Skip to main content
Top
Published in: Current Treatment Options in Neurology 3/2020

01-03-2020 | Central Nervous System Trauma | Critical Care Neurology (H Hinson, Section Editor)

Cerebral Edema in Traumatic Brain Injury: a Historical Framework for Current Therapy

Authors: Benjamin E. Zusman, BSc, Patrick M. Kochanek, MD, Ruchira M. Jha, MD MSc

Published in: Current Treatment Options in Neurology | Issue 3/2020

Login to get access

Abstract

Purpose of review

The purposes of this narrative review are to (1) summarize a contemporary view of cerebral edema pathophysiology, (2) present a synopsis of current management strategies in the context of their historical roots (many of which date back multiple centuries), and (3) discuss contributions of key molecular pathways to overlapping edema endophenotypes. This may facilitate identification of important therapeutic targets.

Recent findings

Cerebral edema and resultant intracranial hypertension are major contributors to morbidity and mortality following traumatic brain injury. Although Starling forces are physical drivers of edema based on differences in intravascular vs extracellular hydrostatic and oncotic pressures, the molecular pathophysiology underlying cerebral edema is complex and remains incompletely understood. Current management protocols are guided by intracranial pressure measurements, an imperfect proxy for cerebral edema. These include decompressive craniectomy, external ventricular drainage, hyperosmolar therapy, hypothermia, and sedation. Results of contemporary clinical trials assessing these treatments are summarized, with an emphasis on the gap between intermediate measures of edema and meaningful clinical outcomes. This is followed by a brief statement summarizing the most recent guidelines from the Brain Trauma Foundation (4th edition). While many molecular mechanisms and networks contributing to cerebral edema after TBI are still being elucidated, we highlight some promising molecular mechanism-based targets based on recent research including SUR1-TRPM4, NKCC1, AQP4, and AVP1.

Summary

This review outlines the origins of our understanding of cerebral edema, chronicles the history behind many current treatment approaches, and discusses promising molecular mechanism-based targeted treatments.
Literature
1.
go back to reference Tucker B, Aston J, Dines M, Caraman E, Yacyshyn M, McCarthy M, et al. Early brain edema is a predictor of in-hospital mortality in traumatic brain injury. J Emerg Med. 2017;53:18–29.CrossRefPubMed Tucker B, Aston J, Dines M, Caraman E, Yacyshyn M, McCarthy M, et al. Early brain edema is a predictor of in-hospital mortality in traumatic brain injury. J Emerg Med. 2017;53:18–29.CrossRefPubMed
3.
go back to reference Hudak AM, Peng L, Marquez de la Plata C, Thottakara J, Moore C, Harper C, et al. Cytotoxic and vasogenic cerebral oedema in traumatic brain injury: assessment with FLAIR and DWI imaging. Brain Inj. 2014;28:1602–9.CrossRefPubMed Hudak AM, Peng L, Marquez de la Plata C, Thottakara J, Moore C, Harper C, et al. Cytotoxic and vasogenic cerebral oedema in traumatic brain injury: assessment with FLAIR and DWI imaging. Brain Inj. 2014;28:1602–9.CrossRefPubMed
4.
go back to reference Jha RM, Kochanek PM, Simard JM. Pathophysiology and treatment of cerebral edema in traumatic brain injury. Neuropharmacology. 2019;145:230–46.CrossRefPubMed Jha RM, Kochanek PM, Simard JM. Pathophysiology and treatment of cerebral edema in traumatic brain injury. Neuropharmacology. 2019;145:230–46.CrossRefPubMed
5.
go back to reference Chesnut R, Videtta W, Vespa P, Le Roux P. Participants in the International Multidisciplinary Consensus Conference on Multimodality Monitoring. Intracranial pressure monitoring: fundamental considerations and rationale for monitoring. Neurocrit Care. 2014;21(Suppl 2):S64–84.CrossRefPubMed Chesnut R, Videtta W, Vespa P, Le Roux P. Participants in the International Multidisciplinary Consensus Conference on Multimodality Monitoring. Intracranial pressure monitoring: fundamental considerations and rationale for monitoring. Neurocrit Care. 2014;21(Suppl 2):S64–84.CrossRefPubMed
6.
