultured rat hippocampal neurons by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicology, 112(1), 19–28.CrossRefPubMed
141.
go back to reference Su, H. H., Lin, H. T., Suen, J. L., Sheu, C. C., Yokoyama, K. K., Huang, S. K., et al. (2016). Aryl hydrocarbon receptor-ligand axis mediates pulmonary fibroblast migration and differentiation through increased arachidonic acid metabolism. Toxicology, 370, 116–126.CrossRefPubMed Su, H. H., Lin, H. T., Suen, J. L., Sheu, C. C., Yokoyama, K. K., Huang, S. K., et al. (2016). Aryl hydrocarbon receptor-ligand axis mediates pulmonary fibroblast migration and differentiation through increased arachidonic acid metabolism. Toxicology, 370, 116–126.CrossRefPubMed
142.
go back to reference Maaetoft-Udsen, K., Shimoda, L. M., Frokiaer, H., & Turner, H. (2012). Aryl hydrocarbon receptor ligand effects in RBL2H3 cells. Journal of Immunotoxicology, 9(3), 327–337.CrossRefPubMedPubMedCentral Maaetoft-Udsen, K., Shimoda, L. M., Frokiaer, H., & Turner, H. (2012). Aryl hydrocarbon receptor ligand effects in RBL2H3 cells. Journal of Immunotoxicology, 9(3), 327–337.CrossRefPubMedPubMedCentral
143.
go back to reference Rainville, J., Pollard, K., & Vasudevan, N. (2015). Membrane-initiated non-genomic signaling by estrogens in the hypothalamus: Cross-talk with glucocorticoids with implications for behavior. Frontiers in Endocrinology, 6, 18.CrossRefPubMedPubMedCentral Rainville, J., Pollard, K., & Vasudevan, N. (2015). Membrane-initiated non-genomic signaling by estrogens in the hypothalamus: Cross-talk with glucocorticoids with implications for behavior. Frontiers in Endocrinology, 6, 18.CrossRefPubMedPubMedCentral
144.
go back to reference Foradori, C. D., Weiser, M. J., & Handa, R. J. (2008). Non-genomic actions of androgens. Frontiers in Neuroendocrinology, 29(2), 169–181.CrossRefPubMed Foradori, C. D., Weiser, M. J., & Handa, R. J. (2008). Non-genomic actions of androgens. Frontiers in Neuroendocrinology, 29(2), 169–181.CrossRefPubMed
145.
go back to reference Ropero, A. B., Juan-Pico, P., Rafacho, A., Fuentes, E., Bermudez-Silva, F. J., Roche, E., et al. (2009). Rapid non-genomic regulation of Ca2+ signals and insulin secretion by PPAR alpha ligands in mouse pancreatic islets of Langerhans. Journal of Endocrinology, 200(2), 127–138.CrossRefPubMed Ropero, A. B., Juan-Pico, P., Rafacho, A., Fuentes, E., Bermudez-Silva, F. J., Roche, E., et al. (2009). Rapid non-genomic regulation of Ca2+ signals and insulin secretion by PPAR alpha ligands in mouse pancreatic islets of Langerhans. Journal of Endocrinology, 200(2), 127–138.CrossRefPubMed
146.
go back to reference Meyer, M. R., Haas, E., Prossnitz, E. R., & Barton, M. (2009). Non-genomic regulation of vascular cell function and growth by estrogen. Molecular and Cellular Endocrinology, 308(1–2), 9–16.CrossRefPubMedPubMedCentral Meyer, M. R., Haas, E., Prossnitz, E. R., & Barton, M. (2009). Non-genomic regulation of vascular cell function and growth by estrogen. Molecular and Cellular Endocrinology, 308(1–2), 9–16.CrossRefPubMedPubMedCentral
147.
go back to reference Kim, K. H., & Bender, J. R. (2009). Membrane-initiated actions of estrogen on the endothelium. Molecular and Cellular Endocrinology, 308(1–2), 3–8.CrossRefPubMedPubMedCentral Kim, K. H., & Bender, J. R. (2009). Membrane-initiated actions of estrogen on the endothelium. Molecular and Cellular Endocrinology, 308(1–2), 3–8.CrossRefPubMedPubMedCentral
148.
go back to reference Moriarty, K., Kim, K. H., & Bender, J. R. (2006). Minireview: Estrogen receptor-mediated rapid signaling. Endocrinology, 147(12), 5557–5563.CrossRefPubMed Moriarty, K., Kim, K. H., & Bender, J. R. (2006). Minireview: Estrogen receptor-mediated rapid signaling. Endocrinology, 147(12), 5557–5563.CrossRefPubMed
149.
go back to reference Chambliss, K. L., Yuhanna, I. S., Anderson, R. G., Mendelsohn, M. E., & Shaul, P. W. (2002). ERbeta has nongenomic action in caveolae. Molecular Endocrinology (Baltimore, Md), 16(5), 938–946. Chambliss, K. L., Yuhanna, I. S., Anderson, R. G., Mendelsohn, M. E., & Shaul, P. W. (2002). ERbeta has nongenomic action in caveolae. Molecular Endocrinology (Baltimore, Md), 16(5), 938–946.
