Skip to main content
Top
Published in: Cardiovascular Toxicology 1/2012

01-03-2012

Toxicological Insight from AP-1 Silencing Study on Proliferation, Migration, and Dedifferentiation of Rat Vascular Smooth Muscle Cell

Authors: Hong-Wei Zhang, Tao Zhang, Bao-Zhong Shen, Ming Liu, Jia-Ren Liu

Published in: Cardiovascular Toxicology | Issue 1/2012

Login to get access

Abstract

There has an effective way to prevent intimal hyperplasia on vascular smooth muscle cell (VSMC) proliferation in grafted veins. The activator protein-1 (AP-1) transcription factor plays an important role in cardiovascular generation and angioplasty. Once activated, AP-1 binds its specific DNA sequence to promote the proliferation of VSMC, differentiation, and migration. The objectives of this study were to determine toxicological effects of AP-1 silencing study on proliferation, migration, and dedifferentiation of rat vascular smooth muscle cell. To suppress the expression of AP-1 gene, AP-1 siRNA was used to interfere post-transcription in rat primary VSMCs. To observe the expression of SM α-actin and downstream genes of AP-1, the activity of cell matrix metal proteinases and the migration ability of VSMC was examined by a modified Boyden chamber assay. Effects of AP-1 siRNA on proliferation and differentiation in rat VSMCs were evaluated by cell cycle analysis, DNA synthesis, MTT-test, and immunofluorescence. The results showed that the level of SM α-actin protein expression was increased. AP-1 siRNA also significantly decreased the MTT extinction value, DNA synthesis, PCNA expression, and the cell migration velocity when compared to the control group. AP-1 siRNA also clearly arrested cell cycle of VSM at the G0/G1 phase. Zymographic and Western blotting analyses showed that AP-1 siRNA suppressed serum-induced MMP-2 expression. These data suggest that the AP-1 siRNA was able to effectively inhibit the proliferation, migration, and dedifferentiation of smooth muscle cells. Thus, AP-1 siRNA provides a novel method to prevent intimal hyperplasia in blood vessel angioplasty.
Literature
1.
go back to reference Abate, C., Luk, D., Gagne, E., Roeder, R. G., & Curran, T. (1990). Fos and jun cooperate in transcriptional regulation via heterologous activation domains. Molecular and Cellular Biology, 10, 5532–5535.PubMed Abate, C., Luk, D., Gagne, E., Roeder, R. G., & Curran, T. (1990). Fos and jun cooperate in transcriptional regulation via heterologous activation domains. Molecular and Cellular Biology, 10, 5532–5535.PubMed
2.
go back to reference Cho, A., & Reidy, M. A. (2002). Matrix metalloproteinase-9 is necessary for the regulation of smooth muscle cell replication and migration after arterial injury. Circulation Research, 91, 845–851.PubMedCrossRef Cho, A., & Reidy, M. A. (2002). Matrix metalloproteinase-9 is necessary for the regulation of smooth muscle cell replication and migration after arterial injury. Circulation Research, 91, 845–851.PubMedCrossRef
3.
go back to reference McBride, W., Lange, R. A., & Hillis, L. D. (1988). Restenosis after successful coronary angioplasty. Pathophysiology and prevention. New England Journal of Medicine, 318, 1734–1737.PubMedCrossRef McBride, W., Lange, R. A., & Hillis, L. D. (1988). Restenosis after successful coronary angioplasty. Pathophysiology and prevention. New England Journal of Medicine, 318, 1734–1737.PubMedCrossRef
4.
go back to reference Schwartz, S. M., deBlois, D., & O’Brien, E. R. (1995). The intima. Soil for atherosclerosis and restenosis. Circulation Research, 77, 445–465.PubMed Schwartz, S. M., deBlois, D., & O’Brien, E. R. (1995). The intima. Soil for atherosclerosis and restenosis. Circulation Research, 77, 445–465.PubMed
5.
go back to reference Ueda, M., Becker, A. E., Fujimoto, T., & Tsukada, T. (1991). The early phenomena of restenosis following percutaneous transluminal coronary angioplasty. European Heart Journal, 12, 937–945.PubMed Ueda, M., Becker, A. E., Fujimoto, T., & Tsukada, T. (1991). The early phenomena of restenosis following percutaneous transluminal coronary angioplasty. European Heart Journal, 12, 937–945.PubMed
6.
go back to reference Ross, R. (1986). The pathogenesis of atherosclerosis—an update. New England Journal of Medicine, 314, 488–500.PubMedCrossRef Ross, R. (1986). The pathogenesis of atherosclerosis—an update. New England Journal of Medicine, 314, 488–500.PubMedCrossRef
7.
go back to reference Chamley-Campbell, J., Campbell, G. R., & Ross, R. (1979). The smooth muscle cell in culture. Physiological Reviews, 59, 1–61.PubMed Chamley-Campbell, J., Campbell, G. R., & Ross, R. (1979). The smooth muscle cell in culture. Physiological Reviews, 59, 1–61.PubMed
8.
