Skip to main content
Top
Published in: Cardiovascular Toxicology 2/2007

01-06-2007

Dexrazoxane: how it works in cardiac and tumor cells. Is it a prodrug or is it a drug?

Authors: Brian B. Hasinoff, Eugene H. Herman

Published in: Cardiovascular Toxicology | Issue 2/2007

Login to get access

Abstract

Dexrazoxane is highly effective in reducing anthracycline-induced cardiotoxicity and extravasation injury and is used clinically for these indications. Dexrazoxane has two biological activities: it is a prodrug that is hydrolyzed to an iron chelating EDTA-type structure and it is also a strong inhibitor of topoisomerase II. Doxorubicin is able to be reductively activated to produce damaging reactive oxygen species. Iron-dependent cellular damage is thought to be responsible for its cardiotoxicity. The available experimental evidence supports the conclusion that dexrazoxane reduces doxorubicin cardiotoxicity by binding free iron and preventing site-specific oxidative stress on cardiac tissue. However, it cannot be ruled out that dexrazoxane may also be protective through its ability to inhibit topoisomerase II.
Literature
1.
go back to reference Swain, S. M., & Vici, P. (2004). The current and future role of dexrazoxane as a cardioprotectant in anthracycline treatment: Expert panel review. Journal of Cancer Research and Clinical Oncology, 130, 1–7.PubMedCrossRef Swain, S. M., & Vici, P. (2004). The current and future role of dexrazoxane as a cardioprotectant in anthracycline treatment: Expert panel review. Journal of Cancer Research and Clinical Oncology, 130, 1–7.PubMedCrossRef
2.
go back to reference Minotti, G., Recalcati, S., Menna, P., Salvatorelli, E., Corna, G., & Cairo, G. (2004). Doxorubicin cardiotoxicity and the control of iron metabolism: Quinone-dependent and independent mechanisms. Methods in Enzymology, 378, 340–361.PubMed Minotti, G., Recalcati, S., Menna, P., Salvatorelli, E., Corna, G., & Cairo, G. (2004). Doxorubicin cardiotoxicity and the control of iron metabolism: Quinone-dependent and independent mechanisms. Methods in Enzymology, 378, 340–361.PubMed
3.
go back to reference Herman, E. H., & Ferrans, V. J. (1990). Examination of the potential long-lasting protective effect of ICRF-187 against anthracycline-induced chronic cardiomyopathy. Cancer Treatment Reviews, 17, 155–160.PubMedCrossRef Herman, E. H., & Ferrans, V. J. (1990). Examination of the potential long-lasting protective effect of ICRF-187 against anthracycline-induced chronic cardiomyopathy. Cancer Treatment Reviews, 17, 155–160.PubMedCrossRef
4.
go back to reference Hasinoff, B. B., Hellmann, K., Herman, E. H., & Ferrans, V. J. (1998). Chemical, biological and clinical aspects of dexrazoxane and other bisdioxopiperazines. Current Medicinal Chemistry, 5, 1–28.PubMed Hasinoff, B. B., Hellmann, K., Herman, E. H., & Ferrans, V. J. (1998). Chemical, biological and clinical aspects of dexrazoxane and other bisdioxopiperazines. Current Medicinal Chemistry, 5, 1–28.PubMed
5.
go back to reference Diop, N. K., Vitellaro, L. K., Arnold, P., Shang, M., & Marusak, R. A. (2000). Iron complexes of the cardioprotective agent dexrazoxane (ICRF-187) and its desmethyl derivative, ICRF-154: Solid state structure, solution thermodynamics, and DNA cleavage activity. Journal of Inorganic Biochemistry, 78, 209–216.PubMedCrossRef Diop, N. K., Vitellaro, L. K., Arnold, P., Shang, M., & Marusak, R. A. (2000). Iron complexes of the cardioprotective agent dexrazoxane (ICRF-187) and its desmethyl derivative, ICRF-154: Solid state structure, solution thermodynamics, and DNA cleavage activity. Journal of Inorganic Biochemistry, 78, 209–216.PubMedCrossRef
