Skip to main content
Top
Published in: Cardiovascular Toxicology 1/2012

01-03-2012

Mechanistic Clues in the Protective Effect of Ellagic Acid Against Apoptosis and Decreased Mitochondrial Respiratory Enzyme Activities in Myocardial Infarcted Rats

Authors: M. Mari Kannan, S. Darlin Quine

Published in: Cardiovascular Toxicology | Issue 1/2012

Login to get access

Abstract

Our previous study described the cardioprotective effects of ellagic acid in an isoproterenol-induced myocardial infarction model. In this study, we are reporting the mechanism of protective action of ellagic acid with respect to apoptosis and mitochondrial respiratory enzymes. Ellagic acid (7.5 and 15 mg/kg) was administered orally as a pretreatment for 10 days. Then, isoproterenol (100 mg/kg) was injected subcutaneously to rats at an interval of 24 h for 2 days. Myocardial infarction was quantified by planimetry. Apoptosis was measured by apoptotic gene expressions. The levels of mitochondrial respiratory enzymes were also measured. Isoproterenol-induced myocardial infarcted rats showed increased infarct size, a decrease in myocardial expression of the Bcl-2 gene and an increase in myocardial expression of the BAX gene. Fas ligand and caspases were markedly elevated along with compromised respiratory marker enzymes in isoproterenol-induced rats. Ellagic acid pretreatment reduced the infarct size, regulated apoptotic gene expressions and enhanced the activities of mitochondrial respiratory marker enzymes and cell viability, thereby protecting the myocardium against isoproterenol-induced myocardial infarction. The decreased infarct size associated with inhibited apoptosis and increased respiratory marker enzymes provide insight on the role of ellagic acid in antiapoptotic mechanism, and it may be the reason for its cardioprotective activity.
Literature
1.
go back to reference Sparagna, G. C., Chicco, A. J., Murphy, R. C., Bristow, M. R., Johnson, C. A., Rees, M. L., et al. (2007). Loss of cardiac tetralinoleoyl cardiolipin in human and experimental heart failure. Journal of Lipid Research, 48, 1559–1570.PubMedCrossRef Sparagna, G. C., Chicco, A. J., Murphy, R. C., Bristow, M. R., Johnson, C. A., Rees, M. L., et al. (2007). Loss of cardiac tetralinoleoyl cardiolipin in human and experimental heart failure. Journal of Lipid Research, 48, 1559–1570.PubMedCrossRef
2.
go back to reference Krijnen, P. A., Nijmeijer, R., Meijer, C. J., Visser, C. A., Hack, C. E., & Niessen, H. W. (2002). Apoptosis in myocardial ischaemia and infarction. Journal of Clinical Pathology, 55, 801–811.PubMedCrossRef Krijnen, P. A., Nijmeijer, R., Meijer, C. J., Visser, C. A., Hack, C. E., & Niessen, H. W. (2002). Apoptosis in myocardial ischaemia and infarction. Journal of Clinical Pathology, 55, 801–811.PubMedCrossRef
3.
go back to reference Hare, J. M. (2001). Oxidative stress and apoptosis in heart failure progression. Circulation Research, 89, 198–200.PubMed Hare, J. M. (2001). Oxidative stress and apoptosis in heart failure progression. Circulation Research, 89, 198–200.PubMed
4.
go back to reference Huang, J., Ito, Y., Morikawa, M., Kobune, M., Sasaki, K., Abe, T., et al. (2003). Bcl-xL gene transfer protects the heart against ischemia/reperfusion injury. Biochemical and Biophysical Research and Communications, 311, 64–70.CrossRef Huang, J., Ito, Y., Morikawa, M., Kobune, M., Sasaki, K., Abe, T., et al. (2003). Bcl-xL gene transfer protects the heart against ischemia/reperfusion injury. Biochemical and Biophysical Research and Communications, 311, 64–70.CrossRef
5.
go back to reference Vatner, D. E., Asai, K., Iwase, M., Ishikawa, Y., Shannon, R. P., Homcy, C. J., et al. (1999). Beta-adrenergic receptor-G protein-adenylyl cyclase signal transduction in the failing heart. American Journal of Cardiology, 83, 80H–85H.PubMedCrossRef Vatner, D. E., Asai, K., Iwase, M., Ishikawa, Y., Shannon, R. P., Homcy, C. J., et al. (1999). Beta-adrenergic receptor-G protein-adenylyl cyclase signal transduction in the failing heart. American Journal of Cardiology, 83, 80H–85H.PubMedCrossRef
