Skip to main content
Top
Published in: Cardiovascular Toxicology 3/2017

01-07-2017

Acrolein Can Cause Cardiovascular Disease: A Review

Authors: Robert J. Henning, Giffe T. Johnson, Jayme P. Coyle, Raymond D. Harbison

Published in: Cardiovascular Toxicology | Issue 3/2017

Login to get access

Abstract

Acrolein is a highly reactive unsaturated aldehyde that is formed during the burning of gasoline and diesel fuels, cigarettes, woods and plastics. In addition, acrolein is generated during the cooking or frying of food with fats or oils. Acrolein is also used in the synthesis of many organic chemicals and as a biocide in agricultural and industrial water supply systems. The total emissions of acrolein in the United States from all sources are estimated to be 62,660 tons/year. Acrolein is classified by the Environmental Protection Agency as a high-priority air and water toxicant. Acrolein can exert toxic effects following inhalation, ingestion, and dermal exposures that are dose dependent. Cardiovascular tissues are particularly sensitive to the toxic effects of acrolein based primarily on in vitro and in vivo studies. Acrolein can generate free oxygen radical stress in the heart, decrease endothelial nitric oxide synthase phosphorylation and nitric oxide formation, form cytoplasmic and nuclear protein adducts with myocyte and vascular endothelial cell proteins and cause vasospasm. In this manner, chronic exposure to acrolein can cause myocyte dysfunction, myocyte necrosis and apoptosis and ultimately lead to cardiomyopathy and cardiac failure. Epidemiological studies of acrolein exposure and toxicity should be developed and treatment strategies devised that prevent or significantly limit acrolein cardiovascular toxicity.
Literature
1.
go back to reference Faroon, O., Roney, N., Taylor, J., Ashizawa, A., Lumpkin, M., & Plewak, D. (2008). Acrolein environmental levels and potential for human exposure. Toxicology and Industrial Health, 24, 543–564.CrossRefPubMed Faroon, O., Roney, N., Taylor, J., Ashizawa, A., Lumpkin, M., & Plewak, D. (2008). Acrolein environmental levels and potential for human exposure. Toxicology and Industrial Health, 24, 543–564.CrossRefPubMed
2.
go back to reference Faroon, O., Roney, N., Taylor, J., Ashizawa, A., Lumpkin, M., & Plewak, D. (2008). Acrolein health effects. Toxicology and Industrial Health, 24, 447–490.CrossRefPubMed Faroon, O., Roney, N., Taylor, J., Ashizawa, A., Lumpkin, M., & Plewak, D. (2008). Acrolein health effects. Toxicology and Industrial Health, 24, 447–490.CrossRefPubMed
3.
go back to reference Anderson, M., Hazen, S., Hsu, F., & Heinecke, J. (1997). Human neutrophils employ the myeloperoxidase-hydrogen peroxide-chloride system to convert hydroxy-amino acids into glycolaldehyde, 2-hydroxypropanal, and acrolein. A mechanism for the generation of highly reactive α-hydroxy and α, β-unsaturated aldehydes by phagocytes at sites of inflammation. Journal of Clinical Investigation, 99, 424–432.CrossRefPubMedPubMedCentral Anderson, M., Hazen, S., Hsu, F., & Heinecke, J. (1997). Human neutrophils employ the myeloperoxidase-hydrogen peroxide-chloride system to convert hydroxy-amino acids into glycolaldehyde, 2-hydroxypropanal, and acrolein. A mechanism for the generation of highly reactive α-hydroxy and α, β-unsaturated aldehydes by phagocytes at sites of inflammation. Journal of Clinical Investigation, 99, 424–432.CrossRefPubMedPubMedCentral
4.
go back to reference De Woskin, R., Greenberg, M., Pepelko, W., & Strickland, J. (2003). Toxicological review of acrolein (cas no. 107-02-08) in support of summary information on the integrated risk information system (Iris). Washington, DC: US Environmental Protection Agency. De Woskin, R., Greenberg, M., Pepelko, W., & Strickland, J. (2003). Toxicological review of acrolein (cas no. 107-02-08) in support of summary information on the integrated risk information system (Iris). Washington, DC: US Environmental Protection Agency.
5.
go back to reference Abraham, K., Andres, S., Palavinskas, Berg K., Appel, K., & Lampen, A. (2011). Toxicology and risk assessment of acrolein in food. Molecular Nutrition & Food Research, 55, 1277–1290.CrossRef Abraham, K., Andres, S., Palavinskas, Berg K., Appel, K., & Lampen, A. (2011). Toxicology and risk assessment of acrolein in food. Molecular Nutrition & Food Research, 55, 1277–1290.CrossRef
6.
go back to reference Conklin, D., Barski, O., Lesgards, J.-F., Juvan, P., Rezen, T., Rozman, D., et al. (2010). Acrolein consumption induces systemic dyslipidemia and lipoprotein modification. Toxicology and Applied Pharmacology, 15(243), 1–12.CrossRef Conklin, D., Barski, O., Lesgards, J.-F., Juvan, P., Rezen, T., Rozman, D., et al. (2010). Acrolein consumption induces systemic dyslipidemia and lipoprotein modification. Toxicology and Applied Pharmacology, 15(243), 1–12.CrossRef
7.
go back to reference Wang, G., Guo, Y., Vondriska, T., Zhang, J., Zhang, S., Tsai, L., et al. (2008). Acrolein consumption exacerbates myocardial ischemic injury and blocks nitric oxide-induced PKCε signaling and cardioprotection. Journal of Molecular and Cellular Cardiology, 44, 1016–1022.CrossRefPubMed Wang, G., Guo, Y., Vondriska, T., Zhang, J., Zhang, S., Tsai, L., et al. (2008). Acrolein consumption exacerbates myocardial ischemic injury and blocks nitric oxide-induced PKCε signaling and cardioprotection. Journal of Molecular and Cellular Cardiology, 44, 1016–1022.CrossRefPubMed
8.