go back to reference Chesnut RM, Marshall LF, Klauber MR, Blunt BA, Baldwin N, Eisenberg HM, et al. The role of secondary brain injury in determining outcome from severe head injury. J Trauma. 1993;34:216–22.CrossRefPubMed Chesnut RM, Marshall LF, Klauber MR, Blunt BA, Baldwin N, Eisenberg HM, et al. The role of secondary brain injury in determining outcome from severe head injury. J Trauma. 1993;34:216–22.CrossRefPubMed
7.
go back to reference Eisenberg HM, Gary HE, Aldrich EF, Saydjari C, Turner B, Foulkes MA, et al. Initial CT findings in 753 patients with severe head injury. A report from the NIH Traumatic Coma Data Bank. J Neurosurg. 1990;73:688–98.CrossRefPubMed Eisenberg HM, Gary HE, Aldrich EF, Saydjari C, Turner B, Foulkes MA, et al. Initial CT findings in 753 patients with severe head injury. A report from the NIH Traumatic Coma Data Bank. J Neurosurg. 1990;73:688–98.CrossRefPubMed
8.
go back to reference Feickert HJ, Drommer S, Heyer R. Severe head injury in children: impact of risk factors on outcome. J Trauma. 1999;47:33–8.CrossRefPubMed Feickert HJ, Drommer S, Heyer R. Severe head injury in children: impact of risk factors on outcome. J Trauma. 1999;47:33–8.CrossRefPubMed
9.
go back to reference Feldmann H, Klages G, Gärtner F, Scharfenberg J. The prognostic value of intracranial pressure monitoring after severe head injuries. Acta Neurochir Suppl (Wien). 1979;28:74–7. Feldmann H, Klages G, Gärtner F, Scharfenberg J. The prognostic value of intracranial pressure monitoring after severe head injuries. Acta Neurochir Suppl (Wien). 1979;28:74–7.
10.
go back to reference Marmarou A, Anderson RL, Ward JD, Choi SC, Young HF, Eisenberg HM, et al. Impact of ICP instability and hypotension on outcome in patients with severe head trauma. J Neurosurg. 1991;75:S59–66.CrossRef Marmarou A, Anderson RL, Ward JD, Choi SC, Young HF, Eisenberg HM, et al. Impact of ICP instability and hypotension on outcome in patients with severe head trauma. J Neurosurg. 1991;75:S59–66.CrossRef
11.
go back to reference Marshall LF, Smith RW, Shapiro HM. The outcome with aggressive treatment in severe head injuries. Part I: the significance of intracranial pressure monitoring. J Neurosurg. 1979;50:20–5.CrossRefPubMed Marshall LF, Smith RW, Shapiro HM. The outcome with aggressive treatment in severe head injuries. Part I: the significance of intracranial pressure monitoring. J Neurosurg. 1979;50:20–5.CrossRefPubMed
12.
go back to reference Miller JD, Becker DP, Ward JD, Sullivan HG, Adams WE, Rosner MJ. Significance of intracranial hypertension in severe head injury. J Neurosurg. 1977;47:503–16.CrossRefPubMed Miller JD, Becker DP, Ward JD, Sullivan HG, Adams WE, Rosner MJ. Significance of intracranial hypertension in severe head injury. J Neurosurg. 1977;47:503–16.CrossRefPubMed
13.
go back to reference Stocchetti N, Zanaboni C, Colombo A, Citerio G, Beretta L, Ghisoni L, et al. Refractory intracranial hypertension and “second-tier” therapies in traumatic brain injury. Intensive Care Med. 2008;34:461–7.CrossRefPubMed Stocchetti N, Zanaboni C, Colombo A, Citerio G, Beretta L, Ghisoni L, et al. Refractory intracranial hypertension and “second-tier” therapies in traumatic brain injury. Intensive Care Med. 2008;34:461–7.CrossRefPubMed
14.