6.
go back to reference Kukin, M. L., Kalman, J., Charney, R. H., Levy, D. K., Buchholz-Varley, C., Ocampo, O. N., et al. (1999). Prospective, randomized comparison of effect of long-term treatment with metoprolol or carvedilol on symptoms, exercise, ejection fraction, and oxidative stress in heart failure. Circulation, 99, 2645–2651.PubMed Kukin, M. L., Kalman, J., Charney, R. H., Levy, D. K., Buchholz-Varley, C., Ocampo, O. N., et al. (1999). Prospective, randomized comparison of effect of long-term treatment with metoprolol or carvedilol on symptoms, exercise, ejection fraction, and oxidative stress in heart failure. Circulation, 99, 2645–2651.PubMed
7.
go back to reference Nirmala, C., & Puvanakrishnan, R. (1996). Protective role of curcumin against isoproterenol induced myocardial infarction in rats. Molecular and Cellular Biochemistry, 159, 85–93.PubMedCrossRef Nirmala, C., & Puvanakrishnan, R. (1996). Protective role of curcumin against isoproterenol induced myocardial infarction in rats. Molecular and Cellular Biochemistry, 159, 85–93.PubMedCrossRef
8.
go back to reference Yüce, A., Ateşşahin, A., Çeribaşı, A. O., & Aksakal, M. (2007). Ellagic acid prevents cisplatin induced oxidative stress in liver and heart tissue of rats. Basic & Clinical Pharmacology & Toxicology, 101, 345–349.CrossRef Yüce, A., Ateşşahin, A., Çeribaşı, A. O., & Aksakal, M. (2007). Ellagic acid prevents cisplatin induced oxidative stress in liver and heart tissue of rats. Basic & Clinical Pharmacology & Toxicology, 101, 345–349.CrossRef
9.
go back to reference Türk, G., Ateşşahin, A., Sönmez, M., Çeribaşı, A. O., & Yüce, A. (2008). Improvement of cisplatin induced injuries to sperm quality, the oxidant-antioxidant system, and the histologic structure of the rat testis by ellagic acid. Fertility and Sterility, 89, 1474–1481.PubMedCrossRef Türk, G., Ateşşahin, A., Sönmez, M., Çeribaşı, A. O., & Yüce, A. (2008). Improvement of cisplatin induced injuries to sperm quality, the oxidant-antioxidant system, and the histologic structure of the rat testis by ellagic acid. Fertility and Sterility, 89, 1474–1481.PubMedCrossRef
10.
go back to reference Aggarwal, B. B., & Shishoida, S. (2006). Molecular targets of dietary agents for prevention and therapy of cancer. Biochemical Pharmacology, 71, 1397–1421.PubMedCrossRef Aggarwal, B. B., & Shishoida, S. (2006). Molecular targets of dietary agents for prevention and therapy of cancer. Biochemical Pharmacology, 71, 1397–1421.PubMedCrossRef
11.
go back to reference Mari Kannan, M., & Darlin Quine, S. (2011). Ellagic acid ameliorates isoproterenol induced oxidative stress: evidences from electrocardiological, biochemical and histological studies. European Journal of Pharmacology, 659, 45–52.CrossRef Mari Kannan, M., & Darlin Quine, S. (2011). Ellagic acid ameliorates isoproterenol induced oxidative stress: evidences from electrocardiological, biochemical and histological studies. European Journal of Pharmacology, 659, 45–52.CrossRef
12.
go back to reference Punithavathi, V. R., & Prince, P. S. M. (2010). Pretreatment with a combination of quercetin and alpha-tocopherol ameliorates adenosine triphosphatases and lysosomal enzymes in myocardial infarcted rats. Life Sciences, 86, 178–184.PubMedCrossRef Punithavathi, V. R., & Prince, P. S. M. (2010). Pretreatment with a combination of quercetin and alpha-tocopherol ameliorates adenosine triphosphatases and lysosomal enzymes in myocardial infarcted rats. Life Sciences, 86, 178–184.PubMedCrossRef
13.
go back to reference Ojha, N., Roy, S., Radtke, J., Simonetti, O., Gnyawali, S., Zweier, J. L., et al. (2008). Characterization of the structural and functional changes in the myocardium following focal ischemia–reperfusion injury. American Journal of Physiology. Heart and Circulatory Physiology, 294, H2435–H2443.PubMedCrossRef Ojha, N., Roy, S., Radtke, J., Simonetti, O., Gnyawali, S., Zweier, J. L., et al. (2008). Characterization of the structural and functional changes in the myocardium following focal ischemia–reperfusion injury. American Journal of Physiology. Heart and Circulatory Physiology, 294, H2435–H2443.PubMedCrossRef