6.
go back to reference Hasinoff, B. B., Schroeder, P. E., & Patel, D. (2003). The metabolites of the cardioprotective drug dexrazoxane do not protect myocytes from doxorubicin-induced cytotoxicity. Molecular Pharmacology, 64, 670–678.PubMedCrossRef Hasinoff, B. B., Schroeder, P. E., & Patel, D. (2003). The metabolites of the cardioprotective drug dexrazoxane do not protect myocytes from doxorubicin-induced cytotoxicity. Molecular Pharmacology, 64, 670–678.PubMedCrossRef
7.
go back to reference Hasinoff, B. B. (2002). Dexrazoxane (ICRF-187) protects cardiac myocytes against hypoxia-reoxygenation damage. Cardiovascular Toxiciology, 2, 111–118.CrossRef Hasinoff, B. B. (2002). Dexrazoxane (ICRF-187) protects cardiac myocytes against hypoxia-reoxygenation damage. Cardiovascular Toxiciology, 2, 111–118.CrossRef
8.
go back to reference Fortune, J. M., & Osheroff, N. (2000). Topoisomerase II as a target for anticancer drugs: When enzymes stop being nice. Progress in Nucleic Acid Research Molecular Biology, 64, 221–253.CrossRef Fortune, J. M., & Osheroff, N. (2000). Topoisomerase II as a target for anticancer drugs: When enzymes stop being nice. Progress in Nucleic Acid Research Molecular Biology, 64, 221–253.CrossRef
9.
go back to reference Swift, L. M., & Sarvazyan, N. (2000). Localization of dichlorofluorescin in cardiac myocytes: Implications for assessment of oxidative stress. American Journal of Physiology and Heart and Circulatory Physiology, 278, H982–H990. Swift, L. M., & Sarvazyan, N. (2000). Localization of dichlorofluorescin in cardiac myocytes: Implications for assessment of oxidative stress. American Journal of Physiology and Heart and Circulatory Physiology, 278, H982–H990.
10.
go back to reference Hasinoff, B. B., Schnabl, K. L., Marusak, R. A., Patel, D., & Huebner, E. (2003). Dexrazoxane (ICRF-187) protects cardiac myocytes against doxorubicin by preventing damage to mitochondria. Cardiovascular Toxiciology, 3, 89–99.CrossRef Hasinoff, B. B., Schnabl, K. L., Marusak, R. A., Patel, D., & Huebner, E. (2003). Dexrazoxane (ICRF-187) protects cardiac myocytes against doxorubicin by preventing damage to mitochondria. Cardiovascular Toxiciology, 3, 89–99.CrossRef
11.
go back to reference Sarvazyan, N. (1996). Visualization of doxorubicin-induced oxidative stress in isolated cardiac myocytes. American Journal of Physiology, 271, H2079–H2085.PubMed Sarvazyan, N. (1996). Visualization of doxorubicin-induced oxidative stress in isolated cardiac myocytes. American Journal of Physiology, 271, H2079–H2085.PubMed
12.
go back to reference Malisza, K. L., & Hasinoff, B. B. (1996). Hydroxyl radical production by the iron complex of the hydrolysis product of the antioxidant cardioprotective agent ICRF-187 (dexrazoxane). Redox Report, 2, 69–73. Malisza, K. L., & Hasinoff, B. B. (1996). Hydroxyl radical production by the iron complex of the hydrolysis product of the antioxidant cardioprotective agent ICRF-187 (dexrazoxane). Redox Report, 2, 69–73.
13.