go back to reference Dwivedi, A., Johanson, G., Lorentzen, J., Palmberg, L., Sjogren, B., & Ernstgard, L. (2015). Acute effects of acrolein in human volunteers during controlled exposure. Inhalation toxicology, 27, 810–821.CrossRefPubMedPubMedCentral Dwivedi, A., Johanson, G., Lorentzen, J., Palmberg, L., Sjogren, B., & Ernstgard, L. (2015). Acute effects of acrolein in human volunteers during controlled exposure. Inhalation toxicology, 27, 810–821.CrossRefPubMedPubMedCentral
9.
go back to reference Luo, J., Hill, B., Gu, Y., Cai, J., Srivastava, S., Bhatnagar, A., et al. (2007). Mechanisms of acrolein-induced myocardial dysfunction: Implications for environmental and endogenous aldehyde exposure. American Journal of Physiology Heart and Circulatory Physiology, 293, H3673–H3684.CrossRefPubMed Luo, J., Hill, B., Gu, Y., Cai, J., Srivastava, S., Bhatnagar, A., et al. (2007). Mechanisms of acrolein-induced myocardial dysfunction: Implications for environmental and endogenous aldehyde exposure. American Journal of Physiology Heart and Circulatory Physiology, 293, H3673–H3684.CrossRefPubMed
10.
go back to reference Wheat, L., Haberzetti, P., Hellmann, J., Baba, S., Bertke, M., Lee, J., et al. (2011). Acrolein inhalation prevents VEGF-induced mobilization of Flk-1+/Sca-1+ cells in mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 31, 1598–1606.CrossRefPubMedPubMedCentral Wheat, L., Haberzetti, P., Hellmann, J., Baba, S., Bertke, M., Lee, J., et al. (2011). Acrolein inhalation prevents VEGF-induced mobilization of Flk-1+/Sca-1+ cells in mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 31, 1598–1606.CrossRefPubMedPubMedCentral
11.
go back to reference Brook, R., Rajagopalan, S., Pope, C., Brook, J., Bhatnagar, A., Diez-Roux, A., et al. (2010). Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation, 121, 2331–2378.CrossRefPubMed Brook, R., Rajagopalan, S., Pope, C., Brook, J., Bhatnagar, A., Diez-Roux, A., et al. (2010). Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation, 121, 2331–2378.CrossRefPubMed
12.
go back to reference Tonne, C., Melly, S., Mittleman, M., Coull, B., Goldberg, R., & Schwartz, J. (2007). A case-control analysis of exposure to traffic and acute myocardial infarction. Environmental Health Perspectives, 115, 53–57.CrossRefPubMed Tonne, C., Melly, S., Mittleman, M., Coull, B., Goldberg, R., & Schwartz, J. (2007). A case-control analysis of exposure to traffic and acute myocardial infarction. Environmental Health Perspectives, 115, 53–57.CrossRefPubMed
13.
go back to reference Agency for Toxic Substances and Disease Registry. Toxicological profile for acrolein. (2007). CAS#: 107-02-8, August. Agency for Toxic Substances and Disease Registry. Toxicological profile for acrolein. (2007). CAS#: 107-02-8, August.
14.
go back to reference Ghilarducci, D., & Tjeerdema, R. (1995). Fate and effects of acrolein. Reviews of Environmental Contamination and Toxicology, 144, 95–146.PubMed Ghilarducci, D., & Tjeerdema, R. (1995). Fate and effects of acrolein. Reviews of Environmental Contamination and Toxicology, 144, 95–146.PubMed
15.
go back to reference Stevens, J., & Maier, C. (2008). Acrolein: Sources, metabolism, and biomolecular interactions relevant to human health and disease. Molecular Nutrition & Food Research, 52, 7–25.CrossRef Stevens, J., & Maier, C. (2008). Acrolein: Sources, metabolism, and biomolecular interactions relevant to human health and disease. Molecular Nutrition & Food Research, 52, 7–25.CrossRef
16.
go back to reference Perez, C., Hazari, M., Ledbetter, A., Haykal-Coates, N., Carll, A., Cascio, W., et al. (2015). Acrolein inhalation alters arterial blood gases and triggers carotid body-mediated cardiovascular responses in hypertensive rats. Inhalation Toxicology, 27, 54–63.CrossRefPubMedPubMedCentral Perez, C., Hazari, M., Ledbetter, A., Haykal-Coates, N., Carll, A., Cascio, W., et al. (2015). Acrolein inhalation alters arterial blood gases and triggers carotid body-mediated cardiovascular responses in hypertensive rats. Inhalation Toxicology, 27, 54–63.CrossRefPubMedPubMedCentral
17.
go back to reference Carmella, S., Chen, M., Zhang, Y., Zhang, S., Hatsukami, D., & Hecht, S. (2007). Quantitation of acrolein-derived 3-hydroxypropylmercapturic acid in human urine by liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry: Effects of cigarette smoking. Chemical Research in Toxicology, 20, 986–990.CrossRefPubMedPubMedCentral Carmella, S., Chen, M., Zhang, Y., Zhang, S., Hatsukami, D., & Hecht, S. (2007). Quantitation of acrolein-derived 3-hydroxypropylmercapturic acid in human urine by liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry: Effects of cigarette smoking. Chemical Research in Toxicology, 20, 986–990.CrossRefPubMedPubMedCentral
19.
go back to reference United States Department of Health and Human Services. (2014). The health consequences of smoking: 50 years of progress. A report of the surgeon general. Atlanta, GA: US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health. United States Department of Health and Human Services. (2014). The health consequences of smoking: 50 years of progress. A report of the surgeon general. Atlanta, GA: US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health.
