Skip to main content
Top
Published in: Cardiovascular Toxicology 3/2016

01-07-2016

Salusin β Within the Nucleus Tractus Solitarii Suppresses Blood Pressure Via Inhibiting the Activities of Presympathetic Neurons in the Rostral Ventrolateral Medulla in Spontaneously Hypertensive Rats

Authors: Hong-Bao Li, Yan Lu, Jin-Jun Liu, Yu-Wang Miao, Tian-Zhen Zheng, Qing Su, Jie Qi, Hong Tan, Zu-Yi Yuan, Guo-Qing Zhu, Yu-Ming Kang

Published in: Cardiovascular Toxicology | Issue 3/2016

Login to get access

Abstract

Salusin β is a newly identified bioactive peptide, which shows peripheral hypotensive, mitogenic and proatherosclerotic effects. The present study was undertaken to investigate the role of salusin β within the nucleus tractus solitarii (NTS) and the underlying mechanism in regulating blood pressure and heart rate (HR) in spontaneously hypertensive rats (SHR). Our results showed that bilateral or unilateral microinjection of salusin β (0.4–40 pmol) into the NTS in SHR decreased mean arterial pressure and HR in a dose-dependent manner. Bilateral microinjection of salusin β (4 pmol) within NTS improved baroreflex sensitivity functions in SHR. Pretreatment with glutamate receptors antagonist kynurenic acid (5 nmol) into the NTS in SHR did not alter the salusin β (4 pmol) induced hypotension and bradycardia. Likewise, bilateral vagotomy also did not alter the salusin β (4 pmol) induced hypotension and bradycardia. However, pretreatment with GABAA receptors agonist muscimol (100 pmol) within the rostral ventrolateral medulla (RVLM) in SHR almost completely abolished the hypotension and bradycardia evoked by intra-NTS salusin β (4 pmol). Our findings suggested that microinjection of salusin β into the NTS produced hypotension and bradycardia, as well as improved baroreflex sensitivity functions, via inhibiting the activities of presympathetic neurons in the RVLM in SHR.
Literature
1.
go back to reference Shichiri, M., Ishimaru, S., Ota, T., Nishikawa, T., Isogai, T., & Hirata, Y. (2003). Salusins: newly identified bioactive peptides with hemodynamic and mitogenic activities. Nature Medicine, 9, 1166–1172.CrossRefPubMed Shichiri, M., Ishimaru, S., Ota, T., Nishikawa, T., Isogai, T., & Hirata, Y. (2003). Salusins: newly identified bioactive peptides with hemodynamic and mitogenic activities. Nature Medicine, 9, 1166–1172.CrossRefPubMed
2.
go back to reference Nakayama, C., Shichiri, M., Sato, K., & Hirata, Y. (2009). Expression of prosalusin in human neuroblastoma cells. Peptides, 30, 1362–1367.CrossRefPubMed Nakayama, C., Shichiri, M., Sato, K., & Hirata, Y. (2009). Expression of prosalusin in human neuroblastoma cells. Peptides, 30, 1362–1367.CrossRefPubMed
3.
go back to reference Suzuki, N., Shichiri, M., Akashi, T., Sato, K., Sakurada, M., Hirono, Y., et al. (2007). Systemic distribution of salusin expression in the rat. Hypertension Research, 30, 1255–1262.CrossRefPubMed Suzuki, N., Shichiri, M., Akashi, T., Sato, K., Sakurada, M., Hirono, Y., et al. (2007). Systemic distribution of salusin expression in the rat. Hypertension Research, 30, 1255–1262.CrossRefPubMed
4.
go back to reference Takenoya, F., Hori, T., Kageyama, H., Funahashi, H., Takeuchi, M., Kitamura, Y., et al. (2005). Coexistence of salusin and vasopressin in the rat hypothalamo–hypophyseal system. Neuroscience Letters, 385, 110–113.CrossRefPubMed Takenoya, F., Hori, T., Kageyama, H., Funahashi, H., Takeuchi, M., Kitamura, Y., et al. (2005). Coexistence of salusin and vasopressin in the rat hypothalamo–hypophyseal system. Neuroscience Letters, 385, 110–113.CrossRefPubMed
5.