go back to reference Nirula R, Millar D, Greene T, McFadden M, Shah L, Scalea TM, et al. Decompressive craniectomy or medical management for refractory intracranial hypertension: an AAST-MIT propensity score analysis. J Trauma Acute Care Surg. 2014;76:944–52 discussion 952.CrossRefPubMed Nirula R, Millar D, Greene T, McFadden M, Shah L, Scalea TM, et al. Decompressive craniectomy or medical management for refractory intracranial hypertension: an AAST-MIT propensity score analysis. J Trauma Acute Care Surg. 2014;76:944–52 discussion 952.CrossRefPubMed
15.
go back to reference Simon DW, McGeachy MJ, Bayır H, Clark RSB, Loane DJ, Kochanek PM. The far-reaching scope of neuroinflammation after traumatic brain injury. Nat Rev Neurol. 2017;13:171–91.CrossRefPubMedPubMedCentral Simon DW, McGeachy MJ, Bayır H, Clark RSB, Loane DJ, Kochanek PM. The far-reaching scope of neuroinflammation after traumatic brain injury. Nat Rev Neurol. 2017;13:171–91.CrossRefPubMedPubMedCentral
16.
go back to reference Olah E, Poto L, Hegyi P, Szabo I, Hartmann P, Solymar M, et al. Therapeutic whole-body hypothermia reduces death in severe traumatic brain injury if the cooling index is sufficiently high: meta-analyses of the effect of single cooling parameters and their integrated measure. J Neurotrauma. 2018;35:2407–17.CrossRefPubMed Olah E, Poto L, Hegyi P, Szabo I, Hartmann P, Solymar M, et al. Therapeutic whole-body hypothermia reduces death in severe traumatic brain injury if the cooling index is sufficiently high: meta-analyses of the effect of single cooling parameters and their integrated measure. J Neurotrauma. 2018;35:2407–17.CrossRefPubMed
17.
go back to reference Gu J, Huang H, Huang Y, Sun H, Xu H. Hypertonic saline or mannitol for treating elevated intracranial pressure in traumatic brain injury: a meta-analysis of randomized controlled trials. Neurosurg Rev. 2018;42:499–509.CrossRefPubMed Gu J, Huang H, Huang Y, Sun H, Xu H. Hypertonic saline or mannitol for treating elevated intracranial pressure in traumatic brain injury: a meta-analysis of randomized controlled trials. Neurosurg Rev. 2018;42:499–509.CrossRefPubMed
18.
go back to reference Kelly DF, Goodale DB, Williams J, Herr DL, Chappell ET, Rosner MJ, et al. Propofol in the treatment of moderate and severe head injury: a randomized, prospective double-blinded pilot trial. J Neurosurg. 1999;90:1042–52.CrossRefPubMed Kelly DF, Goodale DB, Williams J, Herr DL, Chappell ET, Rosner MJ, et al. Propofol in the treatment of moderate and severe head injury: a randomized, prospective double-blinded pilot trial. J Neurosurg. 1999;90:1042–52.CrossRefPubMed
19.
go back to reference Chesnut RM, Temkin N, Carney N, Dikmen S, Rondina C, Videtta W, et al. A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med. 2012;367:2471–81.CrossRefPubMedPubMedCentral Chesnut RM, Temkin N, Carney N, Dikmen S, Rondina C, Videtta W, et al. A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med. 2012;367:2471–81.CrossRefPubMedPubMedCentral
20.
go back to reference Sheth KN, Elm JJ, Molyneaux BJ, Hinson H, Beslow LA, Sze GK, et al. Safety and efficacy of intravenous glyburide on brain swelling after large hemispheric infarction (GAMES-RP): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol. 2016;15:1160–9.CrossRefPubMed Sheth KN, Elm JJ, Molyneaux BJ, Hinson H, Beslow LA, Sze GK, et al. Safety and efficacy of intravenous glyburide on brain swelling after large hemispheric infarction (GAMES-RP): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol. 2016;15:1160–9.CrossRefPubMed
21.