go back to reference Ross, R. (1993). The pathogenesis of atherosclerosis: A perspective for the 1990s. Nature, 362, 801–809.PubMedCrossRef Ross, R. (1993). The pathogenesis of atherosclerosis: A perspective for the 1990s. Nature, 362, 801–809.PubMedCrossRef
9.
go back to reference Schwartz, R. S., Holmes, D. R., Jr., & Topol, E. J. (1992). The restenosis paradigm revisited: An alternative proposal for cellular mechanisms. Journal of the American College of Cardiology, 20, 1284–1293.PubMedCrossRef Schwartz, R. S., Holmes, D. R., Jr., & Topol, E. J. (1992). The restenosis paradigm revisited: An alternative proposal for cellular mechanisms. Journal of the American College of Cardiology, 20, 1284–1293.PubMedCrossRef
10.
go back to reference Owens, G. K., Kumar, M. S., & Wamhoff, B. R. (2004). Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiological Reviews, 84, 767–801.PubMedCrossRef Owens, G. K., Kumar, M. S., & Wamhoff, B. R. (2004). Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiological Reviews, 84, 767–801.PubMedCrossRef
11.
go back to reference Liu, M. W., Roubin, G. S., & King, S. B., I. I. I. (1989). Restenosis after coronary angioplasty. Potential biologic determinants and role of intimal hyperplasia. Circulation, 79, 1374–1387.PubMedCrossRef Liu, M. W., Roubin, G. S., & King, S. B., I. I. I. (1989). Restenosis after coronary angioplasty. Potential biologic determinants and role of intimal hyperplasia. Circulation, 79, 1374–1387.PubMedCrossRef
12.
go back to reference Pauletto, P., Sartore, S., & Pessina, A. C. (1994). Smooth-muscle-cell proliferation and differentiation in neointima formation and vascular restenosis. Clinical Science (London), 87, 467–479. Pauletto, P., Sartore, S., & Pessina, A. C. (1994). Smooth-muscle-cell proliferation and differentiation in neointima formation and vascular restenosis. Clinical Science (London), 87, 467–479.
13.
go back to reference Hu, Y., Zou, Y., Dietrich, H., Wick, G., & Xu, Q. (1999). Inhibition of neointima hyperplasia of mouse vein grafts by locally applied suramin. Circulation, 100, 861–868.PubMed Hu, Y., Zou, Y., Dietrich, H., Wick, G., & Xu, Q. (1999). Inhibition of neointima hyperplasia of mouse vein grafts by locally applied suramin. Circulation, 100, 861–868.PubMed
14.
go back to reference Kim, S., Izumi, Y., Yano, M., Hamaguchi, A., Miura, K., Yamanaka, S., et al. (1998). Angiotensin blockade inhibits activation of mitogen-activated protein kinases in rat balloon-injured artery. Circulation, 97, 1731–1737.PubMed Kim, S., Izumi, Y., Yano, M., Hamaguchi, A., Miura, K., Yamanaka, S., et al. (1998). Angiotensin blockade inhibits activation of mitogen-activated protein kinases in rat balloon-injured artery. Circulation, 97, 1731–1737.PubMed
15.
go back to reference Turpaev, K. T. (2006). Role of transcription factor AP-1 in integration of cellular signalling systems. Mol Biol (Mosk), 40, 945–961.CrossRef Turpaev, K. T. (2006). Role of transcription factor AP-1 in integration of cellular signalling systems. Mol Biol (Mosk), 40, 945–961.CrossRef
16.
go back to reference Milde-Langosch, K. (2005). The Fos family of transcription factors and their role in tumourigenesis. European Journal of Cancer, 41, 2449–2461.PubMedCrossRef Milde-Langosch, K. (2005). The Fos family of transcription factors and their role in tumourigenesis. European Journal of Cancer, 41, 2449–2461.PubMedCrossRef
17.
go back to reference Raivich, G., & Behrens, A. (2006). Role of the AP-1 transcription factor c-Jun in developing, adult and injured brain. Progress in Neurobiology, 78, 347–363.PubMedCrossRef Raivich, G., & Behrens, A. (2006). Role of the AP-1 transcription factor c-Jun in developing, adult and injured brain. Progress in Neurobiology, 78, 347–363.PubMedCrossRef
18.
go back to reference Butscher, W. G., Powers, C., Olive, M., Vinson, C., & Gardner, K. (1998). Coordinate transactivation of the interleukin-2 CD28 response element by c-Rel and ATF-1/CREB2. J Biol Chem, 273, 552–560.PubMedCrossRef Butscher, W. G., Powers, C., Olive, M., Vinson, C., & Gardner, K. (1998). Coordinate transactivation of the interleukin-2 CD28 response element by c-Rel and ATF-1/CREB2. J Biol Chem, 273, 552–560.PubMedCrossRef
19.