20.
go back to reference Breland, A., Spindle, T., Weaver, M., & Eissenberg, T. (2014). Science and electronic cigarettes: Current data, future needs. Journal of Addiction Medicine, 8, 223–233.CrossRefPubMedPubMedCentral Breland, A., Spindle, T., Weaver, M., & Eissenberg, T. (2014). Science and electronic cigarettes: Current data, future needs. Journal of Addiction Medicine, 8, 223–233.CrossRefPubMedPubMedCentral
21.
go back to reference Counts, M., Morton, M., Laffoon, S., Cox, R., & Lipowicz, P. (2005). Smoke composition and predicting relationships for international commercial cigarettes smoked with three machine-smoking conditions. Regulatory Toxicology and Pharmacology, 41, 185–227.CrossRefPubMed Counts, M., Morton, M., Laffoon, S., Cox, R., & Lipowicz, P. (2005). Smoke composition and predicting relationships for international commercial cigarettes smoked with three machine-smoking conditions. Regulatory Toxicology and Pharmacology, 41, 185–227.CrossRefPubMed
22.
go back to reference Goniewicz, M., Knysak, J., Gawron, M., Kosmider, L., Sobczak, A., Kurek, J., et al. (2014). Levels of selected carcinogens and toxicants in vapour from electronic cigarettes. Tobacco Control, 23, 133–139.CrossRefPubMed Goniewicz, M., Knysak, J., Gawron, M., Kosmider, L., Sobczak, A., Kurek, J., et al. (2014). Levels of selected carcinogens and toxicants in vapour from electronic cigarettes. Tobacco Control, 23, 133–139.CrossRefPubMed
24.
go back to reference Etter, J. (2013). The electronic cigarette: An alternative to tobacco?. Atlanta: Elsevier. Etter, J. (2013). The electronic cigarette: An alternative to tobacco?. Atlanta: Elsevier.
26.
go back to reference Uchiyama, S., Inaba, Y., & Kunugita, N. (2010). Determination of acrolein and other carbonyls in cigarette smoke using coupled silica cartridges impregnated with hydroquinone and 2,4-dinitrophenylhydrazine. Journal of Chromatography A, 1217, 4383–4388.CrossRefPubMed Uchiyama, S., Inaba, Y., & Kunugita, N. (2010). Determination of acrolein and other carbonyls in cigarette smoke using coupled silica cartridges impregnated with hydroquinone and 2,4-dinitrophenylhydrazine. Journal of Chromatography A, 1217, 4383–4388.CrossRefPubMed
27.
go back to reference Lim, H. H., & Shin, H. S. (2013). Measurement of aldehydes in replacement liquids of electronic cigarettes by headspace gas chromatography-mass spectrometry. Bulletin of the Korean Chemical Society, 34, 2691–2696.CrossRef Lim, H. H., & Shin, H. S. (2013). Measurement of aldehydes in replacement liquids of electronic cigarettes by headspace gas chromatography-mass spectrometry. Bulletin of the Korean Chemical Society, 34, 2691–2696.CrossRef
28.
go back to reference Uchiyama, S., Ohta, K., Inaba, Y., & Kunugita, N. (2013). Determination of carbonyl compounds generated from the e-cigarette using coupled silica cartridges impregnated with hydroquinone and 2,4-dinitrophenylhydrazine, followed by high-performance liquid chromatography. Analytical Sciences, 29, 1219–1222.CrossRefPubMed Uchiyama, S., Ohta, K., Inaba, Y., & Kunugita, N. (2013). Determination of carbonyl compounds generated from the e-cigarette using coupled silica cartridges impregnated with hydroquinone and 2,4-dinitrophenylhydrazine, followed by high-performance liquid chromatography. Analytical Sciences, 29, 1219–1222.CrossRefPubMed
29.
go back to reference Breland, A., Soule, E., Lopez, A., Ramoa, C., El-Hellani, A., & Eissenberg, T. (2016). Electronic cigarettes: What are they and what do they do? Annals of the New York Academy of Sciences, 15, 1–26. Breland, A., Soule, E., Lopez, A., Ramoa, C., El-Hellani, A., & Eissenberg, T. (2016). Electronic cigarettes: What are they and what do they do? Annals of the New York Academy of Sciences, 15, 1–26.
30.
go back to reference Ismahil, M., Hamid, T., Haberzetti, P., Gu, Y., Chandrasekar, B., Srivastava, S., et al. (2011). Chronic oral exposure to the aldehyde pollutant acrolein induces dilated cardiomyopathy. American Journal of Physiology Heart and Circulatory Physiology, 301, H2050–H2060.CrossRefPubMedPubMedCentral Ismahil, M., Hamid, T., Haberzetti, P., Gu, Y., Chandrasekar, B., Srivastava, S., et al. (2011). Chronic oral exposure to the aldehyde pollutant acrolein induces dilated cardiomyopathy. American Journal of Physiology Heart and Circulatory Physiology, 301, H2050–H2060.CrossRefPubMedPubMedCentral
31.
go back to reference Moghe, A., Ghare, S., Lamoreau, B., Mohammad, M., Barve, S., McClain, C., et al. (2015). Molecular mechanisms of acrolein toxicity: Relevance to human disease. Toxicological Sciences, 143, 242–255.CrossRefPubMedPubMedCentral Moghe, A., Ghare, S., Lamoreau, B., Mohammad, M., Barve, S., McClain, C., et al. (2015). Molecular mechanisms of acrolein toxicity: Relevance to human disease. Toxicological Sciences, 143, 242–255.CrossRefPubMedPubMedCentral
32.
go back to reference Srivastavaa, S., Sithu, S., Vladykovskayaa, E., Haberzettla, P., Hoetker, D., Siddiqui, M., et al. (2011). Oral exposure to acrolein exacerbates atherosclerosis in apoE-null mice. Atherosclerosis, 215, 301–308.CrossRef Srivastavaa, S., Sithu, S., Vladykovskayaa, E., Haberzettla, P., Hoetker, D., Siddiqui, M., et al. (2011). Oral exposure to acrolein exacerbates atherosclerosis in apoE-null mice. Atherosclerosis, 215, 301–308.CrossRef
33.
go back to reference De Jonge, M., Huitema, A., Rodenhuis, S., & Beijnen, J. (2005). Clinical pharmacokinetics of cyclophosphamide. Clinical Pharmacokinetics, 44, 1135–1164.CrossRefPubMed De Jonge, M., Huitema, A., Rodenhuis, S., & Beijnen, J. (2005). Clinical pharmacokinetics of cyclophosphamide. Clinical Pharmacokinetics, 44, 1135–1164.CrossRefPubMed
34.
go back to reference Ewer, M., & Ewer, S. (2010). Cardiotoxicity of anticancer treatments: What the cardiologist needs to know. Nature Reviews Cardiology, 7, 564–567.CrossRefPubMed Ewer, M., & Ewer, S. (2010). Cardiotoxicity of anticancer treatments: What the cardiologist needs to know. Nature Reviews Cardiology, 7, 564–567.CrossRefPubMed
35.
go back to reference Takamoto, S., Sakura, N., & Namera, A. (2004). Monitoring of urinary acrolein concentration in patients receiving cyclophosphamide and isophamide. Journal of Chromatography, B: Analytical Technologies in the Biomedical and Life Sciences, 806, 59–63.CrossRefPubMed Takamoto, S., Sakura, N., & Namera, A. (2004). Monitoring of urinary acrolein concentration in patients receiving cyclophosphamide and isophamide. Journal of Chromatography, B: Analytical Technologies in the Biomedical and Life Sciences, 806, 59–63.CrossRefPubMed
36.
