Skip to main content
Top
Published in: Cardiovascular Toxicology 1/2011

Open Access 01-03-2011

Gene Expression, Function and Ischemia Tolerance in Male and Female Rat Hearts After Sub-Toxic Levels of Angiotensin II

Authors: M. B. Aljabri, T. Lund, A. C. Höper, T. V. Andreasen, S. Al-Saad, S. Lindal, K. Ytrehus

Published in: Cardiovascular Toxicology | Issue 1/2011

Login to get access

Abstract

To examine the response to chronic high-dose angiotensin II (Ang II) and a proposed milder response in female hearts with respect to gene expression and ischemic injury. Female and male litter–matched rats were treated with 400 ng kg−1 min−1 Ang II for 14 days. Hearts were isolated, subjected to 30-min ischemia and 30-min reperfusion in combination with functional monitoring and thereafter harvested for gene expression, WB and histology. Ang II-treated hearts showed signs of non-hypertrophic remodeling and had significantly higher end diastolic pressure after reperfusion, but no significant gender difference was detected. Ang II increased expression of genes related to heart function (ANF, β-MCH, Ankrd-1, PKC-α, PKC-δ TNF-α); fibrosis (Col I-α1, Col III-α1, Fn-1, Timp1) and apoptosis (P53, Casp-3) without changing heart weight but with 68% increase in collagen content. High (sub-toxic) dose of Ang II resulted in marked heart remodeling and diastolic dysfunction after ischemia without significant myocyte hypertrophy or ventricular chamber dilatation. Although there were some gender-dependent differences in gene expression, female gender did not protect against the overall response.
Literature
1.
go back to reference Sun, Y. (2010). Intracardiac renin-angiotensin system and myocardial repair/remodeling following infarction. Journal of Molecular and Cellular Cardiology, 48(3), 483–489.CrossRefPubMed Sun, Y. (2010). Intracardiac renin-angiotensin system and myocardial repair/remodeling following infarction. Journal of Molecular and Cellular Cardiology, 48(3), 483–489.CrossRefPubMed
2.
go back to reference Mehta, P. K., & Griendling, K. K. (2007). Angiotensin II cell signaling: Physiological and pathological effects in the cardiovascular system. American Journal of Physiology. Cell Physiology, 292(1), C82–C97.CrossRefPubMed Mehta, P. K., & Griendling, K. K. (2007). Angiotensin II cell signaling: Physiological and pathological effects in the cardiovascular system. American Journal of Physiology. Cell Physiology, 292(1), C82–C97.CrossRefPubMed
3.
go back to reference Zhou, J., Xu, X., Liu, J. J., Lin, Y. X., & Gao, G. D. (2007). Angiotensin II receptors subtypes mediate diverse gene expression profile in adult hypertrophic cardiomyocytes. Clinical and Experimental Pharmacology and Physiology, 34(11), 1191–1198.PubMed Zhou, J., Xu, X., Liu, J. J., Lin, Y. X., & Gao, G. D. (2007). Angiotensin II receptors subtypes mediate diverse gene expression profile in adult hypertrophic cardiomyocytes. Clinical and Experimental Pharmacology and Physiology, 34(11), 1191–1198.PubMed
4.
go back to reference Kossmehl, P., Kurth, E., Faramarzi, S., Habighorst, B., Shakibaei, M., Wehland, M., et al. (2006). Mechanisms of apoptosis after ischemia and reperfusion: Role of the renin-angiotensin system. Apoptosis, 11(3), 347–358.CrossRefPubMed Kossmehl, P., Kurth, E., Faramarzi, S., Habighorst, B., Shakibaei, M., Wehland, M., et al. (2006). Mechanisms of apoptosis after ischemia and reperfusion: Role of the renin-angiotensin system. Apoptosis, 11(3), 347–358.CrossRefPubMed
5.
go back to reference Ferrario, C. M., Trask, A. J., & Jessup, J. A. (2005). Advances in biochemical and functional roles of angiotensin-converting enzyme 2 and angiotensin-(1–7) in regulation of cardiovascular function. American Journal of Physiology. Heart and Circulatory Physiology, 289(6), H2281–H2290.CrossRefPubMed Ferrario, C. M., Trask, A. J., & Jessup, J. A. (2005). Advances in biochemical and functional roles of angiotensin-converting enzyme 2 and angiotensin-(1–7) in regulation of cardiovascular function. American Journal of Physiology. Heart and Circulatory Physiology, 289(6), H2281–H2290.CrossRefPubMed
6.