go back to reference •• Hutchinson PJ, Kolias AG, Timofeev IS, Corteen EA, Czosnyka M, Timothy J, et al. Trial of decompressive craniectomy for traumatic intracranial hypertension. N Engl J Med. 2016;375:1119–30 This study, also known as the RESCUEicp trial, is a recent landmark RCT specifically assessing the use of decompressive craniectomy for management of intracranial hypertension after TBI. The investigators found that decompressive craniectomy is associated with decreased mortality but has a debatable impact on functional outcomes.CrossRefPubMed •• Hutchinson PJ, Kolias AG, Timofeev IS, Corteen EA, Czosnyka M, Timothy J, et al. Trial of decompressive craniectomy for traumatic intracranial hypertension. N Engl J Med. 2016;375:1119–30 This study, also known as the RESCUEicp trial, is a recent landmark RCT specifically assessing the use of decompressive craniectomy for management of intracranial hypertension after TBI. The investigators found that decompressive craniectomy is associated with decreased mortality but has a debatable impact on functional outcomes.CrossRefPubMed
22.
go back to reference Asehnoune K, Lasocki S, Seguin P, Geeraerts T, Perrigault PF, Dahyot-Fizelier C, et al. Association between continuous hyperosmolar therapy and survival in patients with traumatic brain injury—a multicentre prospective cohort study and systematic review. Crit Care. 2017;21:328.CrossRefPubMedPubMedCentral Asehnoune K, Lasocki S, Seguin P, Geeraerts T, Perrigault PF, Dahyot-Fizelier C, et al. Association between continuous hyperosmolar therapy and survival in patients with traumatic brain injury—a multicentre prospective cohort study and systematic review. Crit Care. 2017;21:328.CrossRefPubMedPubMedCentral
23.
go back to reference Monro A. Chapter 1: of the circulation of the blood within the head. Observations on the structure and functions of the nervous system. Edinburgh: William Creech; 1783. p. 5. Monro A. Chapter 1: of the circulation of the blood within the head. Observations on the structure and functions of the nervous system. Edinburgh: William Creech; 1783. p. 5.
24.
go back to reference Woodcock TE, Woodcock TM. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth. 2012;108:384–94.CrossRefPubMed Woodcock TE, Woodcock TM. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth. 2012;108:384–94.CrossRefPubMed
25.
go back to reference Blixt J, Svensson M, Gunnarson E, Wanecek M. Aquaporins and blood-brain barrier permeability in early edema development after traumatic brain injury. Brain Res. 1611;2015:18–28. Blixt J, Svensson M, Gunnarson E, Wanecek M. Aquaporins and blood-brain barrier permeability in early edema development after traumatic brain injury. Brain Res. 1611;2015:18–28.
26.
go back to reference Unterberg AW, Stover J, Kress B, Kiening KL. Edema and brain trauma. Neuroscience. 2004;129:1021–9.CrossRefPubMed Unterberg AW, Stover J, Kress B, Kiening KL. Edema and brain trauma. Neuroscience. 2004;129:1021–9.CrossRefPubMed
27.
go back to reference Winkler EA, Minter D, Yue JK, Manley GT. Cerebral edema in traumatic brain injury: pathophysiology and prospective therapeutic targets. Neurosurg Clin N Am. 2016;27:473–88.CrossRefPubMed Winkler EA, Minter D, Yue JK, Manley GT. Cerebral edema in traumatic brain injury: pathophysiology and prospective therapeutic targets. Neurosurg Clin N Am. 2016;27:473–88.CrossRefPubMed
28.
go back to reference Marmarou A, Signoretti S, Fatouros PP, Portella G, Aygok GA, Bullock MR. Predominance of cellular edema in traumatic brain swelling in patients with severe head injuries. J Neurosurg. 2006;104:720–30.CrossRefPubMed Marmarou A, Signoretti S, Fatouros PP, Portella G, Aygok GA, Bullock MR. Predominance of cellular edema in traumatic brain swelling in patients with severe head injuries. J Neurosurg. 2006;104:720–30.CrossRefPubMed
29.
go back to reference Barzó P, Marmarou A, Fatouros P, Hayasaki K, Corwin F. Contribution of vasogenic and cellular edema to traumatic brain swelling measured by diffusion-weighted imaging. J Neurosurg. 1997;87:900–7.CrossRefPubMed Barzó P, Marmarou A, Fatouros P, Hayasaki K, Corwin F. Contribution of vasogenic and cellular edema to traumatic brain swelling measured by diffusion-weighted imaging. J Neurosurg. 1997;87:900–7.CrossRefPubMed
31.