38.
go back to reference Bautista, D., Jordt, S.-E., Nikai, T., Tsuruda, P., Read, A., Poblete, J., et al. (2006). TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell, 124, 1269–1282.CrossRefPubMed Bautista, D., Jordt, S.-E., Nikai, T., Tsuruda, P., Read, A., Poblete, J., et al. (2006). TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell, 124, 1269–1282.CrossRefPubMed
39.
go back to reference Andre, E., Campi, B., Materazzi, S., Trevisani, M., Amadesi, S., Massi, D., et al. (2008). Cigarette smoke—induced neurogenic inflammation is mediated by α, β-unsaturated aldehydes and the TRPA1 receptor in rodents. The Journal of Clinical Investigation, 118, 2574–2582.PubMedPubMedCentral Andre, E., Campi, B., Materazzi, S., Trevisani, M., Amadesi, S., Massi, D., et al. (2008). Cigarette smoke—induced neurogenic inflammation is mediated by α, β-unsaturated aldehydes and the TRPA1 receptor in rodents. The Journal of Clinical Investigation, 118, 2574–2582.PubMedPubMedCentral
40.
go back to reference Pozsgai, G., Bodkin, J., Graepel, R., Bevan, S., Andersson, D., & Brain, S. (2010). Evidence for the pathophysiological relevance of TRPA1 receptors in the cardiovascular system in vivo. Cardiovascular Research, 87, 760–768.CrossRefPubMed Pozsgai, G., Bodkin, J., Graepel, R., Bevan, S., Andersson, D., & Brain, S. (2010). Evidence for the pathophysiological relevance of TRPA1 receptors in the cardiovascular system in vivo. Cardiovascular Research, 87, 760–768.CrossRefPubMed
42.
go back to reference Hazari, M., Haykal-Coates, N., Winsett, D., Krantz, Q., Costa, D., & Frarraj, A. (2011). TRPA1 and sympathetic activation contribute to increased risk of triggered cardiac arrhythmias in hypertensive rats exposed to diesel exhaust. Environmental Health Perspectives, 119, 951–957.CrossRefPubMedPubMedCentral Hazari, M., Haykal-Coates, N., Winsett, D., Krantz, Q., Costa, D., & Frarraj, A. (2011). TRPA1 and sympathetic activation contribute to increased risk of triggered cardiac arrhythmias in hypertensive rats exposed to diesel exhaust. Environmental Health Perspectives, 119, 951–957.CrossRefPubMedPubMedCentral
43.
go back to reference Nemmar, A., Hoet, P., Vanquickenborne, B., Dinsdale, D., Thomeer, M., Hoylaerts, M., et al. (2002). Passage of inhaled particles into the blood circulation in humans. Circulation, 105, 411–414.CrossRef Nemmar, A., Hoet, P., Vanquickenborne, B., Dinsdale, D., Thomeer, M., Hoylaerts, M., et al. (2002). Passage of inhaled particles into the blood circulation in humans. Circulation, 105, 411–414.CrossRef
44.
go back to reference Negre-Salvayre, A., Coatrieux, C., Ingueneau, C., & Salvayre, R. (2008). Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors. British Journal of Pharmacology, 153, 6–20.CrossRefPubMed Negre-Salvayre, A., Coatrieux, C., Ingueneau, C., & Salvayre, R. (2008). Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors. British Journal of Pharmacology, 153, 6–20.CrossRefPubMed
45.
go back to reference Jacobs, A., & Marnett, L. (2010). Systems analysis of protein modification and cellular responses induced by electrophile stress. Accounts of Chemical Research, 43, 673–683.CrossRefPubMedPubMedCentral Jacobs, A., & Marnett, L. (2010). Systems analysis of protein modification and cellular responses induced by electrophile stress. Accounts of Chemical Research, 43, 673–683.CrossRefPubMedPubMedCentral
46.
go back to reference Srivastava, M., Atwater, I., Glasman, M., Leighton, X., Goping, G., Caohuy, H., et al. (1999). Defects in inositol 1,4,5-trisphosphate receptor expression, Ca(2+) signaling, and insulin secretion in the anx7(±) knockout mouse. Proceedings of the National Academy of Sciences of the United States of America, 96, 13783–13788.CrossRefPubMedPubMedCentral Srivastava, M., Atwater, I., Glasman, M., Leighton, X., Goping, G., Caohuy, H., et al. (1999). Defects in inositol 1,4,5-trisphosphate receptor expression, Ca(2+) signaling, and insulin secretion in the anx7(±) knockout mouse. Proceedings of the National Academy of Sciences of the United States of America, 96, 13783–13788.CrossRefPubMedPubMedCentral
47.
go back to reference Keith, R., Haberzetti, P., Vladykovskaya, E., Bradford, G., Kaiserova, K., Srivastava, S., et al. (2009). Aldose reductase decreases endoplasmic reticulum stress in ischemic hearts. Chemico-Biological Interactions, 178, 242–249.CrossRefPubMed Keith, R., Haberzetti, P., Vladykovskaya, E., Bradford, G., Kaiserova, K., Srivastava, S., et al. (2009). Aldose reductase decreases endoplasmic reticulum stress in ischemic hearts. Chemico-Biological Interactions, 178, 242–249.CrossRefPubMed
48.