go back to reference Hussain, S., Kilbey, A., & Gillespie, D. A. (1998). v-Jun represses c-jun proto-oncogene expression in vivo through a 12-O-tetradecanoylphorbol-13-acetate-responsive element in the proximal gene promoter. Cell Growth and Differentiation, 9, 677–686.PubMed Hussain, S., Kilbey, A., & Gillespie, D. A. (1998). v-Jun represses c-jun proto-oncogene expression in vivo through a 12-O-tetradecanoylphorbol-13-acetate-responsive element in the proximal gene promoter. Cell Growth and Differentiation, 9, 677–686.PubMed
20.
go back to reference Smith, S. E., Papavassiliou, A. G., & Bohmann, D. (1993). Different TRE-related elements are distinguished by sets of DNA-binding proteins with overlapping sequence specificity. Nucleic Acids Research, 21, 1581–1585.PubMedCrossRef Smith, S. E., Papavassiliou, A. G., & Bohmann, D. (1993). Different TRE-related elements are distinguished by sets of DNA-binding proteins with overlapping sequence specificity. Nucleic Acids Research, 21, 1581–1585.PubMedCrossRef
21.
go back to reference Fung, H., Liu, P., & Demple, B. (2007). ATF4-dependent oxidative induction of the DNA repair enzyme Ape1 counteracts arsenite cytotoxicity and suppresses arsenite-mediated mutagenesis. Molecular and Cellular Biology, 27, 8834–8847.PubMedCrossRef Fung, H., Liu, P., & Demple, B. (2007). ATF4-dependent oxidative induction of the DNA repair enzyme Ape1 counteracts arsenite cytotoxicity and suppresses arsenite-mediated mutagenesis. Molecular and Cellular Biology, 27, 8834–8847.PubMedCrossRef
22.
go back to reference Gu, D., Beltran, W. A., Li, Z., Acland, G. M., & Aguirre, G. D. (2007). Clinical light exposure, photoreceptor degeneration, and AP-1 activation: A cell death or cell survival signal in the rhodopsin mutant retina? Investigative Ophthalmology and Visual Science, 48, 4907–4918.PubMedCrossRef Gu, D., Beltran, W. A., Li, Z., Acland, G. M., & Aguirre, G. D. (2007). Clinical light exposure, photoreceptor degeneration, and AP-1 activation: A cell death or cell survival signal in the rhodopsin mutant retina? Investigative Ophthalmology and Visual Science, 48, 4907–4918.PubMedCrossRef
23.
go back to reference Hsu, M. C., Chang, H. C., & Hung, W. C. (2007). HER-2/neu transcriptionally activates Jab1 expression via the AKT/beta-catenin pathway in breast cancer cells. Endocrine-Related Cancer, 14, 655–667.PubMedCrossRef Hsu, M. C., Chang, H. C., & Hung, W. C. (2007). HER-2/neu transcriptionally activates Jab1 expression via the AKT/beta-catenin pathway in breast cancer cells. Endocrine-Related Cancer, 14, 655–667.PubMedCrossRef
24.
go back to reference Morishita, R., Gibbons, G. H., Ellison, K. E., Nakajima, M., von Der Leyen, H., Zhang, L., et al. (1994). Intimal hyperplasia after vascular injury is inhibited by antisense cdk 2 kinase oligonucleotides. Journal of Clinical Investigation, 93, 1458–1464.PubMedCrossRef Morishita, R., Gibbons, G. H., Ellison, K. E., Nakajima, M., von Der Leyen, H., Zhang, L., et al. (1994). Intimal hyperplasia after vascular injury is inhibited by antisense cdk 2 kinase oligonucleotides. Journal of Clinical Investigation, 93, 1458–1464.PubMedCrossRef
25.
go back to reference Morishita, R., Sugimoto, T., Aoki, M., Kida, I., Tomita, N., Moriguchi, A., et al. (1997). In vivo transfection of cis element “decoy” against nuclear factor-kappaB binding site prevents myocardial infarction. Nature Medicine, 3, 894–899.PubMedCrossRef Morishita, R., Sugimoto, T., Aoki, M., Kida, I., Tomita, N., Moriguchi, A., et al. (1997). In vivo transfection of cis element “decoy” against nuclear factor-kappaB binding site prevents myocardial infarction. Nature Medicine, 3, 894–899.PubMedCrossRef
26.
go back to reference Simons, M., Edelman, E. R., DeKeyser, J. L., Langer, R., & Rosenberg, R. D. (1992). Antisense c-myb oligonucleotides inhibit intimal arterial smooth muscle cell accumulation in vivo. Nature, 359, 67–70.PubMedCrossRef Simons, M., Edelman, E. R., DeKeyser, J. L., Langer, R., & Rosenberg, R. D. (1992). Antisense c-myb oligonucleotides inhibit intimal arterial smooth muscle cell accumulation in vivo. Nature, 359, 67–70.PubMedCrossRef
27.