go back to reference Carroll, J. D., Carroll, E. P., Feldman, T., Ward, D. M., Lang, R. M., McGaughey, D., et al. (1992). Sex-associated differences in left ventricular function in aortic stenosis of the elderly. Circulation, 86(4), 1099–1107.PubMed Carroll, J. D., Carroll, E. P., Feldman, T., Ward, D. M., Lang, R. M., McGaughey, D., et al. (1992). Sex-associated differences in left ventricular function in aortic stenosis of the elderly. Circulation, 86(4), 1099–1107.PubMed
7.
go back to reference Jain, M., Liao, R., Podesser, B. K., Ngoy, S., Apstein, C. S., & Eberli, F. R. (2002). Influence of gender on the response to hemodynamic overload after myocardial infarction. American Journal of Physiology. Heart and Circulatory Physiology, 283(6), H2544–H2550.PubMed Jain, M., Liao, R., Podesser, B. K., Ngoy, S., Apstein, C. S., & Eberli, F. R. (2002). Influence of gender on the response to hemodynamic overload after myocardial infarction. American Journal of Physiology. Heart and Circulatory Physiology, 283(6), H2544–H2550.PubMed
8.
go back to reference Podesser, B. K., Jain, M., Ngoy, S., Apstein, C. S., & Eberli, F. R. (2007). Unveiling gender differences in demand ischemia: A study in a rat model of genetic hypertension. European Journal of Cardio-Thoracic Surgery, 31(2), 298–304.CrossRefPubMed Podesser, B. K., Jain, M., Ngoy, S., Apstein, C. S., & Eberli, F. R. (2007). Unveiling gender differences in demand ischemia: A study in a rat model of genetic hypertension. European Journal of Cardio-Thoracic Surgery, 31(2), 298–304.CrossRefPubMed
9.
go back to reference Douglas, P. S., Katz, S. E., Weinberg, E. O., Chen, M. H., Bishop, S. P., & Lorell, B. H. (1998). Hypertrophic remodeling: Gender differences in the early response to left ventricular pressure overload. Journal of the American College of Cardiology, 32(4), 1118–1125.CrossRefPubMed Douglas, P. S., Katz, S. E., Weinberg, E. O., Chen, M. H., Bishop, S. P., & Lorell, B. H. (1998). Hypertrophic remodeling: Gender differences in the early response to left ventricular pressure overload. Journal of the American College of Cardiology, 32(4), 1118–1125.CrossRefPubMed
10.
go back to reference Murphy, E., & Steenbergen, C. (2007). Gender-based differences in mechanisms of protection in myocardial ischemia-reperfusion injury. Cardiovascular Research, 75(3), 478–486.CrossRefPubMed Murphy, E., & Steenbergen, C. (2007). Gender-based differences in mechanisms of protection in myocardial ischemia-reperfusion injury. Cardiovascular Research, 75(3), 478–486.CrossRefPubMed
11.
go back to reference Rice, K. M., Wu, M., & Blough, E. R. (2008). Aortic aging in the Fischer 344/NNiaHSd × Brown Norway/BiNia Rat. Journal of Pharmacological Sciences, 108(4), 393–398.CrossRefPubMed Rice, K. M., Wu, M., & Blough, E. R. (2008). Aortic aging in the Fischer 344/NNiaHSd × Brown Norway/BiNia Rat. Journal of Pharmacological Sciences, 108(4), 393–398.CrossRefPubMed
12.
go back to reference Turturro, A., Witt, W. W., Lewis, S., Hass, B. S., Lipman, R. D., & Hart, R. W. (1999). Growth curves and survival characteristics of the animals used in the biomarkers of aging program. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 54(11), B492–B501.CrossRef Turturro, A., Witt, W. W., Lewis, S., Hass, B. S., Lipman, R. D., & Hart, R. W. (1999). Growth curves and survival characteristics of the animals used in the biomarkers of aging program. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 54(11), B492–B501.CrossRef
13.