go back to reference Maeshima, T., Honda, K., Chikazawa, M., Shibata, T., Kawai, Y., Akagawa, M., et al. (2012). Quantitative analysis of acrolein-specific adducts generated during lipid peroxidation—modification of proteins in vitro: Identification of Nτ-(3-propanal) histidine as the major adduct. Chemical Research in Toxicology, 25, 1384–1392.CrossRefPubMed Maeshima, T., Honda, K., Chikazawa, M., Shibata, T., Kawai, Y., Akagawa, M., et al. (2012). Quantitative analysis of acrolein-specific adducts generated during lipid peroxidation—modification of proteins in vitro: Identification of Nτ-(3-propanal) histidine as the major adduct. Chemical Research in Toxicology, 25, 1384–1392.CrossRefPubMed
49.
go back to reference Li, L., Jiang, L., Geng, C., Cao, J., & Zhong, L. (2008). The role of oxidative stress in acrolein-induced DNA damage in HepG2 cells. Free Radical Research, 42, 354–361.CrossRefPubMed Li, L., Jiang, L., Geng, C., Cao, J., & Zhong, L. (2008). The role of oxidative stress in acrolein-induced DNA damage in HepG2 cells. Free Radical Research, 42, 354–361.CrossRefPubMed
50.
go back to reference Kehrer, P., & Biswal, S. (2000). The molecular effects of acrolein. Toxicological Sciences, 57, 6–15.CrossRef Kehrer, P., & Biswal, S. (2000). The molecular effects of acrolein. Toxicological Sciences, 57, 6–15.CrossRef
51.
go back to reference Liu, F., Li, X. L., Lin, T., He, D. W., Wei, G. H., Liu, J. H., et al. (2012). The cyclophosphamide metabolite, acrolein, induces cytoskeletal changes and oxidative stress in Sertoli cells. Molecular Biology Reports, 39, 493–500.CrossRefPubMed Liu, F., Li, X. L., Lin, T., He, D. W., Wei, G. H., Liu, J. H., et al. (2012). The cyclophosphamide metabolite, acrolein, induces cytoskeletal changes and oxidative stress in Sertoli cells. Molecular Biology Reports, 39, 493–500.CrossRefPubMed
52.
go back to reference Jang, J., Bruse, S., Huneidi, S., Schrader, R., Monick, M., Lin, Y., et al. (2014). Acrolein-exposed normal human lung fibroblasts in vitro: Cellular senescence, enhanced telomere erosion, and degradation of werner’s syndrome protein. Environmental Health Perspectives, 122, 955–962.PubMedPubMedCentral Jang, J., Bruse, S., Huneidi, S., Schrader, R., Monick, M., Lin, Y., et al. (2014). Acrolein-exposed normal human lung fibroblasts in vitro: Cellular senescence, enhanced telomere erosion, and degradation of werner’s syndrome protein. Environmental Health Perspectives, 122, 955–962.PubMedPubMedCentral
53.
go back to reference Rom, O., Kaisaria, S., Aizenbuda, D., & Reznick, A. (2013). The effects of acetaldehyde and acrolein on muscle catabolism in C2 myotubes. Free Radical Biology and Medicine, 65, 190–200.CrossRefPubMed Rom, O., Kaisaria, S., Aizenbuda, D., & Reznick, A. (2013). The effects of acetaldehyde and acrolein on muscle catabolism in C2 myotubes. Free Radical Biology and Medicine, 65, 190–200.CrossRefPubMed
54.
go back to reference De Jarnett, N., Conklin, D., Riggs, D., Myers, J., O’Toole, T., Hamzeh, I., et al. (2014). Acrolein exposure is associated with increased cardiovascular disease risk. Journal of the American Heart Association, 3, e000934.CrossRef De Jarnett, N., Conklin, D., Riggs, D., Myers, J., O’Toole, T., Hamzeh, I., et al. (2014). Acrolein exposure is associated with increased cardiovascular disease risk. Journal of the American Heart Association, 3, e000934.CrossRef
55.
go back to reference Perez, C., Ledbetter, A., Hazari, M., Haykal-Coates, N., Carll, A., Winsett, D., et al. (2013). Hypoxia stress test reveals exaggerated cardiovascular effects in hypertensive rats after exposure to the air pollutant acrolein. Toxicological Sciences, 132, 467–477.CrossRefPubMedPubMedCentral Perez, C., Ledbetter, A., Hazari, M., Haykal-Coates, N., Carll, A., Winsett, D., et al. (2013). Hypoxia stress test reveals exaggerated cardiovascular effects in hypertensive rats after exposure to the air pollutant acrolein. Toxicological Sciences, 132, 467–477.CrossRefPubMedPubMedCentral
56.
go back to reference McCall, M., Tang, J., Bielicki, J., & Forte, T. (1995). Inhibition of lecithin-cholesterol acyltransferase and modification of HDL apolipoproteins by aldehydes. Arteriosclerosis, Thrombosis, and Vascular Biology, 15, 1599–1606.CrossRefPubMed McCall, M., Tang, J., Bielicki, J., & Forte, T. (1995). Inhibition of lecithin-cholesterol acyltransferase and modification of HDL apolipoproteins by aldehydes. Arteriosclerosis, Thrombosis, and Vascular Biology, 15, 1599–1606.CrossRefPubMed
57.
go back to reference Watanabe, K., Nakazato, Y., Saiki, R., Igarashi, K., Kitada, M., & Ishii, I. (2013). Acrolein-conjugated low-density lipoprotein induces macrophage foam cell formation. Atherosclerosis, 227, 51–57.CrossRefPubMed Watanabe, K., Nakazato, Y., Saiki, R., Igarashi, K., Kitada, M., & Ishii, I. (2013). Acrolein-conjugated low-density lipoprotein induces macrophage foam cell formation. Atherosclerosis, 227, 51–57.CrossRefPubMed
58.
go back to reference Kim, C., Lee, S., Seo, K., Park, H., Yun, J., Bae, J., et al. (2010). Acrolein increases 5-lipoxygenase expression in murine macrophages through activation of ERK pathway. Toxicology and Applied Pharmacology, 245, 76–82.CrossRefPubMed Kim, C., Lee, S., Seo, K., Park, H., Yun, J., Bae, J., et al. (2010). Acrolein increases 5-lipoxygenase expression in murine macrophages through activation of ERK pathway. Toxicology and Applied Pharmacology, 245, 76–82.CrossRefPubMed
59.