go back to reference Zhang C, Chen J, Lu H. Expression of aquaporin-4 and pathological characteristics of brain injury in a rat model of traumatic brain injury. Mol Med Rep. 2015;12:7351–7.CrossRefPubMedPubMedCentral Zhang C, Chen J, Lu H. Expression of aquaporin-4 and pathological characteristics of brain injury in a rat model of traumatic brain injury. Mol Med Rep. 2015;12:7351–7.CrossRefPubMedPubMedCentral
33.
go back to reference Wallisch J, Jha R, Vagni V, Feldman K, Dixon C, Farr G, et al. Effect of the novel aquaporin-4 antagonist AER-271 in combined TBI plus hemorrhagic shock in mice. Crit Care Med. 2015;43:6–7.CrossRef Wallisch J, Jha R, Vagni V, Feldman K, Dixon C, Farr G, et al. Effect of the novel aquaporin-4 antagonist AER-271 in combined TBI plus hemorrhagic shock in mice. Crit Care Med. 2015;43:6–7.CrossRef
34.
go back to reference Hou J, Kshettry VR, Selman WR, Bambakidis NC. Peritumoral brain edema in intracranial meningiomas: the emergence of vascular endothelial growth factor-directed therapy. Neurosurg Focus. 2013;35:E2.CrossRefPubMed Hou J, Kshettry VR, Selman WR, Bambakidis NC. Peritumoral brain edema in intracranial meningiomas: the emergence of vascular endothelial growth factor-directed therapy. Neurosurg Focus. 2013;35:E2.CrossRefPubMed
35.
go back to reference Yoshioka H, Hama S, Taniguchi E, Sugiyama K, Arita K, Kurisu K. Peritumoral brain edema associated with meningioma: influence of vascular endothelial growth factor expression and vascular blood supply. Cancer. 1999;85:936–44.CrossRefPubMed Yoshioka H, Hama S, Taniguchi E, Sugiyama K, Arita K, Kurisu K. Peritumoral brain edema associated with meningioma: influence of vascular endothelial growth factor expression and vascular blood supply. Cancer. 1999;85:936–44.CrossRefPubMed
36.
go back to reference Liaquat I, Dunn LT, Nicoll JAR, Teasdale GM, Norrie JD. Effect of apolipoprotein E genotype on hematoma volume after trauma. J Neurosurg. 2002;96:90–6.CrossRefPubMed Liaquat I, Dunn LT, Nicoll JAR, Teasdale GM, Norrie JD. Effect of apolipoprotein E genotype on hematoma volume after trauma. J Neurosurg. 2002;96:90–6.CrossRefPubMed
37.
go back to reference Jha RM, Puccio AM, Okonkwo DO, Zusman BE, Park S-Y, Wallisch J, et al. ABCC8 single nucleotide polymorphisms are associated with cerebral edema in severe TBI. Neurocrit Care. 2017;26:213–24.CrossRefPubMedPubMedCentral Jha RM, Puccio AM, Okonkwo DO, Zusman BE, Park S-Y, Wallisch J, et al. ABCC8 single nucleotide polymorphisms are associated with cerebral edema in severe TBI. Neurocrit Care. 2017;26:213–24.CrossRefPubMedPubMedCentral
38.
go back to reference Jha RM, Koleck TA, Puccio AM, Okonkwo DO, Park S-Y, Zusman BE, et al. Regionally clustered ABCC8 polymorphisms in a prospective cohort predict cerebral oedema and outcome in severe traumatic brain injury. J Neurol Neurosurg Psychiatry. 2018;89:1152–62.CrossRefPubMed Jha RM, Koleck TA, Puccio AM, Okonkwo DO, Park S-Y, Zusman BE, et al. Regionally clustered ABCC8 polymorphisms in a prospective cohort predict cerebral oedema and outcome in severe traumatic brain injury. J Neurol Neurosurg Psychiatry. 2018;89:1152–62.CrossRefPubMed
39.