go back to reference Watanabe, T., Nishio, K., Kanome, T., Matsuyama, T. A., Koba, S., Sakai, T., et al. (2008). Impact of salusin-alpha and -beta on human macrophage foam cell formation and coronary atherosclerosis. Circulation, 117, 638–648.CrossRefPubMed Watanabe, T., Nishio, K., Kanome, T., Matsuyama, T. A., Koba, S., Sakai, T., et al. (2008). Impact of salusin-alpha and -beta on human macrophage foam cell formation and coronary atherosclerosis. Circulation, 117, 638–648.CrossRefPubMed
6.
go back to reference Watanabe, T., Suguro, T., Sato, K., Koyama, T., Nagashima, M., Kodate, S., et al. (2008). Serum salusin-alpha levels are decreased and correlated negatively with carotid atherosclerosis in essential hypertensive patients. Hypertension Research, 31, 463–468.CrossRefPubMed Watanabe, T., Suguro, T., Sato, K., Koyama, T., Nagashima, M., Kodate, S., et al. (2008). Serum salusin-alpha levels are decreased and correlated negatively with carotid atherosclerosis in essential hypertensive patients. Hypertension Research, 31, 463–468.CrossRefPubMed
7.
go back to reference Izumiyama, H., Tanaka, H., Egi, K., Sunamori, M., Hirata, Y., & Shichiri, M. (2005). Synthetic salusins as cardiac depressors in rat. Hypertension, 45, 419–425.CrossRefPubMed Izumiyama, H., Tanaka, H., Egi, K., Sunamori, M., Hirata, Y., & Shichiri, M. (2005). Synthetic salusins as cardiac depressors in rat. Hypertension, 45, 419–425.CrossRefPubMed
8.
go back to reference Xiao-Hong, Y., Li, L., Yan-Xia, P., Hong, L., Wei-Fang, R., Yan, L., et al. (2006). Salusins protect neonatal rat cardiomyocytes from serum deprivation-induced cell death through upregulation of GRP78. Journal of Cardiovascular Pharmacology, 48, 41–46.CrossRefPubMed Xiao-Hong, Y., Li, L., Yan-Xia, P., Hong, L., Wei-Fang, R., Yan, L., et al. (2006). Salusins protect neonatal rat cardiomyocytes from serum deprivation-induced cell death through upregulation of GRP78. Journal of Cardiovascular Pharmacology, 48, 41–46.CrossRefPubMed
9.
go back to reference Sato, K., Watanabe, R., Itoh, F., Shichiri, M., & Watanabe, T. (2013). Salusins: potential use as a biomarker for atherosclerotic cardiovascular diseases. International Journal of Hypertension, 2013, 965140.CrossRefPubMedPubMedCentral Sato, K., Watanabe, R., Itoh, F., Shichiri, M., & Watanabe, T. (2013). Salusins: potential use as a biomarker for atherosclerotic cardiovascular diseases. International Journal of Hypertension, 2013, 965140.CrossRefPubMedPubMedCentral
10.
go back to reference Chen, W. W., Sun, H. J., Zhang, F., Zhou, Y. B., Xiong, X. Q., Wang, J. J., et al. (2013). Salusin-beta in paraventricular nucleus increases blood pressure and sympathetic outflow via vasopressin in hypertensive rats. Cardiovascular Research, 98, 344–351.CrossRefPubMed Chen, W. W., Sun, H. J., Zhang, F., Zhou, Y. B., Xiong, X. Q., Wang, J. J., et al. (2013). Salusin-beta in paraventricular nucleus increases blood pressure and sympathetic outflow via vasopressin in hypertensive rats. Cardiovascular Research, 98, 344–351.CrossRefPubMed
11.
go back to reference Saito, T., Dayanithi, G., Saito, J., Onaka, T., Urabe, T., Watanabe, T. X., et al. (2008). Chronic osmotic stimuli increase salusin-beta-like immunoreactivity in the rat hypothalamo-neurohypophyseal system: possible involvement of salusin-beta on [Ca2+]i increase and neurohypophyseal hormone release from the axon terminals. Journal of Neuroendocrinology, 20, 207–219.CrossRefPubMed Saito, T., Dayanithi, G., Saito, J., Onaka, T., Urabe, T., Watanabe, T. X., et al. (2008). Chronic osmotic stimuli increase salusin-beta-like immunoreactivity in the rat hypothalamo-neurohypophyseal system: possible involvement of salusin-beta on [Ca2+]i increase and neurohypophyseal hormone release from the axon terminals. Journal of Neuroendocrinology, 20, 207–219.CrossRefPubMed
12.