go back to reference de la Fuente, J., Kocan, K. M., Almazan, C., & Blouin, E. F. (2007). RNA interference for the study and genetic manipulation of ticks. Trends Parasitology, 23, 427–433.CrossRef de la Fuente, J., Kocan, K. M., Almazan, C., & Blouin, E. F. (2007). RNA interference for the study and genetic manipulation of ticks. Trends Parasitology, 23, 427–433.CrossRef
28.
go back to reference Kuhn, R., Streif, S., & Wurst, W. (2007). RNA interference in mice. Handbook of Experimental Pharmacology 45:149–176. Kuhn, R., Streif, S., & Wurst, W. (2007). RNA interference in mice. Handbook of Experimental Pharmacology 45:149–176.
29.
go back to reference Li, C. X., Parker, A., Menocal, E., Xiang, S., Borodyansky, L., & Fruehauf, J. H. (2006). Delivery of RNA interference. Cell Cycle, 5, 2103–2109.PubMedCrossRef Li, C. X., Parker, A., Menocal, E., Xiang, S., Borodyansky, L., & Fruehauf, J. H. (2006). Delivery of RNA interference. Cell Cycle, 5, 2103–2109.PubMedCrossRef
30.
go back to reference Fang, S., Deng, P., & Zhao, S. (2004). Mechanism and prevention measures of gene silencing. Wei Sheng Yan Jiu, 33, 508–510.PubMed Fang, S., Deng, P., & Zhao, S. (2004). Mechanism and prevention measures of gene silencing. Wei Sheng Yan Jiu, 33, 508–510.PubMed
31.
go back to reference Zhou, J. F., Tang, Y., Liu, W. L., Sun, H. Y., Hu, J. B., & Gong, J. P. (2003). The relationship between ATM gene silence inducing apoptosis susceptibility and abnormal CDK activity. Zhonghua Xue Ye Xue Za Zhi, 24, 90–93.PubMed Zhou, J. F., Tang, Y., Liu, W. L., Sun, H. Y., Hu, J. B., & Gong, J. P. (2003). The relationship between ATM gene silence inducing apoptosis susceptibility and abnormal CDK activity. Zhonghua Xue Ye Xue Za Zhi, 24, 90–93.PubMed
32.
go back to reference Zhang, H. W., Wang, X., Zong, Z. H., Huo, X., & Zhang, Q. (2009). AP-1 inhibits expression of MMP-2/9 and its effects on rat smooth muscle cells. The Journal of surgical research, 157, e31–e37.PubMedCrossRef Zhang, H. W., Wang, X., Zong, Z. H., Huo, X., & Zhang, Q. (2009). AP-1 inhibits expression of MMP-2/9 and its effects on rat smooth muscle cells. The Journal of surgical research, 157, e31–e37.PubMedCrossRef
33.
go back to reference Chen, B. Q., Yang, Y. M., Gao, Y. H., Liu, J. R., Xue, Y. B., Wang, X. L., et al. (2003). Inhibitory effects of c9, t11-conjugated linoleic acid on invasion of human gastric carcinoma cell line SGC-7901. World Journal of Gastroenterology, 9, 1909–1914.PubMed Chen, B. Q., Yang, Y. M., Gao, Y. H., Liu, J. R., Xue, Y. B., Wang, X. L., et al. (2003). Inhibitory effects of c9, t11-conjugated linoleic acid on invasion of human gastric carcinoma cell line SGC-7901. World Journal of Gastroenterology, 9, 1909–1914.PubMed
34.
go back to reference Liu, H. K., Wang, Q., Li, Y., Sun, W. G., Liu, J. R., Yang, Y. M., et al. (2010). Inhibitory effects of gamma-tocotrienol on invasion and metastasis of human gastric adenocarcinoma SGC-7901 cells. The Journal of Nutritional Biochemistry, 21, 206–213.PubMedCrossRef Liu, H. K., Wang, Q., Li, Y., Sun, W. G., Liu, J. R., Yang, Y. M., et al. (2010). Inhibitory effects of gamma-tocotrienol on invasion and metastasis of human gastric adenocarcinoma SGC-7901 cells. The Journal of Nutritional Biochemistry, 21, 206–213.PubMedCrossRef
35.
go back to reference Liu, M., Liu, R. H., Song, B. B., Li, C. F., Lin, L. Q., Zhang, C. P., et al. (2010). Antiangiogenetic effects of varieties of four grape in vitro. Journal of Food Science, 75, T99–T104.PubMedCrossRef Liu, M., Liu, R. H., Song, B. B., Li, C. F., Lin, L. Q., Zhang, C. P., et al. (2010). Antiangiogenetic effects of varieties of four grape in vitro. Journal of Food Science, 75, T99–T104.PubMedCrossRef
36.