go back to reference Jha RM, Desai SM, Zusman BE, Koleck TA, Puccio AM, Okonkwo DO, et al. Downstream TRPM4 polymorphisms are associated with intracranial hypertension and statistically interact with ABCC8 polymorphisms in a prospective cohort of severe traumatic brain injury. J Neurotrauma. 2019. Jha RM, Desai SM, Zusman BE, Koleck TA, Puccio AM, Okonkwo DO, et al. Downstream TRPM4 polymorphisms are associated with intracranial hypertension and statistically interact with ABCC8 polymorphisms in a prospective cohort of severe traumatic brain injury. J Neurotrauma. 2019.
40.
go back to reference Hadjigeorgiou GM, Paterakis K, Dardiotis E, Dardioti M, Aggelakis K, Tasiou A, et al. IL-1RN and IL-1B gene polymorphisms and cerebral hemorrhagic events after traumatic brain injury. Neurology. 2005;65:1077–82.CrossRefPubMed Hadjigeorgiou GM, Paterakis K, Dardiotis E, Dardioti M, Aggelakis K, Tasiou A, et al. IL-1RN and IL-1B gene polymorphisms and cerebral hemorrhagic events after traumatic brain injury. Neurology. 2005;65:1077–82.CrossRefPubMed
41.
go back to reference Robertson CS, Gopinath SP, Valadka AB, Van M, Swank PR, Goodman JC. Variants of the endothelial nitric oxide gene and cerebral blood flow after severe traumatic brain injury. J Neurotrauma. 2011;28:727–37.CrossRefPubMedPubMedCentral Robertson CS, Gopinath SP, Valadka AB, Van M, Swank PR, Goodman JC. Variants of the endothelial nitric oxide gene and cerebral blood flow after severe traumatic brain injury. J Neurotrauma. 2011;28:727–37.CrossRefPubMedPubMedCentral
42.
go back to reference Maeda T, Katayama Y, Kawamata T, Koyama S, Sasaki J. Ultra-early study of edema formation in cerebral contusion using diffusion MRI and ADC mapping. In: Kuroiwa T, Baethmann A, Czernicki Z, Hoff JT, Ito U, Katayama Y, et al., editors. Brain Edema XII. Vienna: Springer Vienna; 2003. p. 329–31.CrossRef Maeda T, Katayama Y, Kawamata T, Koyama S, Sasaki J. Ultra-early study of edema formation in cerebral contusion using diffusion MRI and ADC mapping. In: Kuroiwa T, Baethmann A, Czernicki Z, Hoff JT, Ito U, Katayama Y, et al., editors. Brain Edema XII. Vienna: Springer Vienna; 2003. p. 329–31.CrossRef
43.
go back to reference Katayama Y, Mori T, Maeda T, Kawamata T. Pathogenesis of the mass effect of cerebral contusions: rapid increase in osmolality within the contusion necrosis. Acta Neurochir Suppl. 1998;71:289–92.PubMed Katayama Y, Mori T, Maeda T, Kawamata T. Pathogenesis of the mass effect of cerebral contusions: rapid increase in osmolality within the contusion necrosis. Acta Neurochir Suppl. 1998;71:289–92.PubMed
44.
go back to reference Torre-Healy A, Marko NF, Weil RJ. Hyperosmolar therapy for intracranial hypertension. Neurocrit Care. 2012;17:117–30.CrossRefPubMed Torre-Healy A, Marko NF, Weil RJ. Hyperosmolar therapy for intracranial hypertension. Neurocrit Care. 2012;17:117–30.CrossRefPubMed
45.
go back to reference Rajagopal R, Swaminathan G, Nair S, Joseph M. Hyponatremia in traumatic brain injury: a practical management protocol. World Neurosurg. 2017;108:529–33.CrossRefPubMed Rajagopal R, Swaminathan G, Nair S, Joseph M. Hyponatremia in traumatic brain injury: a practical management protocol. World Neurosurg. 2017;108:529–33.CrossRefPubMed
46.
