Skip to main content
Top
Published in: Cardiovascular Toxicology 3/2017

01-07-2017

Contrary microRNA Expression Pattern Between Fetal and Adult Cardiac Remodeling: Therapeutic Value for Heart Failure

Authors: Hualin Yan, Yifei Li, Chuan Wang, Yi Zhang, Cong Liu, Kaiyu Zhou, Yimin Hua

Published in: Cardiovascular Toxicology | Issue 3/2017

Login to get access

Abstract

microRNAs (miRNAs) belong to a class of non-coding RNAs that regulate post-transcriptional gene expression during development and disease. Growing evidence indicates abundant miRNA expression changes and their important role in cardiac hypertrophy and failure. However, the role of miRNAs in fetal cardiac remodeling is little known. Here, we investigated the altered expression of fifteen miRNAs in rat fetal cardiac remodeling compared with adult cardiac remodeling. Among fifteen tested miRNAs, eleven and five miRNAs (miR-199a-5p, miR-214-3p, miR-155-3p, miR-155-5p and miR-499-5p) are significantly differentially expressed in fetal and adult cardiac remodeling, respectively. After comparison of miRNA expression in fetal and adult cardiac remodeling, we find that miRNA expression returns to the fetal level in adult cardiac failure and is activated in advance of the adult level in fetal failure. The current study highlights the contrary expression pattern between fetal and adult cardiac remodeling and that supports a novel potential therapeutic approach to treating heart failure.
Literature
1.
go back to reference Gjesdal, O., Bluemke, D. A., & Lima, J. A. (2011). Cardiac remodeling at the population level—Risk factors, screening, and outcomes. Nature Reviews Cardiology, 8(12), 673–685.CrossRefPubMed Gjesdal, O., Bluemke, D. A., & Lima, J. A. (2011). Cardiac remodeling at the population level—Risk factors, screening, and outcomes. Nature Reviews Cardiology, 8(12), 673–685.CrossRefPubMed
2.
go back to reference Hill, J. A., & Olson, E. N. (2008). Cardiac plasticity. New England Journal of Medicine, 358(13), 1370–1380.CrossRefPubMed Hill, J. A., & Olson, E. N. (2008). Cardiac plasticity. New England Journal of Medicine, 358(13), 1370–1380.CrossRefPubMed
3.
go back to reference Balasubramanian, S., et al. (2015). Dasatinib attenuates pressure overload induced cardiac fibrosis in a murine transverse aortic constriction model. PLoS One, 10(10), e0140273.CrossRefPubMedPubMedCentral Balasubramanian, S., et al. (2015). Dasatinib attenuates pressure overload induced cardiac fibrosis in a murine transverse aortic constriction model. PLoS One, 10(10), e0140273.CrossRefPubMedPubMedCentral
4.
go back to reference Greco, C. M., & Condorelli, G. (2015). Epigenetic modifications and noncoding RNAs in cardiac hypertrophy and failure. Nature Reviews Cardiology, 12(8), 488–497.CrossRefPubMed Greco, C. M., & Condorelli, G. (2015). Epigenetic modifications and noncoding RNAs in cardiac hypertrophy and failure. Nature Reviews Cardiology, 12(8), 488–497.CrossRefPubMed
5.
go back to reference Thum, T., & Condorelli, G. (2015). Long noncoding RNAs and microRNAs in cardiovascular pathophysiology. Circulation Research, 116(4), 751–762.CrossRefPubMed Thum, T., & Condorelli, G. (2015). Long noncoding RNAs and microRNAs in cardiovascular pathophysiology. Circulation Research, 116(4), 751–762.CrossRefPubMed
6.
go back to reference van Rooij, E., et al. (2007). Control of stress-dependent cardiac growth and gene expression by a microRNA. Science, 316(5824), 575–579.CrossRefPubMed van Rooij, E., et al. (2007). Control of stress-dependent cardiac growth and gene expression by a microRNA. Science, 316(5824), 575–579.CrossRefPubMed
7.
go back to reference Thakur, V., et al. (2013). Diagnosis and management of fetal heart failure. Canadian Journal of Cardiology, 29(7), 759–767.CrossRefPubMed Thakur, V., et al. (2013). Diagnosis and management of fetal heart failure. Canadian Journal of Cardiology, 29(7), 759–767.CrossRefPubMed
8.
go back to reference Huhta, J. C. (2015). Diagnosis and treatment of foetal heart failure: Foetal echocardiography and foetal hydrops. Cardiology in the Young, 25(Suppl 2), 100–106.CrossRefPubMed Huhta, J. C. (2015). Diagnosis and treatment of foetal heart failure: Foetal echocardiography and foetal hydrops. Cardiology in the Young, 25(Suppl 2), 100–106.CrossRefPubMed