go back to reference O’Toole, T., Zheng, Y. T., Hellmann, J., Conklin, D., Barski, O., & Bhatnagar, A. (2009). Acrolein activates matrix metalloproteinases by increasing reactive oxygen species in macrophages. Toxicology and Applied Pharmacology, 236, 194–201.CrossRefPubMedPubMedCentral O’Toole, T., Zheng, Y. T., Hellmann, J., Conklin, D., Barski, O., & Bhatnagar, A. (2009). Acrolein activates matrix metalloproteinases by increasing reactive oxygen species in macrophages. Toxicology and Applied Pharmacology, 236, 194–201.CrossRefPubMedPubMedCentral
60.
go back to reference Chadwick, A., Holme, R., Chen, Y., Thomas, M., Sorci-Thomas, M., Silverstein, R., et al. (2015). Acrolein impairs the cholesterol transport functions of high density lipoproteins. Plos ONE, 10, e0123138.CrossRefPubMedPubMedCentral Chadwick, A., Holme, R., Chen, Y., Thomas, M., Sorci-Thomas, M., Silverstein, R., et al. (2015). Acrolein impairs the cholesterol transport functions of high density lipoproteins. Plos ONE, 10, e0123138.CrossRefPubMedPubMedCentral
61.
go back to reference Conklin, D., Bhatnagara, A., Cowleyb, H., Johnsonc, G., Wiechmannc, R., Sayred, L., et al. (2006). Acrolein generation stimulates hypercontraction in isolated human blood vessels. Toxicology and Applied Pharmacology, 217, 277–288.CrossRefPubMedPubMedCentral Conklin, D., Bhatnagara, A., Cowleyb, H., Johnsonc, G., Wiechmannc, R., Sayred, L., et al. (2006). Acrolein generation stimulates hypercontraction in isolated human blood vessels. Toxicology and Applied Pharmacology, 217, 277–288.CrossRefPubMedPubMedCentral
62.
go back to reference Hyvelin, J. M., Roux, E., Prevost, M. C., Savineau, J. P., & Marthan, R. (2000). Cellular mechanisms of acrolein-induced alterations in calcium signaling in airway smooth muscle. Toxicology and Applied Pharmacology, 164, 176–183.CrossRefPubMed Hyvelin, J. M., Roux, E., Prevost, M. C., Savineau, J. P., & Marthan, R. (2000). Cellular mechanisms of acrolein-induced alterations in calcium signaling in airway smooth muscle. Toxicology and Applied Pharmacology, 164, 176–183.CrossRefPubMed
63.
go back to reference Murata, F., Suzuki, S., Tsuyama, S., & Suganuma, T. (1985). Application of rapid freezing followed by freeze-substitution acrolein fixation for cytochemical studies of the rat stomach. The Histochemical Journal, 17, 967–980.CrossRefPubMed Murata, F., Suzuki, S., Tsuyama, S., & Suganuma, T. (1985). Application of rapid freezing followed by freeze-substitution acrolein fixation for cytochemical studies of the rat stomach. The Histochemical Journal, 17, 967–980.CrossRefPubMed
64.
go back to reference Biagini, R., Toraason, M., Lynch, D., & Winston, G. (1990). Inhibition of rat heart mitochondrial electron transport in vitro: Implications for the cardiotoxic action of allylamine or its primary metabolite, acrolein. Toxicology, 62, 95–106.CrossRefPubMed Biagini, R., Toraason, M., Lynch, D., & Winston, G. (1990). Inhibition of rat heart mitochondrial electron transport in vitro: Implications for the cardiotoxic action of allylamine or its primary metabolite, acrolein. Toxicology, 62, 95–106.CrossRefPubMed
65.
go back to reference Biswal, S., Acquaah-Mensah, G., Datta, K., Wu, X., & Kehrer, J. (2002). Inhibition of cell proliferation and AP-1 activity by acrolein in human A549 lung adenocarcinoma cells due to thiol imbalance and covalent modifications. Chemical Research in Toxicology, 15, 180–186.CrossRefPubMed Biswal, S., Acquaah-Mensah, G., Datta, K., Wu, X., & Kehrer, J. (2002). Inhibition of cell proliferation and AP-1 activity by acrolein in human A549 lung adenocarcinoma cells due to thiol imbalance and covalent modifications. Chemical Research in Toxicology, 15, 180–186.CrossRefPubMed
66.
go back to reference Vikman, P., Xu, C. B., & Edvinsson, L. (2009). Lipid-soluble cigarette smoking particles induce expression of inflammatory and extracellular-matrix-related genes in rat cerebral arteries. Vascular Health Risk Management, 5, 333–341.PubMedPubMedCentral Vikman, P., Xu, C. B., & Edvinsson, L. (2009). Lipid-soluble cigarette smoking particles induce expression of inflammatory and extracellular-matrix-related genes in rat cerebral arteries. Vascular Health Risk Management, 5, 333–341.PubMedPubMedCentral
67.
go back to reference Jaimes, E., De Master, E., Tian, R., & Raij, L. (2004). Stable compounds of cigarette smoke induce endothelial superoxide anion production via NADPH oxidase activation. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 1031–1036.CrossRefPubMed Jaimes, E., De Master, E., Tian, R., & Raij, L. (2004). Stable compounds of cigarette smoke induce endothelial superoxide anion production via NADPH oxidase activation. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 1031–1036.CrossRefPubMed
68.
go back to reference Misonou, Y., Asahi, M., Yokoe, S., Miyoshi, E., & Taniguchi, N. (2006). Acrolein produces nitric oxide through the elevation of intracellular calcium levels to induce apoptosis in human umbilical vein endothelial cells: Implications for smoke angiopathy. Nitric Oxide, 14, 180–187.CrossRefPubMed Misonou, Y., Asahi, M., Yokoe, S., Miyoshi, E., & Taniguchi, N. (2006). Acrolein produces nitric oxide through the elevation of intracellular calcium levels to induce apoptosis in human umbilical vein endothelial cells: Implications for smoke angiopathy. Nitric Oxide, 14, 180–187.CrossRefPubMed
69.