go back to reference von Bismarck P, Ankermann T, Eggert P, Claviez A, Fritsch MJ, Krause MF. Diagnosis and management of cerebral salt wasting (CSW) in children: the role of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP). Childs Nerv Syst. 2006;22:1275–81.CrossRef von Bismarck P, Ankermann T, Eggert P, Claviez A, Fritsch MJ, Krause MF. Diagnosis and management of cerebral salt wasting (CSW) in children: the role of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP). Childs Nerv Syst. 2006;22:1275–81.CrossRef
48.
go back to reference Gerzanich V, Kwon MS, Woo SK, Ivanov A, Simard JM. SUR1-TRPM4 channel activation and phasic secretion of MMP-9 induced by tPA in brain endothelial cells. PLoS One. 2018;13:e0195526.CrossRefPubMedPubMedCentral Gerzanich V, Kwon MS, Woo SK, Ivanov A, Simard JM. SUR1-TRPM4 channel activation and phasic secretion of MMP-9 induced by tPA in brain endothelial cells. PLoS One. 2018;13:e0195526.CrossRefPubMedPubMedCentral
49.
go back to reference Simard JM, Kent TA, Chen M, Tarasov KV, Gerzanich V. Brain oedema in focal ischaemia: molecular pathophysiology and theoretical implications. Lancet Neurol. 2007;6:258–68.CrossRefPubMedPubMedCentral Simard JM, Kent TA, Chen M, Tarasov KV, Gerzanich V. Brain oedema in focal ischaemia: molecular pathophysiology and theoretical implications. Lancet Neurol. 2007;6:258–68.CrossRefPubMedPubMedCentral
50.
go back to reference Jha RM, Kochanek PM. A precision medicine approach to cerebral edema and intracranial hypertension after severe traumatic brain injury: Quo Vadis? Curr Neurol Neurosci Rep. 2018;18:105.CrossRefPubMedPubMedCentral Jha RM, Kochanek PM. A precision medicine approach to cerebral edema and intracranial hypertension after severe traumatic brain injury: Quo Vadis? Curr Neurol Neurosci Rep. 2018;18:105.CrossRefPubMedPubMedCentral
51.
go back to reference Hirose T, Matsumoto N, Tasaki O, Nakamura H, Akagaki F, Shimazu T. Delayed progression of edema formation around a hematoma expressing high levels of VEGF and mmp-9 in a patient with traumatic brain injury: case report. Neurol Med Chir (Tokyo). 2013;53:609–12.CrossRef Hirose T, Matsumoto N, Tasaki O, Nakamura H, Akagaki F, Shimazu T. Delayed progression of edema formation around a hematoma expressing high levels of VEGF and mmp-9 in a patient with traumatic brain injury: case report. Neurol Med Chir (Tokyo). 2013;53:609–12.CrossRef
52.
go back to reference Szmydynger-Chodobska J, Chung I, Koźniewska E, Tran B, Harrington FJ, Duncan JA, et al. Increased expression of vasopressin v1a receptors after traumatic brain injury. J Neurotrauma. 2004;21:1090–102.CrossRefPubMed Szmydynger-Chodobska J, Chung I, Koźniewska E, Tran B, Harrington FJ, Duncan JA, et al. Increased expression of vasopressin v1a receptors after traumatic brain injury. J Neurotrauma. 2004;21:1090–102.CrossRefPubMed
53.
go back to reference Taya K, Gulsen S, Okuno K, Prieto R, Marmarou CR, Marmarou A. Modulation of AQP4 expression by the selective V1a receptor antagonist, SR49059, decreases trauma-induced brain edema. Acta Neurochir Suppl. 2008;102:425–9.CrossRefPubMed Taya K, Gulsen S, Okuno K, Prieto R, Marmarou CR, Marmarou A. Modulation of AQP4 expression by the selective V1a receptor antagonist, SR49059, decreases trauma-induced brain edema. Acta Neurochir Suppl. 2008;102:425–9.CrossRefPubMed
54.