go back to reference Malpas, S. C. (2010). Sympathetic nervous system overactivity and its role in the development of cardiovascular disease. Physiological Reviews, 90, 513–557.CrossRefPubMed Malpas, S. C. (2010). Sympathetic nervous system overactivity and its role in the development of cardiovascular disease. Physiological Reviews, 90, 513–557.CrossRefPubMed
13.
go back to reference Guyenet, P. G. (2006). The sympathetic control of blood pressure. Nature Reviews Neuroscience, 7, 335–346.CrossRefPubMed Guyenet, P. G. (2006). The sympathetic control of blood pressure. Nature Reviews Neuroscience, 7, 335–346.CrossRefPubMed
14.
go back to reference Seagard, J. L., Dean, C., & Hopp, F. A. (2000). Neurochemical transmission of baroreceptor input in the nucleus tractus solitarius. Brain Research Bulletin, 51, 111–118.CrossRefPubMed Seagard, J. L., Dean, C., & Hopp, F. A. (2000). Neurochemical transmission of baroreceptor input in the nucleus tractus solitarius. Brain Research Bulletin, 51, 111–118.CrossRefPubMed
15.
go back to reference Lawrence, A. J., & Jarrott, B. (1996). Neurochemical modulation of cardiovascular control in the nucleus tractus solitarius. Progress in Neurobiology, 48, 21–53.CrossRefPubMed Lawrence, A. J., & Jarrott, B. (1996). Neurochemical modulation of cardiovascular control in the nucleus tractus solitarius. Progress in Neurobiology, 48, 21–53.CrossRefPubMed
16.
go back to reference Sapru, H. N. (1996). Carotid chemoreflex. Neural pathways and transmitters. Advances in Experimental Medicine and Biology, 410, 357–364.CrossRefPubMed Sapru, H. N. (1996). Carotid chemoreflex. Neural pathways and transmitters. Advances in Experimental Medicine and Biology, 410, 357–364.CrossRefPubMed
17.
go back to reference Schreihofer, A. M., Stornetta, R. L., & Guyenet, P. G. (2000). Regulation of sympathetic tone and arterial pressure by rostral ventrolateral medulla after depletion of C1 cells in rat. Journal of Physiology, 529(Pt 1), 221–236.CrossRefPubMedPubMedCentral Schreihofer, A. M., Stornetta, R. L., & Guyenet, P. G. (2000). Regulation of sympathetic tone and arterial pressure by rostral ventrolateral medulla after depletion of C1 cells in rat. Journal of Physiology, 529(Pt 1), 221–236.CrossRefPubMedPubMedCentral
18.
go back to reference Aicher, S. A., Hermes, S. M., Whittier, K. L., & Hegarty, D. M. (2012). Descending projections from the rostral ventromedial medulla (RVM) to trigeminal and spinal dorsal horns are morphologically and neurochemically distinct. Journal of Chemical Neuroanatomy, 43, 103–111.CrossRefPubMed Aicher, S. A., Hermes, S. M., Whittier, K. L., & Hegarty, D. M. (2012). Descending projections from the rostral ventromedial medulla (RVM) to trigeminal and spinal dorsal horns are morphologically and neurochemically distinct. Journal of Chemical Neuroanatomy, 43, 103–111.CrossRefPubMed
19.
go back to reference Suzuki, N., Shichiri, M., Akashi, T., Sato, K., Sakurada, M., Hirono, Y., et al. (2007). Systemic distribution of salusin expression in the rat. Hypertension Research, 30, 1255–1262.CrossRefPubMed Suzuki, N., Shichiri, M., Akashi, T., Sato, K., Sakurada, M., Hirono, Y., et al. (2007). Systemic distribution of salusin expression in the rat. Hypertension Research, 30, 1255–1262.CrossRefPubMed
20.
go back to reference Kang, Y. M., Ma, Y., Zheng, J. P., Elks, C., Sriramula, S., Yang, Z. M., et al. (2009). Brain nuclear factor-kappa B activation contributes to neurohumoral excitation in angiotensin II-induced hypertension. Cardiovascular Research, 82, 503–512.CrossRefPubMedPubMedCentral Kang, Y. M., Ma, Y., Zheng, J. P., Elks, C., Sriramula, S., Yang, Z. M., et al. (2009). Brain nuclear factor-kappa B activation contributes to neurohumoral excitation in angiotensin II-induced hypertension. Cardiovascular Research, 82, 503–512.CrossRefPubMedPubMedCentral
21.