go back to reference Cui, Y., Xie, X., Jia, F., He, J., Li, Z., Fu, M., et al. (2015). Ambient fine particulate matter induces apoptosis of endothelial progenitor cells through reactive oxygen species formation. Cellular Physiology and Biochemistry, 35, 353–363.CrossRefPubMedPubMedCentral Cui, Y., Xie, X., Jia, F., He, J., Li, Z., Fu, M., et al. (2015). Ambient fine particulate matter induces apoptosis of endothelial progenitor cells through reactive oxygen species formation. Cellular Physiology and Biochemistry, 35, 353–363.CrossRefPubMedPubMedCentral
70.
go back to reference Tziakas, D., Chalikias, G., Parissis, J., Hatzinikolaou, E., Papadopoulos, E., Tripsiannis, G., et al. (2004). Serum profiles of matrix metalloproteinases and their tissue inhibitor in patients with acute coronary syndromes. International Journal of Cardiology, 94, 269–277.CrossRefPubMed Tziakas, D., Chalikias, G., Parissis, J., Hatzinikolaou, E., Papadopoulos, E., Tripsiannis, G., et al. (2004). Serum profiles of matrix metalloproteinases and their tissue inhibitor in patients with acute coronary syndromes. International Journal of Cardiology, 94, 269–277.CrossRefPubMed
71.
go back to reference Vasilyev, N., Williams, T., Brennan, M. L., Unzek, S., Zhou, X., Heinecke, J., et al. (2005). Myeloperoxidase-generated oxidants modulate left ventricular remodeling but not infarct size after myocardial infarction. Circulation, 112, 2812–2820.CrossRefPubMed Vasilyev, N., Williams, T., Brennan, M. L., Unzek, S., Zhou, X., Heinecke, J., et al. (2005). Myeloperoxidase-generated oxidants modulate left ventricular remodeling but not infarct size after myocardial infarction. Circulation, 112, 2812–2820.CrossRefPubMed
72.
go back to reference Boor, P., & Ferrans, V. (1985). Ultrastructural alterations in allylamine cardiovascular toxicity. Late myocardial and vascular lesions. American Journal of Pathology, 121, 39–54.PubMedPubMedCentral Boor, P., & Ferrans, V. (1985). Ultrastructural alterations in allylamine cardiovascular toxicity. Late myocardial and vascular lesions. American Journal of Pathology, 121, 39–54.PubMedPubMedCentral
73.
go back to reference Hochman, D., Collaco, C., & Brooks, E. (2014). Acrolein induction of oxidative stress and degranulation in mast cells. Environmental Toxicology, 29, 908–915.CrossRefPubMed Hochman, D., Collaco, C., & Brooks, E. (2014). Acrolein induction of oxidative stress and degranulation in mast cells. Environmental Toxicology, 29, 908–915.CrossRefPubMed
74.
go back to reference Alano, C., Ying, W., & Swanson, R. (2004). Poly (ADP-ribose) polymerase-1-mediated cell death in astrocytes requires NAD+ depletion and mitochondrial permeability transition. Journal of Biological Chemistry, 279, 18895–18902.CrossRefPubMed Alano, C., Ying, W., & Swanson, R. (2004). Poly (ADP-ribose) polymerase-1-mediated cell death in astrocytes requires NAD+ depletion and mitochondrial permeability transition. Journal of Biological Chemistry, 279, 18895–18902.CrossRefPubMed
75.
go back to reference Kauppinen, T., Chan, W., Suh, S., Wiggins, A., Huang, E., & Swanson, R. A. (2006). Direct phosphorylation and regulation of poly (ADP-ribose) polymerase-1 by extracellular signal-regulated kinases 1/2. Proceedings of the National Academy of Sciences of the United States of America, 103, 7136–7141.CrossRefPubMedPubMedCentral Kauppinen, T., Chan, W., Suh, S., Wiggins, A., Huang, E., & Swanson, R. A. (2006). Direct phosphorylation and regulation of poly (ADP-ribose) polymerase-1 by extracellular signal-regulated kinases 1/2. Proceedings of the National Academy of Sciences of the United States of America, 103, 7136–7141.CrossRefPubMedPubMedCentral
76.
go back to reference Szabo, C., Zingarelli, B., O’Connor, M., & Salzman, A. (1996). DNA strand breakage, activation of poly (ADP-ribose) synthetase, and cellular energy depletion are involved in the cytotoxicity of macrophages and smooth muscle cells exposed to peroxynitrite. Proceedings of the National Academy of Sciences of the United States of America, 93, 1753–1758.CrossRefPubMedPubMedCentral Szabo, C., Zingarelli, B., O’Connor, M., & Salzman, A. (1996). DNA strand breakage, activation of poly (ADP-ribose) synthetase, and cellular energy depletion are involved in the cytotoxicity of macrophages and smooth muscle cells exposed to peroxynitrite. Proceedings of the National Academy of Sciences of the United States of America, 93, 1753–1758.CrossRefPubMedPubMedCentral
77.
go back to reference Ludwig, A., Behnke, B., Holtlund, J., & Hilz, H. (1988). Immunoquantitation and size determination of intrinsic poly (ADP-ribose) polymerase from acid precipitates. An analysis of the in vivo status in mammalian species and in lower eukaryotes. Journal of Biological Chemistry, 263, 6993–6999.PubMed Ludwig, A., Behnke, B., Holtlund, J., & Hilz, H. (1988). Immunoquantitation and size determination of intrinsic poly (ADP-ribose) polymerase from acid precipitates. An analysis of the in vivo status in mammalian species and in lower eukaryotes. Journal of Biological Chemistry, 263, 6993–6999.PubMed
78.
go back to reference Virag, L., & Szabo, C. (2002). The therapeutic potential of poly (ADP-ribose) polymerase inhibitors. Pharmacological Reviews, 54, 375–429.CrossRefPubMed Virag, L., & Szabo, C. (2002). The therapeutic potential of poly (ADP-ribose) polymerase inhibitors. Pharmacological Reviews, 54, 375–429.CrossRefPubMed
79.