9.
go back to reference Huhta, J. C., & Paul, J. J. (2010). Doppler in fetal heart failure. Clinical Obstetrics and Gynecology, 53(4), 915–929.CrossRefPubMed Huhta, J. C., & Paul, J. J. (2010). Doppler in fetal heart failure. Clinical Obstetrics and Gynecology, 53(4), 915–929.CrossRefPubMed
10.
go back to reference Zhou, K., et al. (2013). Evaluation of therapeutic effect and cytokine change during transplacental Digoxin treatment for fetal heart failure associated with fetal tachycardia, a case-control study. International Journal of Cardiology, 169(4), e62–e64.CrossRefPubMed Zhou, K., et al. (2013). Evaluation of therapeutic effect and cytokine change during transplacental Digoxin treatment for fetal heart failure associated with fetal tachycardia, a case-control study. International Journal of Cardiology, 169(4), e62–e64.CrossRefPubMed
11.
go back to reference Li, Y., et al. (2014). The study of fetal rat model of intra-amniotic isoproterenol injection induced heart dysfunction and phenotypic switch of contractile proteins. BioMed Research International, 2014, 360687.PubMedPubMedCentral Li, Y., et al. (2014). The study of fetal rat model of intra-amniotic isoproterenol injection induced heart dysfunction and phenotypic switch of contractile proteins. BioMed Research International, 2014, 360687.PubMedPubMedCentral
12.
go back to reference Fang, J., et al. (2015). Antithetical regulation of alpha-myosin heavy chain between fetal and adult heart failure though shuttling of HDAC5 regulating YY-1 function. Cardiovascular Toxicology, 15(2), 147–156.CrossRefPubMed Fang, J., et al. (2015). Antithetical regulation of alpha-myosin heavy chain between fetal and adult heart failure though shuttling of HDAC5 regulating YY-1 function. Cardiovascular Toxicology, 15(2), 147–156.CrossRefPubMed
13.
go back to reference Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 4(1), 44–57.CrossRef Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 4(1), 44–57.CrossRef
14.
go back to reference Thum, T., et al. (2007). microRNAs in the human heart: A clue to fetal gene reprogramming in heart failure [Erratum appears in Circulation. 2007 Jul 17;116(3):e135]. Circulation, 116(3), 258–267.CrossRefPubMed Thum, T., et al. (2007). microRNAs in the human heart: A clue to fetal gene reprogramming in heart failure [Erratum appears in Circulation. 2007 Jul 17;116(3):e135]. Circulation, 116(3), 258–267.CrossRefPubMed
15.
go back to reference Li, Q., et al. (2010). NFATc4 is negatively regulated in miR-133a-mediated cardiomyocyte hypertrophic repression. American Journal of Physiology Heart and Circulatory Physiology, 298(5), H1340–H1347.CrossRefPubMedPubMedCentral Li, Q., et al. (2010). NFATc4 is negatively regulated in miR-133a-mediated cardiomyocyte hypertrophic repression. American Journal of Physiology Heart and Circulatory Physiology, 298(5), H1340–H1347.CrossRefPubMedPubMedCentral
16.
go back to reference Dong, D. L., et al. (2010). Reciprocal repression between microRNA-133 and calcineurin regulates cardiac hypertrophy: A novel mechanism for progressive cardiac hypertrophy. Hypertension, 55(4), 946–952.CrossRefPubMed Dong, D. L., et al. (2010). Reciprocal repression between microRNA-133 and calcineurin regulates cardiac hypertrophy: A novel mechanism for progressive cardiac hypertrophy. Hypertension, 55(4), 946–952.CrossRefPubMed
17.
go back to reference Care, A., et al. (2007). microRNA-133 controls cardiac hypertrophy. Nature Medicine, 13(5), 613–618.CrossRefPubMed Care, A., et al. (2007). microRNA-133 controls cardiac hypertrophy. Nature Medicine, 13(5), 613–618.CrossRefPubMed
18.
go back to reference Duisters, R. F., et al. (2009). MiR-133 and miR-30 regulate connective tissue growth factor: Implications for a role of microRNAs in myocardial matrix remodeling. Circ Res., 104(2), 170–178. 6p following 178.CrossRefPubMed Duisters, R. F., et al. (2009). MiR-133 and miR-30 regulate connective tissue growth factor: Implications for a role of microRNAs in myocardial matrix remodeling. Circ Res., 104(2), 170–178. 6p following 178.CrossRefPubMed
