Skip to main content
Top
Published in: Cardiovascular Toxicology 3/2017

01-07-2017

Systems Pharmacology Dissection of the Protective Effect of Myricetin Against Acute Ischemia/Reperfusion-Induced Myocardial Injury in Isolated Rat Heart

Authors: Yingna Qiu, Ning Cong, Meng Liang, Yongqiang Wang, Jianshe Wang

Published in: Cardiovascular Toxicology | Issue 3/2017

Login to get access

Abstract

In this paper, we investigated the multi-target effect of myricetin as a therapeutic for cardiovascular disease, using an acute ischemia/reperfusion-induced myocardial injury model to gain insight into its mechanism of action. The compound-target interaction profiles of myricetin were determined using a combination of text mining, chemometric and chemogenomic methods. The effect of myricetin on cardiac function was investigated by carrying out experiments in rats subjected to ischemia/reperfusion (I/R) using Langendorff retrograde perfusion technology. Compared to the I/R group, pretreatment with 5 μM myricetin was observed to improve the maximum up/down rate of left ventricular pressure (dp/dt max) and coronary flow, raise left ventricular developed pressure, and decrease creatine kinase and lactate dehydrogenase levels in coronary flow. In addition, myricetin treatment was shown to have beneficial effects through its ability to reduce both infarct size and levels of cardiomyocyte apoptosis. Myricetin was also observed to have antioxidant properties, as evidenced by its ability to reduce MDA levels, while increasing both SOD levels and the GSH/GSSG ratio. Finally, an upregulation of 6-phosphogluconate dehydrogenase and fatty acid synthase expression and a downregulation of cyclooxygenase-2, cytochrome P450 and p38 mitogen-activated protein kinase expression suggest that myricetin acts through mechanisms which alter relevant signaling pathways. In summary, our results demonstrate that myricetin has protective cardiovascular effects against I/R-induced myocardial injury.
Appendix
Available only for authorised users
Literature
1.
go back to reference Eric, M., Frost, R. J., & Olson, E. N. (2010). MicroRNAs add a new dimension to cardiovascular disease. Circulation, 121(8), 1022–1032.CrossRef Eric, M., Frost, R. J., & Olson, E. N. (2010). MicroRNAs add a new dimension to cardiovascular disease. Circulation, 121(8), 1022–1032.CrossRef
2.
go back to reference MacLellan, W., Wang, Y., & Lusis, A. J. (2012). Systems-based approaches to cardiovascular disease. Nature Reviews Cardiology, 9(3), 172–184.CrossRefPubMed MacLellan, W., Wang, Y., & Lusis, A. J. (2012). Systems-based approaches to cardiovascular disease. Nature Reviews Cardiology, 9(3), 172–184.CrossRefPubMed
3.
go back to reference Taranjit, S., Peshkin, L., & Kirschner, M. W. (2014). Kirschner. exploiting polypharmacology for drug target deconvolution. Proceedings of the National Academy of Sciences of the United States of America, 111(13), 5048–5053.CrossRef Taranjit, S., Peshkin, L., & Kirschner, M. W. (2014). Kirschner. exploiting polypharmacology for drug target deconvolution. Proceedings of the National Academy of Sciences of the United States of America, 111(13), 5048–5053.CrossRef
4.
go back to reference Xie, L., Xie, L., Kinnings, S. L., & Bourne, P. E. (2012). Novel computational approaches to polypharmacology as a means to define responses to individual drugs. Annual Review of Pharmacology and Toxicology, 52, 361–379.CrossRefPubMed Xie, L., Xie, L., Kinnings, S. L., & Bourne, P. E. (2012). Novel computational approaches to polypharmacology as a means to define responses to individual drugs. Annual Review of Pharmacology and Toxicology, 52, 361–379.CrossRefPubMed