go back to reference Hegstad, A. C., Antonsen, O. H., & Ytrehus, K. (1997). Low concentrations of hydrogen peroxide improve post-ischaemic metabolic and functional recovery in isolated perfused rat hearts. Journal of Molecular and Cellular Cardiology, 29(10), 2779–2787.CrossRefPubMed Hegstad, A. C., Antonsen, O. H., & Ytrehus, K. (1997). Low concentrations of hydrogen peroxide improve post-ischaemic metabolic and functional recovery in isolated perfused rat hearts. Journal of Molecular and Cellular Cardiology, 29(10), 2779–2787.CrossRefPubMed
14.
go back to reference Starkopf, J., Bugge, E., & Ytrehus, K. (1997). Preischemic bradykinin and ischaemic preconditioning in functional recovery of the globally ischaemic rat heart. Cardiovascular Research, 33(1), 63–70.CrossRefPubMed Starkopf, J., Bugge, E., & Ytrehus, K. (1997). Preischemic bradykinin and ischaemic preconditioning in functional recovery of the globally ischaemic rat heart. Cardiovascular Research, 33(1), 63–70.CrossRefPubMed
15.
go back to reference Pfaffl, M. W., Horgan, G. W., & Dempfle, L. (2002). Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research, 30(9), e36.CrossRefPubMed Pfaffl, M. W., Horgan, G. W., & Dempfle, L. (2002). Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research, 30(9), e36.CrossRefPubMed
16.
go back to reference McDowell, E. M., & Trump, B. F. (1976). Histologic fixatives suitable for diagnostic light and electron microscopy. Archives of Pathology and Laboratory Medicine, 100(8), 405–414.PubMed McDowell, E. M., & Trump, B. F. (1976). Histologic fixatives suitable for diagnostic light and electron microscopy. Archives of Pathology and Laboratory Medicine, 100(8), 405–414.PubMed
17.
go back to reference Junqueira, L. C., Bignolas, G., & Brentani, R. R. (1979). Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. The Histochemical journal, 11(4), 447–455.CrossRefPubMed Junqueira, L. C., Bignolas, G., & Brentani, R. R. (1979). Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. The Histochemical journal, 11(4), 447–455.CrossRefPubMed
18.
go back to reference Kim, S., Ohta, K., Hamaguchi, A., Yukimura, T., Miura, K., & Iwao, H. (1995). Angiotensin II induces cardiac phenotypic modulation and remodeling in vivo in rats. Hypertension, 25(6), 1252–1259.PubMed Kim, S., Ohta, K., Hamaguchi, A., Yukimura, T., Miura, K., & Iwao, H. (1995). Angiotensin II induces cardiac phenotypic modulation and remodeling in vivo in rats. Hypertension, 25(6), 1252–1259.PubMed
19.
go back to reference Brink, M., Price, S. R., Chrast, J., Bailey, J. L., Anwar, A., Mitch, W. E., et al. (2001). Angiotensin II induces skeletal muscle wasting through enhanced protein degradation and down-regulates autocrine insulin-like growth factor I. Endocrinology, 142(4), 1489–1496.CrossRefPubMed Brink, M., Price, S. R., Chrast, J., Bailey, J. L., Anwar, A., Mitch, W. E., et al. (2001). Angiotensin II induces skeletal muscle wasting through enhanced protein degradation and down-regulates autocrine insulin-like growth factor I. Endocrinology, 142(4), 1489–1496.CrossRefPubMed
20.
go back to reference Brink, M., Wellen, J., & Delafontaine, P. (1996). Angiotensin II causes weight loss and decreases circulating insulin-like growth factor I in rats through a pressor-independent mechanism. The Journal of Clinical Investigation, 97(11), 2509–2516.CrossRefPubMed Brink, M., Wellen, J., & Delafontaine, P. (1996). Angiotensin II causes weight loss and decreases circulating insulin-like growth factor I in rats through a pressor-independent mechanism. The Journal of Clinical Investigation, 97(11), 2509–2516.CrossRefPubMed
21.