go back to reference Kang, Y. M., Zhang, Z. H., Johnson, R. F., Yu, Y., Beltz, T., Johnson, A. K., et al. (2006). Novel effect of mineralocorticoid receptor antagonism to reduce proinflammatory cytokines and hypothalamic activation in rats with ischemia-induced heart failure. Circulation Research, 99, 758–766.CrossRefPubMed Kang, Y. M., Zhang, Z. H., Johnson, R. F., Yu, Y., Beltz, T., Johnson, A. K., et al. (2006). Novel effect of mineralocorticoid receptor antagonism to reduce proinflammatory cytokines and hypothalamic activation in rats with ischemia-induced heart failure. Circulation Research, 99, 758–766.CrossRefPubMed
22.
go back to reference Kang, Y. M., Zhang, A. Q., Zhao, X. F., Cardinale, J. P., Elks, C., Cao, X. M., et al. (2011). Paraventricular nucleus corticotrophin releasing hormone contributes to sympathoexcitation via interaction with neurotransmitters in heart failure. Basic Research in Cardiology, 106, 473–483.CrossRefPubMedPubMedCentral Kang, Y. M., Zhang, A. Q., Zhao, X. F., Cardinale, J. P., Elks, C., Cao, X. M., et al. (2011). Paraventricular nucleus corticotrophin releasing hormone contributes to sympathoexcitation via interaction with neurotransmitters in heart failure. Basic Research in Cardiology, 106, 473–483.CrossRefPubMedPubMedCentral
23.
go back to reference Zha, Y. P., Wang, Y. K., Deng, Y., Zhang, R. W., Tan, X., Yuan, W. J., et al. (2013). Exercise training lowers the enhanced tonically active glutamatergic input to the rostral ventrolateral medulla in hypertensive rats. CNS Neuroscience & Therapeutics, 19, 244–251.CrossRef Zha, Y. P., Wang, Y. K., Deng, Y., Zhang, R. W., Tan, X., Yuan, W. J., et al. (2013). Exercise training lowers the enhanced tonically active glutamatergic input to the rostral ventrolateral medulla in hypertensive rats. CNS Neuroscience & Therapeutics, 19, 244–251.CrossRef
24.
go back to reference Kang, Y. M., Gao, F., Li, H. H., Cardinale, J. P., Elks, C., Zang, W. J., et al. (2011). NF-kappaB in the paraventricular nucleus modulates neurotransmitters and contributes to sympathoexcitation in heart failure. Basic Research in Cardiology, 106, 1087–1097.CrossRefPubMedPubMedCentral Kang, Y. M., Gao, F., Li, H. H., Cardinale, J. P., Elks, C., Zang, W. J., et al. (2011). NF-kappaB in the paraventricular nucleus modulates neurotransmitters and contributes to sympathoexcitation in heart failure. Basic Research in Cardiology, 106, 1087–1097.CrossRefPubMedPubMedCentral
25.
go back to reference Lu, Y., Wang, W. Z., Liao, Z., Yan, X. H., Tang, C. S., & Yuan, W. J. (2005). Blood pressure responses of endothelin-1 1-31 within the rostral ventrolateral medulla through conversion to endothelin-1 1-21. Journal of Cardiovascular Pharmacology, 46, 823–829.CrossRefPubMed Lu, Y., Wang, W. Z., Liao, Z., Yan, X. H., Tang, C. S., & Yuan, W. J. (2005). Blood pressure responses of endothelin-1 1-31 within the rostral ventrolateral medulla through conversion to endothelin-1 1-21. Journal of Cardiovascular Pharmacology, 46, 823–829.CrossRefPubMed
26.
go back to reference Fu, Y. J., Wang, W. Z., Cai, G. J., Wang, M. W., & Su, D. F. (2006). Action site of ketanserin enhancing baroreflex function is within the rostral ventrolateral medulla in anesthetized rats. Autonomic Neuroscience : Basic & Clinical, 124, 31–37.CrossRef Fu, Y. J., Wang, W. Z., Cai, G. J., Wang, M. W., & Su, D. F. (2006). Action site of ketanserin enhancing baroreflex function is within the rostral ventrolateral medulla in anesthetized rats. Autonomic Neuroscience : Basic & Clinical, 124, 31–37.CrossRef
27.