5.
go back to reference Francesca, M., & Anna, V. (2010). Predicting polypharmacology by binding site similarity: From kinases to the protein universe. Journal of Chemical Information and Modeling, 50, 1418–1431.CrossRef Francesca, M., & Anna, V. (2010). Predicting polypharmacology by binding site similarity: From kinases to the protein universe. Journal of Chemical Information and Modeling, 50, 1418–1431.CrossRef
6.
go back to reference Ridker, P. M., & Cook, N. R. (2013). Statins: New American guidelines for prevention of cardiovascular disease. The Lancet, 382(9907), 1762–1765.CrossRef Ridker, P. M., & Cook, N. R. (2013). Statins: New American guidelines for prevention of cardiovascular disease. The Lancet, 382(9907), 1762–1765.CrossRef
7.
go back to reference Zheng, C., Wang, J., Liu, J., Pei, M., Huang, C., & Wang, Y. (2014). Systems-level multi-target drug discovery from natural products with applications to cardiovascular diseases. Molecular Diversity, 18(3), 621–635.CrossRefPubMed Zheng, C., Wang, J., Liu, J., Pei, M., Huang, C., & Wang, Y. (2014). Systems-level multi-target drug discovery from natural products with applications to cardiovascular diseases. Molecular Diversity, 18(3), 621–635.CrossRefPubMed
8.
go back to reference Mendes, V., Vilaça, R., de Freitas, V., Ferreira, P. M., Mateus, N., & Costa, V. (2015). Effect of myricetin, pyrogallol, and phloroglucinol on yeast resistance to oxidative stress. Oxidative Medicine and Cellular Longevity, 2015, 782504.CrossRefPubMedPubMedCentral Mendes, V., Vilaça, R., de Freitas, V., Ferreira, P. M., Mateus, N., & Costa, V. (2015). Effect of myricetin, pyrogallol, and phloroglucinol on yeast resistance to oxidative stress. Oxidative Medicine and Cellular Longevity, 2015, 782504.CrossRefPubMedPubMedCentral
9.
go back to reference Majid, M., Khan, M. R., Shah, N. A., Haq, I., Farooq, M. A., & Ullah, S. (2015). Studies on phytochemical, antioxidant, anti-inflammatory and analgesic activities of Euphorbia dracunculoides. BMC Complementary and Alternative Medicine, 15, 349.CrossRefPubMedPubMedCentral Majid, M., Khan, M. R., Shah, N. A., Haq, I., Farooq, M. A., & Ullah, S. (2015). Studies on phytochemical, antioxidant, anti-inflammatory and analgesic activities of Euphorbia dracunculoides. BMC Complementary and Alternative Medicine, 15, 349.CrossRefPubMedPubMedCentral
10.
go back to reference Kang, K. A., Wang, Z. H., Zhang, R., Piao, M. J., Kim, K. C., & Kang, S. S. (2010). Myricetin protects cells against oxidative stress-induced apoptosis via regulation of PI3K/Akt and MAPK signaling pathways. International Journal of Molecular Sciences, 11(11), 4348–4360.CrossRefPubMedPubMedCentral Kang, K. A., Wang, Z. H., Zhang, R., Piao, M. J., Kim, K. C., & Kang, S. S. (2010). Myricetin protects cells against oxidative stress-induced apoptosis via regulation of PI3K/Akt and MAPK signaling pathways. International Journal of Molecular Sciences, 11(11), 4348–4360.CrossRefPubMedPubMedCentral
11.
go back to reference Reddy, A. S., & Zhang, S. (2013). Polypharmacology: Drug discovery for the future. Informahealthcare, 6(1), 41–47. Reddy, A. S., & Zhang, S. (2013). Polypharmacology: Drug discovery for the future. Informahealthcare, 6(1), 41–47.
12.