19.
go back to reference Castoldi, G., et al. (2012). MiR-133a regulates collagen 1A1: Potential role of miR-133a in myocardial fibrosis in angiotensin II-dependent hypertension. Journal of Cellular Physiology, 227(2), 850–856.CrossRefPubMed Castoldi, G., et al. (2012). MiR-133a regulates collagen 1A1: Potential role of miR-133a in myocardial fibrosis in angiotensin II-dependent hypertension. Journal of Cellular Physiology, 227(2), 850–856.CrossRefPubMed
20.
go back to reference Curtis, A. M., et al. (2015). Circadian control of innate immunity in macrophages by miR-155 targeting Bmal1. Proceedings of the National Academy of Sciences, 112(23), 7231–7236.CrossRef Curtis, A. M., et al. (2015). Circadian control of innate immunity in macrophages by miR-155 targeting Bmal1. Proceedings of the National Academy of Sciences, 112(23), 7231–7236.CrossRef
21.
go back to reference Bao, J. L., & Lin, L. (2014). MiR-155 and miR-148a reduce cardiac injury by inhibiting NF-kappaB pathway during acute viral myocarditis. European Review for Medical and Pharmacological Sciences, 18(16), 2349–2356.PubMed Bao, J. L., & Lin, L. (2014). MiR-155 and miR-148a reduce cardiac injury by inhibiting NF-kappaB pathway during acute viral myocarditis. European Review for Medical and Pharmacological Sciences, 18(16), 2349–2356.PubMed
22.
23.
go back to reference Escobar, T. M., et al. (2014). MiR-155 activates cytokine gene expression in Th17 cells by regulating the DNA-binding protein Jarid2 to relieve polycomb-mediated repression. Immunity, 40(6), 865–879.CrossRefPubMedPubMedCentral Escobar, T. M., et al. (2014). MiR-155 activates cytokine gene expression in Th17 cells by regulating the DNA-binding protein Jarid2 to relieve polycomb-mediated repression. Immunity, 40(6), 865–879.CrossRefPubMedPubMedCentral
24.
go back to reference Heymans, S., et al. (2013). Macrophage microRNA-155 promotes cardiac hypertrophy and failure. Circulation, 128(13), 1420–1432.CrossRefPubMed Heymans, S., et al. (2013). Macrophage microRNA-155 promotes cardiac hypertrophy and failure. Circulation, 128(13), 1420–1432.CrossRefPubMed
25.
go back to reference el Azzouzi, H., et al. (2013). The hypoxia-inducible microRNA cluster miR-199a approximately 214 targets myocardial PPARdelta and impairs mitochondrial fatty acid oxidation. Cell Metabolism, 18(3), 341–354.CrossRefPubMed el Azzouzi, H., et al. (2013). The hypoxia-inducible microRNA cluster miR-199a approximately 214 targets myocardial PPARdelta and impairs mitochondrial fatty acid oxidation. Cell Metabolism, 18(3), 341–354.CrossRefPubMed
26.
go back to reference Rane, S., et al. (2009). Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circulation Research, 104(7), 879–886.CrossRefPubMedPubMedCentral Rane, S., et al. (2009). Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circulation Research, 104(7), 879–886.CrossRefPubMedPubMedCentral
27.
go back to reference Song, X. W., et al. (2010). microRNAs are dynamically regulated in hypertrophic hearts, and miR-199a is essential for the maintenance of cell size in cardiomyocytes. Journal of Cellular Physiology, 225(2), 437–443.CrossRefPubMed Song, X. W., et al. (2010). microRNAs are dynamically regulated in hypertrophic hearts, and miR-199a is essential for the maintenance of cell size in cardiomyocytes. Journal of Cellular Physiology, 225(2), 437–443.CrossRefPubMed
28.
go back to reference Haghikia, A., et al. (2011). Signal transducer and activator of transcription 3-mediated regulation of miR-199a-5p links cardiomyocyte and endothelial cell function in the heart: A key role for ubiquitin-conjugating enzymes. European Heart Journal, 32(10), 1287–1297.CrossRefPubMed Haghikia, A., et al. (2011). Signal transducer and activator of transcription 3-mediated regulation of miR-199a-5p links cardiomyocyte and endothelial cell function in the heart: A key role for ubiquitin-conjugating enzymes. European Heart Journal, 32(10), 1287–1297.CrossRefPubMed
29.