150.
go back to reference Rey-Barroso, J. (2014). The Dioxin receptor modulates Caveolin-1 mobilization during directional migration: Role of cholesterol. Cell Communication and Signaling, 12, 57.CrossRefPubMedPubMedCentral Rey-Barroso, J. (2014). The Dioxin receptor modulates Caveolin-1 mobilization during directional migration: Role of cholesterol. Cell Communication and Signaling, 12, 57.CrossRefPubMedPubMedCentral
151.
go back to reference Dong, B., & Matsumura, F. (2008). Roles of cytosolic phospholipase A2 and Src kinase in the early action of 2,3,7,8-tetrachlorodibenzo-p-dioxin through a nongenomic pathway in MCF10A cells. Molecular Pharmacology, 74(1), 255–263.CrossRefPubMed Dong, B., & Matsumura, F. (2008). Roles of cytosolic phospholipase A2 and Src kinase in the early action of 2,3,7,8-tetrachlorodibenzo-p-dioxin through a nongenomic pathway in MCF10A cells. Molecular Pharmacology, 74(1), 255–263.CrossRefPubMed
152.
go back to reference Graziani, A., Bricko, V., Carmignani, M., Graier, W. F., & Groschner, K. (2004). Cholesterol- and caveolin-rich membrane domains are essential for phospholipase A2-dependent EDHF formation. Cardiovascular Research, 64(2), 234–242.CrossRefPubMed Graziani, A., Bricko, V., Carmignani, M., Graier, W. F., & Groschner, K. (2004). Cholesterol- and caveolin-rich membrane domains are essential for phospholipase A2-dependent EDHF formation. Cardiovascular Research, 64(2), 234–242.CrossRefPubMed
153.
go back to reference Murata, M., Peranen, J., Schreiner, R., Wieland, F., Kurzchalia, T. V., & Simons, K. (1995). VIP21/caveolin is a cholesterol-binding protein. Proceedings of the National academy of Sciences of the United States of America, 92(22), 10339–10343.CrossRefPubMedPubMedCentral Murata, M., Peranen, J., Schreiner, R., Wieland, F., Kurzchalia, T. V., & Simons, K. (1995). VIP21/caveolin is a cholesterol-binding protein. Proceedings of the National academy of Sciences of the United States of America, 92(22), 10339–10343.CrossRefPubMedPubMedCentral
154.
go back to reference Murata, T., Lin, M. I., Stan, R. V., Bauer, P. M., Yu, J., & Sessa, W. C. (2007). Genetic evidence supporting caveolae microdomain regulation of calcium entry in endothelial cells. Journal of Biological Chemistry, 282(22), 16631–16643.CrossRefPubMed Murata, T., Lin, M. I., Stan, R. V., Bauer, P. M., Yu, J., & Sessa, W. C. (2007). Genetic evidence supporting caveolae microdomain regulation of calcium entry in endothelial cells. Journal of Biological Chemistry, 282(22), 16631–16643.CrossRefPubMed
155.
go back to reference Liao, Y., Plummer, N. W., George, M. D., Abramowitz, J., Zhu, M. X., & Birnbaumer, L. (2009). A role for Orai in TRPC-mediated Ca2 + entry suggests that a TRPC: Orai complex may mediate store and receptor operated Ca2+ entry. Proceedings of the National academy of Sciences of the United States of America, 106(9), 3202–3206.CrossRefPubMedPubMedCentral Liao, Y., Plummer, N. W., George, M. D., Abramowitz, J., Zhu, M. X., & Birnbaumer, L. (2009). A role for Orai in TRPC-mediated Ca2 + entry suggests that a TRPC: Orai complex may mediate store and receptor operated Ca2+ entry. Proceedings of the National academy of Sciences of the United States of America, 106(9), 3202–3206.CrossRefPubMedPubMedCentral
156.
go back to reference Lim, E. J., Majkova, Z., Xu, S., Bachas, L., Arzuaga, X., Smart, E., et al. (2008). Coplanar polychlorinated biphenyl-induced CYP1A1 is regulated through caveolae signaling in vascular endothelial cells. Chemico Biological Interactions, 176(2–3), 71–78.CrossRefPubMedPubMedCentral Lim, E. J., Majkova, Z., Xu, S., Bachas, L., Arzuaga, X., Smart, E., et al. (2008). Coplanar polychlorinated biphenyl-induced CYP1A1 is regulated through caveolae signaling in vascular endothelial cells. Chemico Biological Interactions, 176(2–3), 71–78.CrossRefPubMedPubMedCentral
Metadata
Title
Combustion Particle-Induced Changes in Calcium Homeostasis: A Contributing Factor to Vascular Disease?
Authors
Jørn A. Holme
Bendik C. Brinchmann
Eric Le Ferrec
Dominique Lagadic-Gossmann
Johan Øvrevik
Publication date
01-06-2019
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 3/2019
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-019-09518-9

Other articles of this Issue 3/2019

Cardiovascular Toxicology 3/2019 Go to the issue