go back to reference Zhang, S., Lin, Y., Kim, Y., Hande, M., Liu, Z., & Shen, H. (2007). c-Jun N-terminal kinase mediates hydrogen peroxide-induced cell death via sustained poly (ADP-ribose) polymerase-1 activation. Cell Death and Differentiation, 14, 1001–1010.CrossRefPubMed Zhang, S., Lin, Y., Kim, Y., Hande, M., Liu, Z., & Shen, H. (2007). c-Jun N-terminal kinase mediates hydrogen peroxide-induced cell death via sustained poly (ADP-ribose) polymerase-1 activation. Cell Death and Differentiation, 14, 1001–1010.CrossRefPubMed
80.
go back to reference Ha, H., & Snyder, S. (1999). Poly (ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proceedings of the National Academy of Sciences of the United States of America, 96, 13978–13982.CrossRefPubMedPubMedCentral Ha, H., & Snyder, S. (1999). Poly (ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proceedings of the National Academy of Sciences of the United States of America, 96, 13978–13982.CrossRefPubMedPubMedCentral
81.
go back to reference Yu, S., Andrabi, S., Wang, H., Kim, N., Poirier, G., Dawson, T., et al. (2006). Apoptosis-inducing factor mediates poly (ADP-ribose) (PAR) polymer-induced cell death. Proceedings of the National Academy of Sciences of the United States of America, 103, 18314–18319.CrossRefPubMedPubMedCentral Yu, S., Andrabi, S., Wang, H., Kim, N., Poirier, G., Dawson, T., et al. (2006). Apoptosis-inducing factor mediates poly (ADP-ribose) (PAR) polymer-induced cell death. Proceedings of the National Academy of Sciences of the United States of America, 103, 18314–18319.CrossRefPubMedPubMedCentral
82.
go back to reference McCluskey, J., Harbison, S., Johnson, G., & Harbison, R. (2012). PARP-1 inhibitor attenuates cocaine-induced hepatotoxicity. The Open Toxicology Journal, 5, 21–27.CrossRef McCluskey, J., Harbison, S., Johnson, G., & Harbison, R. (2012). PARP-1 inhibitor attenuates cocaine-induced hepatotoxicity. The Open Toxicology Journal, 5, 21–27.CrossRef
83.
go back to reference Hall, K. W., Muro-Cacho, C., Abritis, A., Johnson, G. T., & Harbison, R. D. (2010). Attenuation of bromobenzene-induced hepatotoxicity by poly (ADP-Ribose) polymerase inhibitors. Research Communications in Molecular Pathology and Pharmacology, 122–123, 79–96. Hall, K. W., Muro-Cacho, C., Abritis, A., Johnson, G. T., & Harbison, R. D. (2010). Attenuation of bromobenzene-induced hepatotoxicity by poly (ADP-Ribose) polymerase inhibitors. Research Communications in Molecular Pathology and Pharmacology, 122–123, 79–96.
84.
go back to reference Szabados, E., Literati-Nagy, P., Farkas, B., & Sumeti, B. (2000). BGP-15, a nicotinic amidoxime derivate protecting heart from ischemia reperfusion injury through modulation of poly (ADP-ribose) polymerase. Biochemical Pharmacology, 59, 937–945.CrossRefPubMed Szabados, E., Literati-Nagy, P., Farkas, B., & Sumeti, B. (2000). BGP-15, a nicotinic amidoxime derivate protecting heart from ischemia reperfusion injury through modulation of poly (ADP-ribose) polymerase. Biochemical Pharmacology, 59, 937–945.CrossRefPubMed
85.
go back to reference Faro, R., Toyoda, Y., McCully, J., Jagtap, P., Szabo, E., Virag, L., et al. (2002). Myocardial protection by PJ34, a novel potent poly (ADP-ribose) synthetase inhibitor. Annals of Thoracic Surgery, 73, 575–581.CrossRefPubMed Faro, R., Toyoda, Y., McCully, J., Jagtap, P., Szabo, E., Virag, L., et al. (2002). Myocardial protection by PJ34, a novel potent poly (ADP-ribose) synthetase inhibitor. Annals of Thoracic Surgery, 73, 575–581.CrossRefPubMed
86.
go back to reference Yang, Z., Zingarelli, B., & Szabo, C. (2000). Effect of genetic disruption of poly (ADP-ribose) synthetase on delayed production of inflammatory mediators and delayed necrosis during myocardial ischemia-reperfusion injury. Shock, 13, 60–66.CrossRefPubMed Yang, Z., Zingarelli, B., & Szabo, C. (2000). Effect of genetic disruption of poly (ADP-ribose) synthetase on delayed production of inflammatory mediators and delayed necrosis during myocardial ischemia-reperfusion injury. Shock, 13, 60–66.CrossRefPubMed
87.
go back to reference Pieper, A., Walles, T., Wei, G., Clements, E., Verma, A., Snyder, S., et al. (2000). Myocardial postischemic injury is reduced by polyADPripose polymerase-1 gene disruption. Molecular Medicine, 6, 271–282.PubMedPubMedCentral Pieper, A., Walles, T., Wei, G., Clements, E., Verma, A., Snyder, S., et al. (2000). Myocardial postischemic injury is reduced by polyADPripose polymerase-1 gene disruption. Molecular Medicine, 6, 271–282.PubMedPubMedCentral
88.
go back to reference Pacher, P., Liaudet, L., Bai, P., Virag, L., Mabley, J., Hasko, G., et al. (2002). Activation of poly (ADP-ribose) polymerase contributes to the development of doxorubicin-induced heart failure. Journal of Pharmacology and Experimental Therapeutics, 300, 862–867.CrossRefPubMed Pacher, P., Liaudet, L., Bai, P., Virag, L., Mabley, J., Hasko, G., et al. (2002). Activation of poly (ADP-ribose) polymerase contributes to the development of doxorubicin-induced heart failure. Journal of Pharmacology and Experimental Therapeutics, 300, 862–867.CrossRefPubMed
Metadata
Title
Acrolein Can Cause Cardiovascular Disease: A Review
Authors
Robert J. Henning
Giffe T. Johnson
Jayme P. Coyle
Raymond D. Harbison
Publication date
01-07-2017
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 3/2017
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-016-9396-5

Other articles of this Issue 3/2017

Cardiovascular Toxicology 3/2017 Go to the issue