go back to reference Delafontaine, P., & Akao, M. (2006). Angiotensin II as candidate of cardiac cachexia. Current Opinion in Clinical Nutrition and Metabolic Care, 9(3), 220–224.CrossRefPubMed Delafontaine, P., & Akao, M. (2006). Angiotensin II as candidate of cardiac cachexia. Current Opinion in Clinical Nutrition and Metabolic Care, 9(3), 220–224.CrossRefPubMed
22.
go back to reference Suo, M., Hautala, N., Foldes, G., Szokodi, I., Toth, M., Leskinen, H., et al. (2002). Posttranscriptional control of BNP gene expression in angiotensin II-induced hypertension. Hypertension, 39(3), 803–808.CrossRefPubMed Suo, M., Hautala, N., Foldes, G., Szokodi, I., Toth, M., Leskinen, H., et al. (2002). Posttranscriptional control of BNP gene expression in angiotensin II-induced hypertension. Hypertension, 39(3), 803–808.CrossRefPubMed
23.
go back to reference Desrois, M., Sidell, R. J., Gauguier, D., Davey, C. L., Radda, G. K., & Clarke, K. (2004). Gender differences in hypertrophy, insulin resistance and ischemic injury in the aging type 2 diabetic rat heart. Journal of Molecular and Cellular Cardiology, 37(2), 547–555.CrossRefPubMed Desrois, M., Sidell, R. J., Gauguier, D., Davey, C. L., Radda, G. K., & Clarke, K. (2004). Gender differences in hypertrophy, insulin resistance and ischemic injury in the aging type 2 diabetic rat heart. Journal of Molecular and Cellular Cardiology, 37(2), 547–555.CrossRefPubMed
24.
go back to reference Weinberg, E. O., Thienelt, C. D., Katz, S. E., Bartunek, J., Tajima, M., Rohrbach, S., et al. (1999). Gender differences in molecular remodeling in pressure overload hypertrophy. Journal of the American College of Cardiology, 34(1), 264–273.CrossRefPubMed Weinberg, E. O., Thienelt, C. D., Katz, S. E., Bartunek, J., Tajima, M., Rohrbach, S., et al. (1999). Gender differences in molecular remodeling in pressure overload hypertrophy. Journal of the American College of Cardiology, 34(1), 264–273.CrossRefPubMed
25.
go back to reference Cabral, A. M., Vasquez, E. C., Moyses, M. R., & Antonio, A. (1988). Sex hormone modulation of ventricular hypertrophy in sinoaortic denervated rats. Hypertension, 11(2 Pt 2), I93–I97.PubMed Cabral, A. M., Vasquez, E. C., Moyses, M. R., & Antonio, A. (1988). Sex hormone modulation of ventricular hypertrophy in sinoaortic denervated rats. Hypertension, 11(2 Pt 2), I93–I97.PubMed
26.
go back to reference Satoh, M., Matter, C. M., Ogita, H., Takeshita, K., Wang, C. Y., Dorn, G. W., et al. (2007). Inhibition of apoptosis-regulated signaling kinase-1 and prevention of congestive heart failure by estrogen. Circulation, 115(25), 3197–3204.CrossRefPubMed Satoh, M., Matter, C. M., Ogita, H., Takeshita, K., Wang, C. Y., Dorn, G. W., et al. (2007). Inhibition of apoptosis-regulated signaling kinase-1 and prevention of congestive heart failure by estrogen. Circulation, 115(25), 3197–3204.CrossRefPubMed
27.
go back to reference Saeedi, R., Wambolt, R. B., Parsons, H., Antler, C., Leong, H. S., Keller, A., et al. (2006). Gender and post-ischemic recovery of hypertrophied rat hearts. BMC Cardiovascular Disorders, 6, 8.CrossRefPubMed Saeedi, R., Wambolt, R. B., Parsons, H., Antler, C., Leong, H. S., Keller, A., et al. (2006). Gender and post-ischemic recovery of hypertrophied rat hearts. BMC Cardiovascular Disorders, 6, 8.CrossRefPubMed
28.