go back to reference Huang, C., Zheng, C., Li, Y., Wang, Y., Lu, A., & Yang, L. (2014). Systems pharmacology in drug discovery and therapeutic insight for herbal medicines. Briefings in Bioinformatics, 15(5), 710–733.CrossRefPubMed Huang, C., Zheng, C., Li, Y., Wang, Y., Lu, A., & Yang, L. (2014). Systems pharmacology in drug discovery and therapeutic insight for herbal medicines. Briefings in Bioinformatics, 15(5), 710–733.CrossRefPubMed
13.
go back to reference Ru, J., Li, P., Wang, J., Zhou, W., Li, B., & Huang, C. (2014). TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. Journal of Cheminformatics, 6, 13.CrossRefPubMedPubMedCentral Ru, J., Li, P., Wang, J., Zhou, W., Li, B., & Huang, C. (2014). TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. Journal of Cheminformatics, 6, 13.CrossRefPubMedPubMedCentral
14.
go back to reference Yu, H., Chen, J., Xu, X., Li, Y., Zhao, H., & Fang, Y. (2012). A systematic prediction of multiple drug-target interactions from chemical, genomic, and pharmacological data. PLoS One, 7(5), e37608.CrossRefPubMedPubMedCentral Yu, H., Chen, J., Xu, X., Li, Y., Zhao, H., & Fang, Y. (2012). A systematic prediction of multiple drug-target interactions from chemical, genomic, and pharmacological data. PLoS One, 7(5), e37608.CrossRefPubMedPubMedCentral
15.
go back to reference Hu, N., Dong, M., & Ren, J. (2014). Hydrogen sulfide alleviates cardiac contractile dysfunction in an Akt2-knockout murine model of insulin resistance: Role of mitochondria injury and apoptosis. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 306(10), R761–R771.PubMedPubMedCentral Hu, N., Dong, M., & Ren, J. (2014). Hydrogen sulfide alleviates cardiac contractile dysfunction in an Akt2-knockout murine model of insulin resistance: Role of mitochondria injury and apoptosis. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 306(10), R761–R771.PubMedPubMedCentral
16.
go back to reference Oh, Y. B., Ahn, M., Lee, S. M., Koh, H. W., Lee, S. H., Kim, S. H., et al. (2013). Inhibition of Janus activated kinase-3 protects against myocardial ischemia and reperfusion injury in mice. Experimental & Molecular Medicine, 45, e23.CrossRef Oh, Y. B., Ahn, M., Lee, S. M., Koh, H. W., Lee, S. H., Kim, S. H., et al. (2013). Inhibition of Janus activated kinase-3 protects against myocardial ischemia and reperfusion injury in mice. Experimental & Molecular Medicine, 45, e23.CrossRef
17.
go back to reference Jiang, J., Yuan, X., Wang, T., Chen, H., Zhao, H., Yan, X., et al. (2014). Antioxidative and cardioprotective effects of total flavonoids extracted from Dracocephalum moldavica L. against acute ischemia/reperfusion-induced myocardial injury in isolated rat heart. Cardiovascular Toxicology, 14(1), 74–82.CrossRefPubMed Jiang, J., Yuan, X., Wang, T., Chen, H., Zhao, H., Yan, X., et al. (2014). Antioxidative and cardioprotective effects of total flavonoids extracted from Dracocephalum moldavica L. against acute ischemia/reperfusion-induced myocardial injury in isolated rat heart. Cardiovascular Toxicology, 14(1), 74–82.CrossRefPubMed
18.
go back to reference Abd-Elsameea, A. A., Moustaf, A. A., & Mohamed, A. M. (2014). Modulation of the oxidative stress by metformin in the cerebrum of rats exposed to global cerebral ischemia and ischemia/reperfusion. Eur Rev Med Pharmacol Sci, 18(16), 2387–2392.PubMed Abd-Elsameea, A. A., Moustaf, A. A., & Mohamed, A. M. (2014). Modulation of the oxidative stress by metformin in the cerebrum of rats exposed to global cerebral ischemia and ischemia/reperfusion. Eur Rev Med Pharmacol Sci, 18(16), 2387–2392.PubMed