go back to reference Schroeder, P. E., Jensen, P. B., Sehested, M., Hofland, K. F., Langer, S. W., & Hasinoff, B. B. (2003). Metabolism of dexrazoxane (ICRF-187) used as a rescue agent in cancer patients treated with high-dose etoposide. Cancer Chemotherapy and Pharmacology, 52, 167–174.PubMedCrossRef Schroeder, P. E., Jensen, P. B., Sehested, M., Hofland, K. F., Langer, S. W., & Hasinoff, B. B. (2003). Metabolism of dexrazoxane (ICRF-187) used as a rescue agent in cancer patients treated with high-dose etoposide. Cancer Chemotherapy and Pharmacology, 52, 167–174.PubMedCrossRef
14.
go back to reference Schroeder, P. E., & Hasinoff, B. B. (2005). Metabolism of the one-ring open metabolites of the cardioprotective drug dexrazoxane to its active metal chelating form in the rat. Drug Metabolism and Disposition, 33, 1367–1372.PubMedCrossRef Schroeder, P. E., & Hasinoff, B. B. (2005). Metabolism of the one-ring open metabolites of the cardioprotective drug dexrazoxane to its active metal chelating form in the rat. Drug Metabolism and Disposition, 33, 1367–1372.PubMedCrossRef
15.
go back to reference Hasinoff, B. B., Kuschak, T. I., Yalowich, J. C., & Creighton, A. M. (1995). A QSAR study comparing the cytotoxicity and DNA topoisomerase II inhibitory effects of bisdioxopiperazine analogs of ICRF-187 (dexrazoxane). Biochemical Pharmacology, 50, 953–958.PubMedCrossRef Hasinoff, B. B., Kuschak, T. I., Yalowich, J. C., & Creighton, A. M. (1995). A QSAR study comparing the cytotoxicity and DNA topoisomerase II inhibitory effects of bisdioxopiperazine analogs of ICRF-187 (dexrazoxane). Biochemical Pharmacology, 50, 953–958.PubMedCrossRef
16.
go back to reference Classen, S., Olland, S., & Berger, J. M. (2003). Structure of the topoisomerase II ATPase region and its mechanism of inhibition by the chemotherapeutic agent ICRF-187. Proceedings of the National Academy Sciences of the United States of America, 100, 14510.CrossRef Classen, S., Olland, S., & Berger, J. M. (2003). Structure of the topoisomerase II ATPase region and its mechanism of inhibition by the chemotherapeutic agent ICRF-187. Proceedings of the National Academy Sciences of the United States of America, 100, 14510.CrossRef
17.
go back to reference Hasinoff, B. B., Abram, M. E., Chee, G.-L., Huebner, E., Byard, E. H., Barnabé, N., Ferrans, V. J., Yu, Z.-X., & Yalowich, J. C. (2000). The catalytic DNA topoisomerase II inhibitor dexrazoxane (ICRF-187) induces endopolyploidy in Chinese hamster ovary cells. The Journal of Pharmacology and Experimental Therapeutics, 295, 474–483.PubMed Hasinoff, B. B., Abram, M. E., Chee, G.-L., Huebner, E., Byard, E. H., Barnabé, N., Ferrans, V. J., Yu, Z.-X., & Yalowich, J. C. (2000). The catalytic DNA topoisomerase II inhibitor dexrazoxane (ICRF-187) induces endopolyploidy in Chinese hamster ovary cells. The Journal of Pharmacology and Experimental Therapeutics, 295, 474–483.PubMed
18.
go back to reference Hasinoff, B. B., Abram, M. E., Barnabé, N., Khelifa, T., Allan, W. P., & Yalowich, J. C. (2001). The catalytic DNA topoisomerase II inhibitor dexrazoxane (ICRF-187) induces differentiation and apoptosis in human leukemia K562 cells. Molecular Pharmacology, 59, 453–461.PubMed Hasinoff, B. B., Abram, M. E., Barnabé, N., Khelifa, T., Allan, W. P., & Yalowich, J. C. (2001). The catalytic DNA topoisomerase II inhibitor dexrazoxane (ICRF-187) induces differentiation and apoptosis in human leukemia K562 cells. Molecular Pharmacology, 59, 453–461.PubMed
19.