14.
go back to reference Takasawa, M., Hayakawa, M., Sugiyama, S., Hattori, K., Ito, T., & Ozawa, T. (1993). Age-associated damage in mitochondrial function in rat hearts. Experimental Gerontology, 28, 269–280.PubMedCrossRef Takasawa, M., Hayakawa, M., Sugiyama, S., Hattori, K., Ito, T., & Ozawa, T. (1993). Age-associated damage in mitochondrial function in rat hearts. Experimental Gerontology, 28, 269–280.PubMedCrossRef
15.
go back to reference Minakami, S., Ringler, R. L., & Singer, T. P. (1962). Studies on the respiratory chain-linked dihydrodiphosphopyridine nucleotide dehydrogenase: assay of the enzyme in particulate and in soluble preparations. The Journal of Biological Chemistry, 237, 569–576.PubMed Minakami, S., Ringler, R. L., & Singer, T. P. (1962). Studies on the respiratory chain-linked dihydrodiphosphopyridine nucleotide dehydrogenase: assay of the enzyme in particulate and in soluble preparations. The Journal of Biological Chemistry, 237, 569–576.PubMed
16.
go back to reference Pearl, W., Cascarano, J., & Zweifach, B. W. (1963). Microdetermination of cytochrome oxidase in rat tissues by oxidation on N-phenyl-p-phenylene diamine or ascorbic acid. The Journal of Histochemistry and Cytochemistry, 11, 102–104.CrossRef Pearl, W., Cascarano, J., & Zweifach, B. W. (1963). Microdetermination of cytochrome oxidase in rat tissues by oxidation on N-phenyl-p-phenylene diamine or ascorbic acid. The Journal of Histochemistry and Cytochemistry, 11, 102–104.CrossRef
17.
go back to reference Kato, F., Tanaka, M., & Nakamura, K. (1999). Rapid fluorometric assay for cell viability and cell growth using nucleic acid staining and cell lysis agents. Toxicology in Vitro, 13, 923–929.PubMedCrossRef Kato, F., Tanaka, M., & Nakamura, K. (1999). Rapid fluorometric assay for cell viability and cell growth using nucleic acid staining and cell lysis agents. Toxicology in Vitro, 13, 923–929.PubMedCrossRef
18.
go back to reference Strober, W. (1997). Trypan blue exclusion test of cell viability, in Current protocols in immunology (Coico, R., ed) (pp. A.3B.1–A.3B). Wiley, London. Strober, W. (1997). Trypan blue exclusion test of cell viability, in Current protocols in immunology (Coico, R., ed) (pp. A.3B.1–A.3B). Wiley, London.
19.
go back to reference Baks, T., van Geuns, R. J., Biagini, E., Wielopolski, P., Mollet, N. R., Cademartiri, F., et al. (2005). Recovery of left ventricular function after primary angioplasty for acute myocardial infarction. European Heart Journal, 26, 1070–1077.PubMedCrossRef Baks, T., van Geuns, R. J., Biagini, E., Wielopolski, P., Mollet, N. R., Cademartiri, F., et al. (2005). Recovery of left ventricular function after primary angioplasty for acute myocardial infarction. European Heart Journal, 26, 1070–1077.PubMedCrossRef
20.
go back to reference Miura, T., & Miki, T. (2008). Limitation of myocardial infarct size in the clinical setting: current status and challenges in translating animal experiments into clinical therapy. Basic Research in Cardiology, 103, 501–513.PubMedCrossRef Miura, T., & Miki, T. (2008). Limitation of myocardial infarct size in the clinical setting: current status and challenges in translating animal experiments into clinical therapy. Basic Research in Cardiology, 103, 501–513.PubMedCrossRef
21.
go back to reference Altman, F. P. (1976). Tetrazolium salts and formazans. Progress in Histochemistry and Cytochemistry, 9, 1–56.PubMed Altman, F. P. (1976). Tetrazolium salts and formazans. Progress in Histochemistry and Cytochemistry, 9, 1–56.PubMed
22.
go back to reference Nachlas, M. M., & Shnitka, T. K. (1963). Macroscopic identification of early myocardial infarcts by alterations in dehydrogenase activity. The American Journal of Pathology, 42, 379–405.PubMed Nachlas, M. M., & Shnitka, T. K. (1963). Macroscopic identification of early myocardial infarcts by alterations in dehydrogenase activity. The American Journal of Pathology, 42, 379–405.PubMed