go back to reference Liu, J. R., Yang, B. F., Chen, B. Q., Yang, Y. M., Dong, H. W., & Song, Y. Q. (2004). Inhibition of beta-ionone on SGC-7901 cell proliferation and upregulation of metalloproteinases-1 and -2 expression. World Journal of Gastroenterology, 10, 167–171.PubMed Liu, J. R., Yang, B. F., Chen, B. Q., Yang, Y. M., Dong, H. W., & Song, Y. Q. (2004). Inhibition of beta-ionone on SGC-7901 cell proliferation and upregulation of metalloproteinases-1 and -2 expression. World Journal of Gastroenterology, 10, 167–171.PubMed
37.
go back to reference Ahn, J. D., Morishita, R., Kaneda, Y., Lee, S. J., Kwon, K. Y., Choi, S. Y., et al. (2002). Inhibitory effects of novel AP-1 decoy oligodeoxynucleotides on vascular smooth muscle cell proliferation in vitro and neointimal formation in vivo. Circulation Research, 90, 1325–1332.PubMedCrossRef Ahn, J. D., Morishita, R., Kaneda, Y., Lee, S. J., Kwon, K. Y., Choi, S. Y., et al. (2002). Inhibitory effects of novel AP-1 decoy oligodeoxynucleotides on vascular smooth muscle cell proliferation in vitro and neointimal formation in vivo. Circulation Research, 90, 1325–1332.PubMedCrossRef
38.
go back to reference Bader, A. G., Brown, D., & Winkler, M. (2011). The promise of microRNA replacement therapy. Cancer Research, 70, 7027–7030.CrossRef Bader, A. G., Brown, D., & Winkler, M. (2011). The promise of microRNA replacement therapy. Cancer Research, 70, 7027–7030.CrossRef
39.
go back to reference Akhtar, S. (2010). Cationic nanosystems for the delivery of small interfering ribonucleic acid therapeutics: A focus on toxicogenomics. Expert Opinion on Drug Metabolism and Toxicology, 6, 1347–1362.PubMedCrossRef Akhtar, S. (2010). Cationic nanosystems for the delivery of small interfering ribonucleic acid therapeutics: A focus on toxicogenomics. Expert Opinion on Drug Metabolism and Toxicology, 6, 1347–1362.PubMedCrossRef
40.
go back to reference Daley, S. J., & Gotlieb, A. I. (1996). Fibroblast growth factor receptor-1 expression is associated with neointimal formation in vitro. American Journal of Pathology, 148, 1193–1202.PubMed Daley, S. J., & Gotlieb, A. I. (1996). Fibroblast growth factor receptor-1 expression is associated with neointimal formation in vitro. American Journal of Pathology, 148, 1193–1202.PubMed
41.
go back to reference DeYoung, M. B., Tom, C., & Dichek, D. A. (2001). Plasminogen activator inhibitor type 1 increases neointima formation in balloon-injured rat carotid arteries. Circulation, 104, 1971–1972.CrossRef DeYoung, M. B., Tom, C., & Dichek, D. A. (2001). Plasminogen activator inhibitor type 1 increases neointima formation in balloon-injured rat carotid arteries. Circulation, 104, 1971–1972.CrossRef
42.
go back to reference Shi, Y., Fard, A., Galeo, A., Hutchinson, H. G., Vermani, P., Dodge, G. R., et al. (1994). Transcatheter delivery of c-myc antisense oligomers reduces neointimal formation in a porcine model of coronary artery balloon injury. Circulation, 90, 944–951.PubMed Shi, Y., Fard, A., Galeo, A., Hutchinson, H. G., Vermani, P., Dodge, G. R., et al. (1994). Transcatheter delivery of c-myc antisense oligomers reduces neointimal formation in a porcine model of coronary artery balloon injury. Circulation, 90, 944–951.PubMed
43.
go back to reference Hu, Y., Cheng, L., Hochleitner, B. W., & Xu, Q. (1997). Activation of mitogen-activated protein kinases (ERK/JNK) and AP-1 transcription factor in rat carotid arteries after balloon injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 17, 2808–2816.PubMedCrossRef Hu, Y., Cheng, L., Hochleitner, B. W., & Xu, Q. (1997). Activation of mitogen-activated protein kinases (ERK/JNK) and AP-1 transcription factor in rat carotid arteries after balloon injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 17, 2808–2816.PubMedCrossRef
44.
go back to reference Izumi, Y., Kim, S., Namba, M., Yasumoto, H., Miyazaki, H., Hoshiga, M., et al. (2001). Gene transfer of dominant-negative mutants of extracellular signal-regulated kinase and c-Jun NH2-terminal kinase prevents neointimal formation in balloon-injured rat artery. Circulation Research, 88, 1120–1126.PubMedCrossRef Izumi, Y., Kim, S., Namba, M., Yasumoto, H., Miyazaki, H., Hoshiga, M., et al. (2001). Gene transfer of dominant-negative mutants of extracellular signal-regulated kinase and c-Jun NH2-terminal kinase prevents neointimal formation in balloon-injured rat artery. Circulation Research, 88, 1120–1126.PubMedCrossRef
45.
go back to reference Pyles, J. M., March, K. L., Franklin, M., Mehdi, K., Wilensky, R. L., & Adam, L. P. (1997). Activation of MAP kinase in vivo follows balloon overstretch injury of porcine coronary and carotid arteries. Circulation Research, 81, 904–910.PubMed Pyles, J. M., March, K. L., Franklin, M., Mehdi, K., Wilensky, R. L., & Adam, L. P. (1997). Activation of MAP kinase in vivo follows balloon overstretch injury of porcine coronary and carotid arteries. Circulation Research, 81, 904–910.PubMed
46.