go back to reference Hasinoff, B. B., Yalowich, J. C., Ling, Y., & Buss, J. L. (1996). The effect of dexrazoxane (ICRF-87) on doxorubicin- and daunorubicin-mediated growth inhibition of Chinese hamster ovary cells. Anticancer Drugs, 7, 558–567.PubMedCrossRef Hasinoff, B. B., Yalowich, J. C., Ling, Y., & Buss, J. L. (1996). The effect of dexrazoxane (ICRF-87) on doxorubicin- and daunorubicin-mediated growth inhibition of Chinese hamster ovary cells. Anticancer Drugs, 7, 558–567.PubMedCrossRef
20.
go back to reference Sehested, M., Jensen, P. B., Sorensen, B. S., Holm, B., Friche, E., & Demant, E. J. F. (1993). Antagonistic effect of the cardioprotector (+)-1,2-bis(3,5-dioxopiperazinyl-1-yl)propane (ICRF-187) on DNA breaks and cytotoxicity induced by the topoisomerase II directed drugs daunorubicin and etoposide (VP-16). Biochemical Pharmacology, 46, 389–393.PubMedCrossRef Sehested, M., Jensen, P. B., Sorensen, B. S., Holm, B., Friche, E., & Demant, E. J. F. (1993). Antagonistic effect of the cardioprotector (+)-1,2-bis(3,5-dioxopiperazinyl-1-yl)propane (ICRF-187) on DNA breaks and cytotoxicity induced by the topoisomerase II directed drugs daunorubicin and etoposide (VP-16). Biochemical Pharmacology, 46, 389–393.PubMedCrossRef
21.
go back to reference Hasinoff, B. B., Kuschak, T. I., Creighton, A. M., Fattman, C. L., Allan, W. P., Thampatty, P., & Yalowich, J. C. (1997). Characterization of a Chinese hamster ovary cell line with acquired resistance to the bisdioxopiperazine dexrazoxane (ICRF-187) catalytic inhibitor of topoisomerase II. Biochemical Pharmacology, 53, 1843–1853.PubMedCrossRef Hasinoff, B. B., Kuschak, T. I., Creighton, A. M., Fattman, C. L., Allan, W. P., Thampatty, P., & Yalowich, J. C. (1997). Characterization of a Chinese hamster ovary cell line with acquired resistance to the bisdioxopiperazine dexrazoxane (ICRF-187) catalytic inhibitor of topoisomerase II. Biochemical Pharmacology, 53, 1843–1853.PubMedCrossRef
22.
go back to reference Pouillart, P. (2004). Evaluating the role of dexrazoxane as a cardioprotectant in cancer patients receiving anthracyclines. Cancer Treatment Reviews, 30, 643–650.PubMedCrossRef Pouillart, P. (2004). Evaluating the role of dexrazoxane as a cardioprotectant in cancer patients receiving anthracyclines. Cancer Treatment Reviews, 30, 643–650.PubMedCrossRef
23.
go back to reference Swain, S. M., Whaley, F. S., Gerber, M. C., Weisberg, S., York, M., Spicer, D., Jones, S. E., Wadler, S., Desai, A., Vogel, C., Speyer, J., Mittelman, A., Reddy, S., Pendergrass, K., Velez-Garcia, E., Ewer, M. S., Bianchine, J. R., & Gams, R. A. (1997). Cardioprotection with dexrazoxane for doxorubicin-containing therapy in advanced breast cancer. Journal of Clinical Oncology, 15, 1318–1332.PubMed Swain, S. M., Whaley, F. S., Gerber, M. C., Weisberg, S., York, M., Spicer, D., Jones, S. E., Wadler, S., Desai, A., Vogel, C., Speyer, J., Mittelman, A., Reddy, S., Pendergrass, K., Velez-Garcia, E., Ewer, M. S., Bianchine, J. R., & Gams, R. A. (1997). Cardioprotection with dexrazoxane for doxorubicin-containing therapy in advanced breast cancer. Journal of Clinical Oncology, 15, 1318–1332.PubMed
Metadata
Title
Dexrazoxane: how it works in cardiac and tumor cells. Is it a prodrug or is it a drug?
Authors
Brian B. Hasinoff
Eugene H. Herman
Publication date
01-06-2007
Publisher
Humana Press Inc
Published in
Cardiovascular Toxicology / Issue 2/2007
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-007-0023-3

Other articles of this Issue 2/2007

Cardiovascular Toxicology 2/2007 Go to the issue