23.
go back to reference Ramkissoon, R. A. (1966). Macroscopic identification of early myocardial infarction by dehydrogenase alterations. Journal of Clinical Pathology, 19, 479–481.PubMedCrossRef Ramkissoon, R. A. (1966). Macroscopic identification of early myocardial infarction by dehydrogenase alterations. Journal of Clinical Pathology, 19, 479–481.PubMedCrossRef
24.
go back to reference Stanely Mainzen Prince, P., & Priya, S. (2010). Preventive effects of rutin on lysosomal enzymes in isoproterenol induced cardio toxic rats: biochemical, histological and in vitro evidences. European Journal of Pharmacology, 649, 229–235.PubMedCrossRef Stanely Mainzen Prince, P., & Priya, S. (2010). Preventive effects of rutin on lysosomal enzymes in isoproterenol induced cardio toxic rats: biochemical, histological and in vitro evidences. European Journal of Pharmacology, 649, 229–235.PubMedCrossRef
25.
go back to reference Pari, L., & Sivasankari, R. (2008). Effect of ellagic acid on cyclosporine A-induced oxidative damage in the liver of rats. Fundamental and Clinical Pharmacology, 22, 395–401.PubMedCrossRef Pari, L., & Sivasankari, R. (2008). Effect of ellagic acid on cyclosporine A-induced oxidative damage in the liver of rats. Fundamental and Clinical Pharmacology, 22, 395–401.PubMedCrossRef
26.
go back to reference Nihal, M., Ahmad, N., Mukhtar, H., & Wood, G. S. (2005). Anti-proliferative and proapoptotic effects of (−)-epigallocatechin-3-gallate on human melanoma: Possible implications for the chemoprevention of melanoma. International Journal of Cancer, 114, 513–521.CrossRef Nihal, M., Ahmad, N., Mukhtar, H., & Wood, G. S. (2005). Anti-proliferative and proapoptotic effects of (−)-epigallocatechin-3-gallate on human melanoma: Possible implications for the chemoprevention of melanoma. International Journal of Cancer, 114, 513–521.CrossRef
27.
go back to reference Oltvai, Z. N., Milliman, C. L., & Korsmeyer, S. J. (1993). Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell, 74, 609–619.PubMedCrossRef Oltvai, Z. N., Milliman, C. L., & Korsmeyer, S. J. (1993). Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell, 74, 609–619.PubMedCrossRef
28.
go back to reference Ling, H., & Lou, Y. (2005). Total flavones from Elsholtzia blanda reduce infarct size during acute myocardial ischemia by inhibiting myocardial apoptosis in rats. Journal of Ethnopharmacology, 101, 169–175.PubMedCrossRef Ling, H., & Lou, Y. (2005). Total flavones from Elsholtzia blanda reduce infarct size during acute myocardial ischemia by inhibiting myocardial apoptosis in rats. Journal of Ethnopharmacology, 101, 169–175.PubMedCrossRef
29.
go back to reference Prabhu, S. D., Wang, G., Luo, J., Gu, Y., Ping, P., & Chandrasekar, B. (2003). Beta-adrenergic receptor blockade modulates Bcl-X(S) expression and reduces apoptosis in failing myocardium. Journal of Molecular and Cellular Cardiology, 35, 483–493.PubMedCrossRef Prabhu, S. D., Wang, G., Luo, J., Gu, Y., Ping, P., & Chandrasekar, B. (2003). Beta-adrenergic receptor blockade modulates Bcl-X(S) expression and reduces apoptosis in failing myocardium. Journal of Molecular and Cellular Cardiology, 35, 483–493.PubMedCrossRef
30.
go back to reference Kawai, K., Qin, F., Shite, J., Mao, W., Fukuoka, S., & Liang, C. S. (2004). Importance of antioxidant and antiapoptotic effects of beta-receptor blockers in heart failure therapy. American Journal of Physiology. Heart and Circulatory Physiology, 287, H1003–H1012.PubMedCrossRef Kawai, K., Qin, F., Shite, J., Mao, W., Fukuoka, S., & Liang, C. S. (2004). Importance of antioxidant and antiapoptotic effects of beta-receptor blockers in heart failure therapy. American Journal of Physiology. Heart and Circulatory Physiology, 287, H1003–H1012.PubMedCrossRef
31.
go back to reference Thomberry, N. A., & Lazebnik, Y. (1998). Caspases: Enemies within. Science, 281, 1312–1316.CrossRef Thomberry, N. A., & Lazebnik, Y. (1998). Caspases: Enemies within. Science, 281, 1312–1316.CrossRef
32.