47.
go back to reference Di Paolo, S., Gesualdo, L., Ranieri, E., Grandaliano, G., & Schena, F. P. (1996). High glucose concentration induces the overexpression of transforming growth factor-beta through the activation of a platelet-derived growth factor loop in human mesangial cells. American Journal of Pathology, 149, 2095–2106.PubMed Di Paolo, S., Gesualdo, L., Ranieri, E., Grandaliano, G., & Schena, F. P. (1996). High glucose concentration induces the overexpression of transforming growth factor-beta through the activation of a platelet-derived growth factor loop in human mesangial cells. American Journal of Pathology, 149, 2095–2106.PubMed
48.
go back to reference Inaba, T., Ishibashi, S., Gotoda, T., Kawamura, M., Morino, N., Nojima, Y., et al. (1996). Enhanced expression of platelet-derived growth factor-beta receptor by high glucose. Involvement of platelet-derived growth factor in diabetic angiopathy. Diabetes, 45, 507–512.PubMedCrossRef Inaba, T., Ishibashi, S., Gotoda, T., Kawamura, M., Morino, N., Nojima, Y., et al. (1996). Enhanced expression of platelet-derived growth factor-beta receptor by high glucose. Involvement of platelet-derived growth factor in diabetic angiopathy. Diabetes, 45, 507–512.PubMedCrossRef
49.
go back to reference Lindner, V., Lappi, D. A., Baird, A., Majack, R. A., & Reidy, M. A. (1991). Role of basic fibroblast growth factor in vascular lesion formation. Circulation Research, 68, 106–113.PubMed Lindner, V., Lappi, D. A., Baird, A., Majack, R. A., & Reidy, M. A. (1991). Role of basic fibroblast growth factor in vascular lesion formation. Circulation Research, 68, 106–113.PubMed
50.
go back to reference Miano, J. M., Vlasic, N., Tota, R. R., & Stemerman, M. B. (1993). Smooth muscle cell immediate-early gene and growth factor activation follows vascular injury. A putative in vivo mechanism for autocrine growth. Arteriosclerosis Thrombosis, 13, 211–219.CrossRef Miano, J. M., Vlasic, N., Tota, R. R., & Stemerman, M. B. (1993). Smooth muscle cell immediate-early gene and growth factor activation follows vascular injury. A putative in vivo mechanism for autocrine growth. Arteriosclerosis Thrombosis, 13, 211–219.CrossRef
51.
go back to reference Ahn, J. D., Morishita, R., Kaneda, Y., Lee, K. U., Park, J. Y., Jeon, Y. J., et al. (2001). Transcription factor decoy for activator protein-1 (AP-1) inhibits high glucose- and angiotensin II-induced type 1 plasminogen activator inhibitor (PAI-1) gene expression in cultured human vascular smooth muscle cells. Diabetologia, 44, 713–720.PubMedCrossRef Ahn, J. D., Morishita, R., Kaneda, Y., Lee, K. U., Park, J. Y., Jeon, Y. J., et al. (2001). Transcription factor decoy for activator protein-1 (AP-1) inhibits high glucose- and angiotensin II-induced type 1 plasminogen activator inhibitor (PAI-1) gene expression in cultured human vascular smooth muscle cells. Diabetologia, 44, 713–720.PubMedCrossRef
52.
go back to reference Morishita, R., Gibbons, G. H., Horiuchi, M., Kaneda, Y., Ogihara, T., & Dzau, V. J. (1998). Role of AP-1 complex in angiotensin II-mediated transforming growth factor-beta expression and growth of smooth muscle cells: Using decoy approach against AP-1 binding site. Biochemical and Biophysical Research Communications, 243, 361–367.PubMedCrossRef Morishita, R., Gibbons, G. H., Horiuchi, M., Kaneda, Y., Ogihara, T., & Dzau, V. J. (1998). Role of AP-1 complex in angiotensin II-mediated transforming growth factor-beta expression and growth of smooth muscle cells: Using decoy approach against AP-1 binding site. Biochemical and Biophysical Research Communications, 243, 361–367.PubMedCrossRef
53.