19.
go back to reference Shen, M., Wu, R. X., Zhao, L., Li, J., Guo, H. T., Fan, R., et al. (2012). Resveratrol attenuates ischemia/reperfusion injury in neonatal cardiomyocytes and its underlying mechanism. PLoS One, 7(12), e51223.CrossRefPubMedPubMedCentral Shen, M., Wu, R. X., Zhao, L., Li, J., Guo, H. T., Fan, R., et al. (2012). Resveratrol attenuates ischemia/reperfusion injury in neonatal cardiomyocytes and its underlying mechanism. PLoS One, 7(12), e51223.CrossRefPubMedPubMedCentral
20.
go back to reference Yuan, X., Yu, B., Wang, Y., Jiang, J., Liu, L., Zhao, H., et al. (2013). Involvement of endoplasmic reticulum stress in isoliquiritigenin-induced SKOV-3 cell apoptosis. Recent Patents Anticancer Drug Discovery, 8(2), 191–199.CrossRef Yuan, X., Yu, B., Wang, Y., Jiang, J., Liu, L., Zhao, H., et al. (2013). Involvement of endoplasmic reticulum stress in isoliquiritigenin-induced SKOV-3 cell apoptosis. Recent Patents Anticancer Drug Discovery, 8(2), 191–199.CrossRef
21.
go back to reference Schuck, R. N., Zha, W., Edin, M. L., Gruzdev, A., Vendrov, K. C., Miller, T. M., et al. (2014). The cytochrome P450 epoxygenase pathway regulates the hepatic inflammatory response in fatty liver disease. PLoS One, 9(10), e110162.CrossRefPubMedPubMedCentral Schuck, R. N., Zha, W., Edin, M. L., Gruzdev, A., Vendrov, K. C., Miller, T. M., et al. (2014). The cytochrome P450 epoxygenase pathway regulates the hepatic inflammatory response in fatty liver disease. PLoS One, 9(10), e110162.CrossRefPubMedPubMedCentral
22.
go back to reference Peng, L., Li, J., Xu, Y., Wang, Y., Du, H., Shao, J., et al. (2016). The protective effect of beraprost sodium on diabetic nephropathy by inhibiting inflammation and p38 MAPK signaling pathway in high-fat diet/streptozotocin-induced diabetic rats. International Journal of Endocrinology, 2016, 1690474.CrossRefPubMedPubMedCentral Peng, L., Li, J., Xu, Y., Wang, Y., Du, H., Shao, J., et al. (2016). The protective effect of beraprost sodium on diabetic nephropathy by inhibiting inflammation and p38 MAPK signaling pathway in high-fat diet/streptozotocin-induced diabetic rats. International Journal of Endocrinology, 2016, 1690474.CrossRefPubMedPubMedCentral
23.
go back to reference Lin, H. R., Wu, Y. H., Yen, W. C., Yang, C. M., & Chiu, D. T. (2016). Diminished COX-2/PGE2-Mediated antiviral response due to impaired NOX/MAPK signaling in G6PD-knockdown lung epithelial cells. PLoS One, 11(4), e0153462.CrossRefPubMedPubMedCentral Lin, H. R., Wu, Y. H., Yen, W. C., Yang, C. M., & Chiu, D. T. (2016). Diminished COX-2/PGE2-Mediated antiviral response due to impaired NOX/MAPK signaling in G6PD-knockdown lung epithelial cells. PLoS One, 11(4), e0153462.CrossRefPubMedPubMedCentral
24.
go back to reference Aubin, K., Safoine, M., Proulx, M., Audet-Casgrain, M. A., Côté, J. F., Têtu, F. A., et al. (2015). Characterization of in vitro engineered human adipose tissues: Relevant adipokine secretion and impact of TNF-α. PLoS One, 10(9), e0137612.CrossRefPubMedPubMedCentral Aubin, K., Safoine, M., Proulx, M., Audet-Casgrain, M. A., Côté, J. F., Têtu, F. A., et al. (2015). Characterization of in vitro engineered human adipose tissues: Relevant adipokine secretion and impact of TNF-α. PLoS One, 10(9), e0137612.CrossRefPubMedPubMedCentral
25.