go back to reference Mandel, D. A., & Schreihofer, A. M. (2009). Modulation of the sympathetic response to acute hypoxia by the caudal ventrolateral medulla in rats. Journal of Physiology, 587, 461–475.CrossRefPubMed Mandel, D. A., & Schreihofer, A. M. (2009). Modulation of the sympathetic response to acute hypoxia by the caudal ventrolateral medulla in rats. Journal of Physiology, 587, 461–475.CrossRefPubMed
28.
go back to reference Pitzalis, M. V. (2001). Baroreflex sensitivity and heart rate variability in the identification of patients at risk for life-threatening arrhythmias: implications for clinical trials. Italian Heart Journal Supplement, 2, 810–811. Pitzalis, M. V. (2001). Baroreflex sensitivity and heart rate variability in the identification of patients at risk for life-threatening arrhythmias: implications for clinical trials. Italian Heart Journal Supplement, 2, 810–811.
29.
go back to reference Sato, K., Koyama, T., Tateno, T., Hirata, Y., & Shichiri, M. (2006). Presence of immunoreactive salusin-alpha in human serum and urine. Peptides, 27, 2561–2566.CrossRefPubMed Sato, K., Koyama, T., Tateno, T., Hirata, Y., & Shichiri, M. (2006). Presence of immunoreactive salusin-alpha in human serum and urine. Peptides, 27, 2561–2566.CrossRefPubMed
30.
go back to reference Sato, K., Sato, T., Susumu, T., Koyama, T., & Shichiri, M. (2009). Presence of immunoreactive salusin-beta in human plasma and urine. Regulatory Peptides, 158, 63–67.CrossRefPubMed Sato, K., Sato, T., Susumu, T., Koyama, T., & Shichiri, M. (2009). Presence of immunoreactive salusin-beta in human plasma and urine. Regulatory Peptides, 158, 63–67.CrossRefPubMed
31.
go back to reference La Rovere, M. T., Pinna, G. D., Hohnloser, S. H., Marcus, F. I., Mortara, A., Nohara, R., et al. (2001). Baroreflex sensitivity and heart rate variability in the identification of patients at risk for life-threatening arrhythmias: implications for clinical trials. Circulation, 103, 2072–2077.CrossRefPubMed La Rovere, M. T., Pinna, G. D., Hohnloser, S. H., Marcus, F. I., Mortara, A., Nohara, R., et al. (2001). Baroreflex sensitivity and heart rate variability in the identification of patients at risk for life-threatening arrhythmias: implications for clinical trials. Circulation, 103, 2072–2077.CrossRefPubMed
32.
go back to reference Sapru, H. N. (2002). Glutamate circuits in selected medullo-spinal areas regulating cardiovascular function. Clinical and Experimental Pharmacology and Physiology, 29, 491–496.CrossRefPubMed Sapru, H. N. (2002). Glutamate circuits in selected medullo-spinal areas regulating cardiovascular function. Clinical and Experimental Pharmacology and Physiology, 29, 491–496.CrossRefPubMed
33.
go back to reference Lu, Y., Wu, Y. S., Chen, D. S., Wang, W. Z. and Yuan, W. J. (2014). Microinjection of salusin-beta into the nucleus tractus solitarii inhibits cardiovascular function by suppressing presympathetic neurons in rostral ventrolateral medullar in rats. Physiological Research, 64, 161–171.PubMed Lu, Y., Wu, Y. S., Chen, D. S., Wang, W. Z. and Yuan, W. J. (2014). Microinjection of salusin-beta into the nucleus tractus solitarii inhibits cardiovascular function by suppressing presympathetic neurons in rostral ventrolateral medullar in rats. Physiological Research, 64, 161–171.PubMed
34.