go back to reference Smith, J. D., Bryant, S. R., Couper, L. L., Vary, C. P., Gotwals, P. J., Koteliansky, V. E., et al. (1999). Soluble transforming growth factor-beta type II receptor inhibits negative remodeling, fibroblast transdifferentiation, and intimal lesion formation but not endothelial growth. Circulation Research, 84, 1212–1222.PubMed Smith, J. D., Bryant, S. R., Couper, L. L., Vary, C. P., Gotwals, P. J., Koteliansky, V. E., et al. (1999). Soluble transforming growth factor-beta type II receptor inhibits negative remodeling, fibroblast transdifferentiation, and intimal lesion formation but not endothelial growth. Circulation Research, 84, 1212–1222.PubMed
54.
go back to reference Lauth, M., Wagner, A. H., Cattaruzza, M., Orzechowski, H. D., Paul, M., & Hecker, M. (2000). Transcriptional control of deformation-induced preproendothelin-1 gene expression in endothelial cells. Journal of Molecular Medicine, 78, 441–450.PubMedCrossRef Lauth, M., Wagner, A. H., Cattaruzza, M., Orzechowski, H. D., Paul, M., & Hecker, M. (2000). Transcriptional control of deformation-induced preproendothelin-1 gene expression in endothelial cells. Journal of Molecular Medicine, 78, 441–450.PubMedCrossRef
55.
go back to reference Shichiri, M., Yokokura, M., Marumo, F., & Hirata, Y. (2000). Endothelin-1 inhibits apoptosis of vascular smooth muscle cells induced by nitric oxide and serum deprivation via MAP kinase pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 20, 989–997.PubMedCrossRef Shichiri, M., Yokokura, M., Marumo, F., & Hirata, Y. (2000). Endothelin-1 inhibits apoptosis of vascular smooth muscle cells induced by nitric oxide and serum deprivation via MAP kinase pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 20, 989–997.PubMedCrossRef
56.
go back to reference Hahn, A. W., Regenass, S., Resink, T. J., Kern, F., & Buhler, F. R. (1993). Morphogenic effects of endothelin-1 on vascular smooth muscle cells. Journal of Vascular Research, 30, 192–201.PubMedCrossRef Hahn, A. W., Regenass, S., Resink, T. J., Kern, F., & Buhler, F. R. (1993). Morphogenic effects of endothelin-1 on vascular smooth muscle cells. Journal of Vascular Research, 30, 192–201.PubMedCrossRef
57.
go back to reference Edelman, E. R., Simons, M., Sirois, M. G., & Rosenberg, R. D. (1995). c-myc in vasculoproliferative disease. Circulation Research, 76, 176–182.PubMed Edelman, E. R., Simons, M., Sirois, M. G., & Rosenberg, R. D. (1995). c-myc in vasculoproliferative disease. Circulation Research, 76, 176–182.PubMed
58.
go back to reference Inui, H., Kitami, Y., Tani, M., Kondo, T., & Inagami, T. (1994). Differences in signal transduction between platelet-derived growth factor (PDGF) alpha and beta receptors in vascular smooth muscle cells. PDGF-BB is a potent mitogen, but PDGF-AA promotes only protein synthesis without activation of DNA synthesis. Journal of Biological Chemistry, 269, 30546–30552.PubMed Inui, H., Kitami, Y., Tani, M., Kondo, T., & Inagami, T. (1994). Differences in signal transduction between platelet-derived growth factor (PDGF) alpha and beta receptors in vascular smooth muscle cells. PDGF-BB is a potent mitogen, but PDGF-AA promotes only protein synthesis without activation of DNA synthesis. Journal of Biological Chemistry, 269, 30546–30552.PubMed
59.
go back to reference Heldin, C. H., & Westermark, B. (1999). Mechanism of action and in vivo role of platelet-derived growth factor. Physiological Reviews, 79, 1283–1316.PubMed Heldin, C. H., & Westermark, B. (1999). Mechanism of action and in vivo role of platelet-derived growth factor. Physiological Reviews, 79, 1283–1316.PubMed
60.
go back to reference Li, J., Huang, S. L., & Guo, Z. G. (2000). Platelet-derived growth factor stimulated vascular smooth muscle cell proliferation and its molecular mechanism. Acta Pharmacologica Sinica, 21, 340–344.PubMed Li, J., Huang, S. L., & Guo, Z. G. (2000). Platelet-derived growth factor stimulated vascular smooth muscle cell proliferation and its molecular mechanism. Acta Pharmacologica Sinica, 21, 340–344.PubMed
61.
go back to reference Karin, M., Liu, Z., & Zandi, E. (1997). AP-1 function and regulation. Current Opinion in Cell Biology, 9, 240–246.PubMedCrossRef Karin, M., Liu, Z., & Zandi, E. (1997). AP-1 function and regulation. Current Opinion in Cell Biology, 9, 240–246.PubMedCrossRef
62.