go back to reference Nickenig, G., Baumer, A. T., Grohe, C., Kahlert, S., Strehlow, K., Rosenkranz, S., et al. (1998). Estrogen modulates AT1 receptor gene expression in vitro and in vivo. Circulation, 97(22), 2197–2201.PubMed Nickenig, G., Baumer, A. T., Grohe, C., Kahlert, S., Strehlow, K., Rosenkranz, S., et al. (1998). Estrogen modulates AT1 receptor gene expression in vitro and in vivo. Circulation, 97(22), 2197–2201.PubMed
29.
go back to reference Litten, R. Z., III, Martin, B. J., Low, R. B., & Alpert, N. R. (1982). Altered myosin isozyme patterns from pressure-overloaded and thyrotoxic hypertrophied rabbit hearts. Circulation Research, 50(6), 856–864.PubMed Litten, R. Z., III, Martin, B. J., Low, R. B., & Alpert, N. R. (1982). Altered myosin isozyme patterns from pressure-overloaded and thyrotoxic hypertrophied rabbit hearts. Circulation Research, 50(6), 856–864.PubMed
30.
go back to reference Mikhailov, A. T., & Torrado, M. (2008). The enigmatic role of the ankyrin repeat domain 1 gene in heart development and disease. International Journal of Developmental Biology, 52(7), 811–821.CrossRefPubMed Mikhailov, A. T., & Torrado, M. (2008). The enigmatic role of the ankyrin repeat domain 1 gene in heart development and disease. International Journal of Developmental Biology, 52(7), 811–821.CrossRefPubMed
31.
go back to reference Hidalgo, C., Hudson, B., Bogomolovas, J., Zhu, Y., Anderson, B., Greaser, M., et al. (2009). PKC phosphorylation of titin’s PEVK element: A novel and conserved pathway for modulating myocardial stiffness. Circulation Research, 105(7), 631–638. 17.CrossRefPubMed Hidalgo, C., Hudson, B., Bogomolovas, J., Zhu, Y., Anderson, B., Greaser, M., et al. (2009). PKC phosphorylation of titin’s PEVK element: A novel and conserved pathway for modulating myocardial stiffness. Circulation Research, 105(7), 631–638. 17.CrossRefPubMed
32.
go back to reference Sivaraman, V., Hausenloy, D. J., Kolvekar, S., Hayward, M., Yap, J., Lawrence, D., et al. (2009). The divergent roles of protein kinase C epsilon and delta in simulated ischaemia-reperfusion injury in human myocardium. Journal of Molecular and Cellular Cardiology, 46(5), 758–764.CrossRefPubMed Sivaraman, V., Hausenloy, D. J., Kolvekar, S., Hayward, M., Yap, J., Lawrence, D., et al. (2009). The divergent roles of protein kinase C epsilon and delta in simulated ischaemia-reperfusion injury in human myocardium. Journal of Molecular and Cellular Cardiology, 46(5), 758–764.CrossRefPubMed
33.
go back to reference Braz, J. C., Gregory, K., Pathak, A., Zhao, W., Sahin, B., Klevitsky, R., et al. (2004). PKC-alpha regulates cardiac contractility and propensity toward heart failure. Nature Medicine, 10(3), 248–254.CrossRefPubMed Braz, J. C., Gregory, K., Pathak, A., Zhao, W., Sahin, B., Klevitsky, R., et al. (2004). PKC-alpha regulates cardiac contractility and propensity toward heart failure. Nature Medicine, 10(3), 248–254.CrossRefPubMed
34.
go back to reference Palaniyandi, S. S., Sun, L., Ferreira, J. C., & Mochly-Rosen, D. (2009). Protein kinase C in heart failure: A therapeutic target? Cardiovascular Research, 82(2), 229–239.CrossRefPubMed Palaniyandi, S. S., Sun, L., Ferreira, J. C., & Mochly-Rosen, D. (2009). Protein kinase C in heart failure: A therapeutic target? Cardiovascular Research, 82(2), 229–239.CrossRefPubMed
35.
go back to reference Churchill, E., Budas, G., Vallentin, A., Koyanagi, T., & Mochly-Rosen, D. (2008). PKC isozymes in chronic cardiac disease: Possible therapeutic targets? Annual Review of Pharmacology and Toxicology, 48, 569–599.CrossRefPubMed Churchill, E., Budas, G., Vallentin, A., Koyanagi, T., & Mochly-Rosen, D. (2008). PKC isozymes in chronic cardiac disease: Possible therapeutic targets? Annual Review of Pharmacology and Toxicology, 48, 569–599.CrossRefPubMed
36.