go back to reference Wang, Z., Takahashi, T., Saito, Y., Nagasaki, H., Ly, N. K., Nothacker, H. P., et al. (2006). Salusin beta is a surrogate ligand of the mas-like G protein-coupled receptor MrgA1. European Journal of Pharmacology, 539, 145–150.CrossRefPubMed Wang, Z., Takahashi, T., Saito, Y., Nagasaki, H., Ly, N. K., Nothacker, H. P., et al. (2006). Salusin beta is a surrogate ligand of the mas-like G protein-coupled receptor MrgA1. European Journal of Pharmacology, 539, 145–150.CrossRefPubMed
35.
go back to reference Kubo, T., & Kihara, M. (1990). Modulation of the aortic baroreceptor reflex by neuropeptide Y, neurotensin and vasopressin microinjected into the nucleus tractus solitarii of the rat. Naunyn-Schmiedeberg’s archives of pharmacology, 342, 182–188.CrossRefPubMed Kubo, T., & Kihara, M. (1990). Modulation of the aortic baroreceptor reflex by neuropeptide Y, neurotensin and vasopressin microinjected into the nucleus tractus solitarii of the rat. Naunyn-Schmiedeberg’s archives of pharmacology, 342, 182–188.CrossRefPubMed
36.
go back to reference Miyashita, T., & Williams, C. L. (2002). Glutamatergic transmission in the nucleus of the solitary tract modulates memory through influences on amygdala noradrenergic systems. Behavioral Neuroscience, 116, 13–21.CrossRefPubMed Miyashita, T., & Williams, C. L. (2002). Glutamatergic transmission in the nucleus of the solitary tract modulates memory through influences on amygdala noradrenergic systems. Behavioral Neuroscience, 116, 13–21.CrossRefPubMed
37.
go back to reference Pilowsky, P. M., & Goodchild, A. K. (2002). Baroreceptor reflex pathways and neurotransmitters: 10 years on. Journal of Hypertension, 20, 1675–1688.CrossRefPubMed Pilowsky, P. M., & Goodchild, A. K. (2002). Baroreceptor reflex pathways and neurotransmitters: 10 years on. Journal of Hypertension, 20, 1675–1688.CrossRefPubMed
38.
go back to reference Kumagai, H., Oshima, N., Matsuura, T., Iigaya, K., Imai, M., Onimaru, H., et al. (2012). Importance of rostral ventrolateral medulla neurons in determining efferent sympathetic nerve activity and blood pressure. Hypertension Research, 35, 132–141.CrossRefPubMed Kumagai, H., Oshima, N., Matsuura, T., Iigaya, K., Imai, M., Onimaru, H., et al. (2012). Importance of rostral ventrolateral medulla neurons in determining efferent sympathetic nerve activity and blood pressure. Hypertension Research, 35, 132–141.CrossRefPubMed
39.
go back to reference Zhang, Z. H., Yu, Y., Kang, Y. M., Wei, S. G., & Felder, R. B. (2008). Aldosterone acts centrally to increase brain renin–angiotensin system activity and oxidative stress in normal rats. American Journal of Physiology Heart and Circulatory Physiology, 294, H1067–H1074.CrossRefPubMed Zhang, Z. H., Yu, Y., Kang, Y. M., Wei, S. G., & Felder, R. B. (2008). Aldosterone acts centrally to increase brain renin–angiotensin system activity and oxidative stress in normal rats. American Journal of Physiology Heart and Circulatory Physiology, 294, H1067–H1074.CrossRefPubMed
40.
go back to reference Schreihofer, A. M., Ito, S., & Sved, A. F. (2005). Brain stem control of arterial pressure in chronic arterial baroreceptor-denervated rats. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 289, R1746–R1755.PubMed Schreihofer, A. M., Ito, S., & Sved, A. F. (2005). Brain stem control of arterial pressure in chronic arterial baroreceptor-denervated rats. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 289, R1746–R1755.PubMed
Metadata
Title
Salusin β Within the Nucleus Tractus Solitarii Suppresses Blood Pressure Via Inhibiting the Activities of Presympathetic Neurons in the Rostral Ventrolateral Medulla in Spontaneously Hypertensive Rats
Authors
Hong-Bao Li
Yan Lu
Jin-Jun Liu
Yu-Wang Miao
Tian-Zhen Zheng
Qing Su
Jie Qi
Hong Tan
Zu-Yi Yuan
Guo-Qing Zhu
Yu-Ming Kang
Publication date
01-07-2016
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 3/2016
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-015-9330-2

Other articles of this Issue 3/2016

Cardiovascular Toxicology 3/2016 Go to the issue