63.
go back to reference Campbell, J. H., Kocher, O., Skalli, O., Gabbiani, G., & Campbell, G. R. (1989). Cytodifferentiation and expression of alpha-smooth muscle actin mRNA and protein during primary culture of aortic smooth muscle cells. Correlation with cell density and proliferative state. Arteriosclerosis, 9, 633–643.PubMedCrossRef Campbell, J. H., Kocher, O., Skalli, O., Gabbiani, G., & Campbell, G. R. (1989). Cytodifferentiation and expression of alpha-smooth muscle actin mRNA and protein during primary culture of aortic smooth muscle cells. Correlation with cell density and proliferative state. Arteriosclerosis, 9, 633–643.PubMedCrossRef
64.
go back to reference Kocher, O., & Gabbiani, G. (1986). Expression of actin mRNAs in rat aortic smooth muscle cells during development, experimental intimal thickening, and culture. Differentiation, 32, 245–251.PubMedCrossRef Kocher, O., & Gabbiani, G. (1986). Expression of actin mRNAs in rat aortic smooth muscle cells during development, experimental intimal thickening, and culture. Differentiation, 32, 245–251.PubMedCrossRef
65.
go back to reference Corjay, M. H., Thompson, M. M., Lynch, K. R., & Owens, G. K. (1989). Differential effect of platelet-derived growth factor- versus serum-induced growth on smooth muscle alpha-actin and non muscle beta-actin mRNA expression in cultured rat aortic smooth muscle cells. Journal of Biological Chemistry, 264, 10501–10506.PubMed Corjay, M. H., Thompson, M. M., Lynch, K. R., & Owens, G. K. (1989). Differential effect of platelet-derived growth factor- versus serum-induced growth on smooth muscle alpha-actin and non muscle beta-actin mRNA expression in cultured rat aortic smooth muscle cells. Journal of Biological Chemistry, 264, 10501–10506.PubMed
66.
go back to reference Miano, J. M., Tota, R. R., Vlasic, N., Danishefsky, K. J., & Stemerman, M. B. (1990). Early proto-oncogene expression in rat aortic smooth muscle cells following endothelial removal. American Journal of Pathology, 137, 761–765.PubMed Miano, J. M., Tota, R. R., Vlasic, N., Danishefsky, K. J., & Stemerman, M. B. (1990). Early proto-oncogene expression in rat aortic smooth muscle cells following endothelial removal. American Journal of Pathology, 137, 761–765.PubMed
67.
go back to reference Miano, J. M., Vlasic, N., Tota, R. R., & Stemerman, M. B. (1993). Localization of Fos and Jun proteins in rat aortic smooth muscle cells after vascular injury. American Journal of Pathology, 142, 715–724.PubMed Miano, J. M., Vlasic, N., Tota, R. R., & Stemerman, M. B. (1993). Localization of Fos and Jun proteins in rat aortic smooth muscle cells after vascular injury. American Journal of Pathology, 142, 715–724.PubMed
68.
go back to reference Bendeck, M. P., Zempo, N., Clowes, A. W., Galardy, R. E., & Reidy, M. A. (1994). Smooth muscle cell migration and matrix metalloproteinase expression after arterial injury in the rat. Circulation Research, 75, 539–545.PubMed Bendeck, M. P., Zempo, N., Clowes, A. W., Galardy, R. E., & Reidy, M. A. (1994). Smooth muscle cell migration and matrix metalloproteinase expression after arterial injury in the rat. Circulation Research, 75, 539–545.PubMed
69.
go back to reference Galis, Z. S., Sukhova, G. K., & Libby, P. (1995). Microscopic localization of active proteases by in situ zymography: Detection of matrix metalloproteinase activity in vascular tissue. The FASEB Journal, 9, 974–980.PubMed Galis, Z. S., Sukhova, G. K., & Libby, P. (1995). Microscopic localization of active proteases by in situ zymography: Detection of matrix metalloproteinase activity in vascular tissue. The FASEB Journal, 9, 974–980.PubMed
70.
go back to reference Newby, A. C., Southgate, K. M., & Davies, M. (1994). Extracellular matrix degrading metalloproteinases in the pathogenesis of arteriosclerosis. Basic Research in Cardiology 89(Suppl 1):59–70. Newby, A. C., Southgate, K. M., & Davies, M. (1994). Extracellular matrix degrading metalloproteinases in the pathogenesis of arteriosclerosis. Basic Research in Cardiology 89(Suppl 1):59–70.
Metadata
Title
Toxicological Insight from AP-1 Silencing Study on Proliferation, Migration, and Dedifferentiation of Rat Vascular Smooth Muscle Cell
Authors
Hong-Wei Zhang
Tao Zhang
Bao-Zhong Shen
Ming Liu
Jia-Ren Liu
Publication date
01-03-2012
Publisher
Humana Press Inc
Published in
Cardiovascular Toxicology / Issue 1/2012
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-011-9135-x

Other articles of this Issue 1/2012

Cardiovascular Toxicology 1/2012 Go to the issue