go back to reference da Costa Martins, P. A., et al. (2010). microRNA-199b targets the nuclear kinase Dyrk1a in an auto-amplification loop promoting calcineurin/NFAT signalling. Nature Cell Biology, 12(12), 1220–1227.CrossRefPubMed da Costa Martins, P. A., et al. (2010). microRNA-199b targets the nuclear kinase Dyrk1a in an auto-amplification loop promoting calcineurin/NFAT signalling. Nature Cell Biology, 12(12), 1220–1227.CrossRefPubMed
30.
go back to reference Sun, M., et al. (2015). microRNA-214 mediates isoproterenol-induced proliferation and collagen synthesis in cardiac fibroblasts. Scientific Reports, 5, 18351.CrossRefPubMedPubMedCentral Sun, M., et al. (2015). microRNA-214 mediates isoproterenol-induced proliferation and collagen synthesis in cardiac fibroblasts. Scientific Reports, 5, 18351.CrossRefPubMedPubMedCentral
31.
go back to reference Duan, Q., et al. (2015). microRNA regulation of unfolded protein response transcription factor XBP1 in the progression of cardiac hypertrophy and heart failure in vivo. Journal of Translational Medicine, 13, 363.CrossRefPubMedPubMedCentral Duan, Q., et al. (2015). microRNA regulation of unfolded protein response transcription factor XBP1 in the progression of cardiac hypertrophy and heart failure in vivo. Journal of Translational Medicine, 13, 363.CrossRefPubMedPubMedCentral
32.
go back to reference Duan, Q., et al. (2015). microRNA-214 is upregulated in heart failure patients and suppresses XBP1-mediated endothelial cells angiogenesis. Journal of Cellular Physiology, 230(8), 1964–1973.CrossRefPubMedPubMedCentral Duan, Q., et al. (2015). microRNA-214 is upregulated in heart failure patients and suppresses XBP1-mediated endothelial cells angiogenesis. Journal of Cellular Physiology, 230(8), 1964–1973.CrossRefPubMedPubMedCentral
33.
go back to reference Yang, T., et al. (2013). microRNA-214 provokes cardiac hypertrophy via repression of EZH2. Biochemical and Biophysical Research Communications, 436(4), 578–584.CrossRefPubMed Yang, T., et al. (2013). microRNA-214 provokes cardiac hypertrophy via repression of EZH2. Biochemical and Biophysical Research Communications, 436(4), 578–584.CrossRefPubMed
34.
35.
go back to reference Wang, J., et al. (2014). MiR-499 protects cardiomyocytes from H2O 2-induced apoptosis via its effects on Pdcd4 and Pacs2. RNA Biology, 11(4), 339–350.CrossRefPubMedPubMedCentral Wang, J., et al. (2014). MiR-499 protects cardiomyocytes from H2O 2-induced apoptosis via its effects on Pdcd4 and Pacs2. RNA Biology, 11(4), 339–350.CrossRefPubMedPubMedCentral
36.
go back to reference Houser, S. R., et al. (2012). Animal models of heart failure: A scientific statement from the American Heart Association. Circulation Research, 111(1), 131–150.CrossRefPubMed Houser, S. R., et al. (2012). Animal models of heart failure: A scientific statement from the American Heart Association. Circulation Research, 111(1), 131–150.CrossRefPubMed
37.
go back to reference Teerlink, J. R., Pfeffer, J. M., & Pfeffer, M. A. (1994). Progressive ventricular remodeling in response to diffuse isoproterenol-induced myocardial necrosis in rats. Circulation Research, 75(1), 105–113.CrossRefPubMed Teerlink, J. R., Pfeffer, J. M., & Pfeffer, M. A. (1994). Progressive ventricular remodeling in response to diffuse isoproterenol-induced myocardial necrosis in rats. Circulation Research, 75(1), 105–113.CrossRefPubMed
38.
go back to reference Lefkowitz, R. J., Rockman, H. A., & Koch, W. J. (2000). Catecholamines, cardiac beta-adrenergic receptors, and heart failure. Circulation, 101(14), 1634–1637.CrossRefPubMed Lefkowitz, R. J., Rockman, H. A., & Koch, W. J. (2000). Catecholamines, cardiac beta-adrenergic receptors, and heart failure. Circulation, 101(14), 1634–1637.CrossRefPubMed
39.
go back to reference Hou, Y., et al. (2012). Beta-adrenoceptor regulates miRNA expression in rat heart. Medical Science Monitor, 18(8), BR309–BR314.PubMedPubMedCentral Hou, Y., et al. (2012). Beta-adrenoceptor regulates miRNA expression in rat heart. Medical Science Monitor, 18(8), BR309–BR314.PubMedPubMedCentral
40.
go back to reference Sang, H. Q., et al. (2015). microRNA-133a improves the cardiac function and fibrosis through inhibiting Akt in heart failure rats. Biomedicine and Pharmacotherapy, 71, 185–189.CrossRefPubMed Sang, H. Q., et al. (2015). microRNA-133a improves the cardiac function and fibrosis through inhibiting Akt in heart failure rats. Biomedicine and Pharmacotherapy, 71, 185–189.CrossRefPubMed