go back to reference Zou, H., Henzel, W. J., Liu, X., Lutschg, A., & Wang, X. (1997). Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell, 90, 405–413.PubMedCrossRef Zou, H., Henzel, W. J., Liu, X., Lutschg, A., & Wang, X. (1997). Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell, 90, 405–413.PubMedCrossRef
33.
go back to reference Zou, H., Li, Y., Liu, X., & Wang, X. (1994). An APAF-1 cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. Journal of Biological Chemistry, 274, 11549–11556.CrossRef Zou, H., Li, Y., Liu, X., & Wang, X. (1994). An APAF-1 cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. Journal of Biological Chemistry, 274, 11549–11556.CrossRef
34.
go back to reference Hwang, J. M., Cho, J. S., Kim, T. H., & Lee, Y. I. (2010). Ellagic acid protects hepatocytes from damage by inhibiting mitochondrial production of reactive oxygen species. Biomedicine and Pharmacotherapy, 64, 264–270.CrossRef Hwang, J. M., Cho, J. S., Kim, T. H., & Lee, Y. I. (2010). Ellagic acid protects hepatocytes from damage by inhibiting mitochondrial production of reactive oxygen species. Biomedicine and Pharmacotherapy, 64, 264–270.CrossRef
35.
go back to reference Malhotra, R., Lin, Z., Vincenz, C., & Brosius, F. C., 3rd. (2001). Hypoxia induces apoptosis via two independent pathways in Jurkat cells: differential regulation by glucose. American Journal of Physiology. Cell Physiology, 281, C1596–C1603.PubMed Malhotra, R., Lin, Z., Vincenz, C., & Brosius, F. C., 3rd. (2001). Hypoxia induces apoptosis via two independent pathways in Jurkat cells: differential regulation by glucose. American Journal of Physiology. Cell Physiology, 281, C1596–C1603.PubMed
36.
go back to reference Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Snow, B. E., Brothers, G. M., et al. (1999). Molecular characterization of mitochondrial apoptosis-inducing factor. Nature, 397, 441–446.PubMedCrossRef Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Snow, B. E., Brothers, G. M., et al. (1999). Molecular characterization of mitochondrial apoptosis-inducing factor. Nature, 397, 441–446.PubMedCrossRef
37.
go back to reference Senthilnathan, P., Padmavathi, R., Magesh, V., & Sakthisekaran, D. (2006). Modulation of TCA cycle enzymes and electron transport chain systems in experimental lung cancer. Life Sciences, 78, 1010–1014.PubMedCrossRef Senthilnathan, P., Padmavathi, R., Magesh, V., & Sakthisekaran, D. (2006). Modulation of TCA cycle enzymes and electron transport chain systems in experimental lung cancer. Life Sciences, 78, 1010–1014.PubMedCrossRef
38.
go back to reference Vijayapadma, V., & Shyamaladevi, C. S. (2001). Effect of fish oil on mitochondrial respiration in isoproterenol induced myocardial infarction in rats. Indian Journal of Experimental Biology, 40, 268–272. Vijayapadma, V., & Shyamaladevi, C. S. (2001). Effect of fish oil on mitochondrial respiration in isoproterenol induced myocardial infarction in rats. Indian Journal of Experimental Biology, 40, 268–272.
39.
go back to reference Ou, H. C., Lee, W. J., Lee, S. D., Huang, C. Y., Chiu, T. H., Tsai, K. L., et al. (2010). Ellagic acid protects endothelial cells from oxidized low-density lipoprotein-induced apoptosis by modulating the PI3 K/Akt/eNOS pathway. Toxicology and Applied Pharmacology, 248, 134–143.PubMedCrossRef Ou, H. C., Lee, W. J., Lee, S. D., Huang, C. Y., Chiu, T. H., Tsai, K. L., et al. (2010). Ellagic acid protects endothelial cells from oxidized low-density lipoprotein-induced apoptosis by modulating the PI3 K/Akt/eNOS pathway. Toxicology and Applied Pharmacology, 248, 134–143.PubMedCrossRef
Metadata
Title
Mechanistic Clues in the Protective Effect of Ellagic Acid Against Apoptosis and Decreased Mitochondrial Respiratory Enzyme Activities in Myocardial Infarcted Rats
Authors
M. Mari Kannan
S. Darlin Quine
Publication date
01-03-2012
Publisher
Humana Press Inc
Published in
Cardiovascular Toxicology / Issue 1/2012
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-011-9138-7

Other articles of this Issue 1/2012

Cardiovascular Toxicology 1/2012 Go to the issue