go back to reference Nishida, M., Sato, Y., Uemura, A., Narita, Y., Tozaki-Saitoh, H., Nakaya, M., et al. (2008). P2Y6 receptor-Galpha12/13 signalling in cardiomyocytes triggers pressure overload-induced cardiac fibrosis. The EMBO Journal, 27(23), 3104–3115.CrossRefPubMed Nishida, M., Sato, Y., Uemura, A., Narita, Y., Tozaki-Saitoh, H., Nakaya, M., et al. (2008). P2Y6 receptor-Galpha12/13 signalling in cardiomyocytes triggers pressure overload-induced cardiac fibrosis. The EMBO Journal, 27(23), 3104–3115.CrossRefPubMed
37.
go back to reference Miyashita, T., & Reed, J. C. (1995). Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell, 80(2), 293–299.CrossRefPubMed Miyashita, T., & Reed, J. C. (1995). Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell, 80(2), 293–299.CrossRefPubMed
38.
go back to reference Holly, T. A., Drincic, A., Byun, Y., Nakamura, S., Harris, K., Klocke, F. J., et al. (1999). Caspase inhibition reduces myocyte cell death induced by myocardial ischemia and reperfusion in vivo. Journal of Molecular and Cellular Cardiology, 31(9), 1709–1715.CrossRefPubMed Holly, T. A., Drincic, A., Byun, Y., Nakamura, S., Harris, K., Klocke, F. J., et al. (1999). Caspase inhibition reduces myocyte cell death induced by myocardial ischemia and reperfusion in vivo. Journal of Molecular and Cellular Cardiology, 31(9), 1709–1715.CrossRefPubMed
39.
go back to reference Han, E. S., Muller, F. L., Perez, V. I., Qi, W., Liang, H., Xi, L., et al. (2008). The in vivo gene expression signature of oxidative stress. Physiological Genomics, 34(1), 112–126.CrossRefPubMed Han, E. S., Muller, F. L., Perez, V. I., Qi, W., Liang, H., Xi, L., et al. (2008). The in vivo gene expression signature of oxidative stress. Physiological Genomics, 34(1), 112–126.CrossRefPubMed
40.
go back to reference White, C. N., Figtree, G. A., Liu, C. C., Garcia, A., Hamilton, E. J., Chia, K. K., et al. (2009). Angiotensin II inhibits the Na + -K + pump via PKC-dependent activation of NADPH oxidase. American Journal of Physiology. Cell Physiolog, 296(4), C693–C700.CrossRef White, C. N., Figtree, G. A., Liu, C. C., Garcia, A., Hamilton, E. J., Chia, K. K., et al. (2009). Angiotensin II inhibits the Na + -K + pump via PKC-dependent activation of NADPH oxidase. American Journal of Physiology. Cell Physiolog, 296(4), C693–C700.CrossRef
41.
go back to reference Ficai, S., Herizi, A., Mimran, A., & Jover, B. (2001). Endothelin blockade in angiotensin II hypertension: Prevention and treatment studies in the rat. Clinical and Experimental Pharmacology and Physiology, 28(12), 1100–1103.CrossRefPubMed Ficai, S., Herizi, A., Mimran, A., & Jover, B. (2001). Endothelin blockade in angiotensin II hypertension: Prevention and treatment studies in the rat. Clinical and Experimental Pharmacology and Physiology, 28(12), 1100–1103.CrossRefPubMed
Metadata
Title
Gene Expression, Function and Ischemia Tolerance in Male and Female Rat Hearts After Sub-Toxic Levels of Angiotensin II
Authors
M. B. Aljabri
T. Lund
A. C. Höper
T. V. Andreasen
S. Al-Saad
S. Lindal
K. Ytrehus
Publication date
01-03-2011
Publisher
Humana Press Inc
Published in
Cardiovascular Toxicology / Issue 1/2011
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-010-9100-0

Other articles of this Issue 1/2011

Cardiovascular Toxicology 1/2011 Go to the issue