41.
go back to reference van Rooij, E., et al. (2006). A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proceedings of the National Academy of Sciences, 103(48), 18255–18260.CrossRef van Rooij, E., et al. (2006). A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proceedings of the National Academy of Sciences, 103(48), 18255–18260.CrossRef
43.
go back to reference Rajabi, M., et al. (2007). Return to the fetal gene program protects the stressed heart: a strong hypothesis. Heart Failure Reviews, 12(3–4), 331–343.CrossRefPubMed Rajabi, M., et al. (2007). Return to the fetal gene program protects the stressed heart: a strong hypothesis. Heart Failure Reviews, 12(3–4), 331–343.CrossRefPubMed
44.
go back to reference Razeghi, P., et al. (2001). Metabolic gene expression in fetal and failing human heart. Circulation, 104(24), 2923–2931.CrossRefPubMed Razeghi, P., et al. (2001). Metabolic gene expression in fetal and failing human heart. Circulation, 104(24), 2923–2931.CrossRefPubMed
45.
go back to reference Kinugawa, K., et al. (2001). Signaling pathways responsible for fetal gene induction in the failing human heart: Evidence for altered thyroid hormone receptor gene expression. Circulation, 103(8), 1089–1094.CrossRefPubMed Kinugawa, K., et al. (2001). Signaling pathways responsible for fetal gene induction in the failing human heart: Evidence for altered thyroid hormone receptor gene expression. Circulation, 103(8), 1089–1094.CrossRefPubMed
46.
go back to reference Taegtmeyer, H., Sen, S., & Vela, D. (2010). Return to the fetal gene program: A suggested metabolic link to gene expression in the heart. Annals of the New York Academy of Sciences, 1188, 191–198.CrossRefPubMedPubMedCentral Taegtmeyer, H., Sen, S., & Vela, D. (2010). Return to the fetal gene program: A suggested metabolic link to gene expression in the heart. Annals of the New York Academy of Sciences, 1188, 191–198.CrossRefPubMedPubMedCentral
47.
go back to reference van Bilsen, M., et al. (2004). Metabolic remodelling of the failing heart: The cardiac burn-out syndrome? Cardiovascular Research, 61(2), 218–226.CrossRefPubMed van Bilsen, M., et al. (2004). Metabolic remodelling of the failing heart: The cardiac burn-out syndrome? Cardiovascular Research, 61(2), 218–226.CrossRefPubMed
48.
go back to reference Cheng, L., et al. (2004). Cardiomyocyte-restricted peroxisome proliferator-activated receptor-delta deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nature Medicine, 10(11), 1245–1250.CrossRefPubMed Cheng, L., et al. (2004). Cardiomyocyte-restricted peroxisome proliferator-activated receptor-delta deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nature Medicine, 10(11), 1245–1250.CrossRefPubMed
49.
go back to reference Lee, L., et al. (2005). Metabolic modulation with perhexiline in chronic heart failure: A randomized, controlled trial of short-term use of a novel treatment. Circulation, 112(21), 3280–3288.CrossRefPubMed Lee, L., et al. (2005). Metabolic modulation with perhexiline in chronic heart failure: A randomized, controlled trial of short-term use of a novel treatment. Circulation, 112(21), 3280–3288.CrossRefPubMed
50.
go back to reference Kolwicz, S. C, Jr., et al. (2012). Cardiac-specific deletion of acetyl CoA carboxylase 2 prevents metabolic remodeling during pressure-overload hypertrophy. Circulation Research, 111(6), 728–738.CrossRefPubMedPubMedCentral Kolwicz, S. C, Jr., et al. (2012). Cardiac-specific deletion of acetyl CoA carboxylase 2 prevents metabolic remodeling during pressure-overload hypertrophy. Circulation Research, 111(6), 728–738.CrossRefPubMedPubMedCentral
Metadata
Title
Contrary microRNA Expression Pattern Between Fetal and Adult Cardiac Remodeling: Therapeutic Value for Heart Failure
Authors
Hualin Yan
Yifei Li
Chuan Wang
Yi Zhang
Cong Liu
Kaiyu Zhou
Yimin Hua
Publication date
01-07-2017
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 3/2017
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-016-9381-z

Other articles of this Issue 3/2017

Cardiovascular Toxicology 3/2017 Go to the issue