go back to reference Lin, D., Ma, J., Xue, Y., & Wang, Z. (2015). Penehyclidine hydrochloride preconditioning provides cardioprotection in a rat model of myocardial ischemia/reperfusion injury. PLoS One, 10(12), e0138051.CrossRefPubMedPubMedCentral Lin, D., Ma, J., Xue, Y., & Wang, Z. (2015). Penehyclidine hydrochloride preconditioning provides cardioprotection in a rat model of myocardial ischemia/reperfusion injury. PLoS One, 10(12), e0138051.CrossRefPubMedPubMedCentral
26.
go back to reference Varela, L. M., Ortega-Gomez, A., Lopez, S., Abia, R., Muriana, F. J., & Bermudez, B. (2013). The effects of dietary fatty acids on the postprandial triglyceride-rich lipoprotein/apoB48 receptor axis in human monocyte/macrophage cells. Journal of Nutritional Biochemistry, 24(12), 2031–2039.CrossRefPubMed Varela, L. M., Ortega-Gomez, A., Lopez, S., Abia, R., Muriana, F. J., & Bermudez, B. (2013). The effects of dietary fatty acids on the postprandial triglyceride-rich lipoprotein/apoB48 receptor axis in human monocyte/macrophage cells. Journal of Nutritional Biochemistry, 24(12), 2031–2039.CrossRefPubMed
27.
go back to reference Glyn, M. C., Lawrenson, J. G., & Ward, B. J. (2003). A Rho-associated kinase mitigates reperfusion-induced change in the shape of cardiac capillary endothelial cells in situ. Cardiovascular Research, 57(1), 195–206.CrossRefPubMed Glyn, M. C., Lawrenson, J. G., & Ward, B. J. (2003). A Rho-associated kinase mitigates reperfusion-induced change in the shape of cardiac capillary endothelial cells in situ. Cardiovascular Research, 57(1), 195–206.CrossRefPubMed
28.
go back to reference Guo, J., Wang, S. B., Yuan, T. Y., Wu, Y. J., Yan, Y., Li, L., et al. (2013). Coptisine protects rat heart against myocardial ischemia/reperfusion injury by suppressing myocardial apoptosis and inflammation. Atherosclerosis, 231(2), 384–391.CrossRefPubMed Guo, J., Wang, S. B., Yuan, T. Y., Wu, Y. J., Yan, Y., Li, L., et al. (2013). Coptisine protects rat heart against myocardial ischemia/reperfusion injury by suppressing myocardial apoptosis and inflammation. Atherosclerosis, 231(2), 384–391.CrossRefPubMed
29.
go back to reference Yang, H. C., Cheng, M. L., Hua, Y. S., Wu, Y. H., Lin, H. R., Liu, H. Y., et al. (2015). Glucose 6-phosphate dehydrogenase knockdown enhances IL-8 expression in HepG2 cells via oxidative stress and NF-κB signaling pathway. Journal of Inflammation (London), 12, 34.CrossRef Yang, H. C., Cheng, M. L., Hua, Y. S., Wu, Y. H., Lin, H. R., Liu, H. Y., et al. (2015). Glucose 6-phosphate dehydrogenase knockdown enhances IL-8 expression in HepG2 cells via oxidative stress and NF-κB signaling pathway. Journal of Inflammation (London), 12, 34.CrossRef
30.
go back to reference Gross, G. J., Falck, J. R., Gross, E. R., Isbell, M., Moore, J., & Nithipatikom, K. (2005). Cytochrome P450 and arachidonic acid metabolites: Role in myocardial ischemia/reperfusion injury revisited. Cardiovascular Research, 68(1), 18–25.CrossRefPubMed Gross, G. J., Falck, J. R., Gross, E. R., Isbell, M., Moore, J., & Nithipatikom, K. (2005). Cytochrome P450 and arachidonic acid metabolites: Role in myocardial ischemia/reperfusion injury revisited. Cardiovascular Research, 68(1), 18–25.CrossRefPubMed
Metadata
Title
Systems Pharmacology Dissection of the Protective Effect of Myricetin Against Acute Ischemia/Reperfusion-Induced Myocardial Injury in Isolated Rat Heart
Authors
Yingna Qiu
Ning Cong
Meng Liang
Yongqiang Wang
Jianshe Wang
Publication date
01-07-2017
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 3/2017
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-016-9382-y

Other articles of this Issue 3/2017

Cardiovascular Toxicology 3/2017 Go to the issue