go back to reference Dash PK, Zhao J, Kobori N, Redell JB, Hylin MJ, Hood KN, et al. Activation of alpha 7 cholinergic nicotinic receptors reduce blood-brain barrier permeability following experimental traumatic brain injury. J Neurosci. 2016;36:2809–18.CrossRefPubMedPubMedCentral Dash PK, Zhao J, Kobori N, Redell JB, Hylin MJ, Hood KN, et al. Activation of alpha 7 cholinergic nicotinic receptors reduce blood-brain barrier permeability following experimental traumatic brain injury. J Neurosci. 2016;36:2809–18.CrossRefPubMedPubMedCentral
55.
go back to reference Kochanek PM, Clark RSB, Ruppel RA, Adelson PD, Bell MJ, Whalen MJ, et al. Biochemical, cellular, and molecular mechanisms in the evolution of secondary damage after severe traumatic brain injury in infants and children: lessons learned from the bedside. Pediatr Crit Care Med. 2000;1:4–19.CrossRefPubMed Kochanek PM, Clark RSB, Ruppel RA, Adelson PD, Bell MJ, Whalen MJ, et al. Biochemical, cellular, and molecular mechanisms in the evolution of secondary damage after severe traumatic brain injury in infants and children: lessons learned from the bedside. Pediatr Crit Care Med. 2000;1:4–19.CrossRefPubMed
56.
go back to reference Bergsneider M, Hovda DA, Shalmon E, Kelly DF, Vespa PM, Martin NA, et al. Cerebral hyperglycolysis following severe traumatic brain injury in humans: a positron emission tomography study. J Neurosurg. 1997;86:241–51.CrossRefPubMed Bergsneider M, Hovda DA, Shalmon E, Kelly DF, Vespa PM, Martin NA, et al. Cerebral hyperglycolysis following severe traumatic brain injury in humans: a positron emission tomography study. J Neurosurg. 1997;86:241–51.CrossRefPubMed
57.
go back to reference Kochanek PM, Clark RS, Ruppel RA, Dixon CE. Cerebral resuscitation after traumatic brain injury and cardiopulmonary arrest in infants and children in the new millennium. Pediatr Clin N Am. 2001;48:661–81.CrossRef Kochanek PM, Clark RS, Ruppel RA, Dixon CE. Cerebral resuscitation after traumatic brain injury and cardiopulmonary arrest in infants and children in the new millennium. Pediatr Clin N Am. 2001;48:661–81.CrossRef
58.
go back to reference Katayama Y, Mori T, Maeda T, Kawamata T. Pathogenesis of mass effect of cerebral contusions: rapid increase in osmolality within the contusion necrosis. Acta Neurochir Suppl. 2015;71:289–92. Katayama Y, Mori T, Maeda T, Kawamata T. Pathogenesis of mass effect of cerebral contusions: rapid increase in osmolality within the contusion necrosis. Acta Neurochir Suppl. 2015;71:289–92.
59.
go back to reference Katayama Y, Kawamata T. Edema fluid accumulation within necrotic brain tissue as a cause of the mass effect of cerebral contusion in head trauma patients. Acta Neurochir Suppl. 2003;86:323–7.PubMed Katayama Y, Kawamata T. Edema fluid accumulation within necrotic brain tissue as a cause of the mass effect of cerebral contusion in head trauma patients. Acta Neurochir Suppl. 2003;86:323–7.PubMed
60.
go back to reference de Lores Arnaiz GR, Ordieres MGL. Brain Na(+), K(+)-ATPase activity in aging and disease. Int J Biomed Sci. 2014;10:85–102.PubMedPubMedCentral de Lores Arnaiz GR, Ordieres MGL. Brain Na(+), K(+)-ATPase activity in aging and disease. Int J Biomed Sci. 2014;10:85–102.PubMedPubMedCentral
61.
go back to reference Lester HA, Mager S, Quick MW, Corey JL. Permeation properties of neurotransmitter transporters. Annu Rev Pharmacol Toxicol. 1994;34:219–49.CrossRefPubMed Lester HA, Mager S, Quick MW, Corey JL. Permeation properties of neurotransmitter transporters. Annu Rev Pharmacol Toxicol. 1994;34:219–49.CrossRefPubMed
62.
go back to reference Simard JM, Kahle KT, Gerzanich V. Molecular mechanisms of microvascular failure in central nervous system injury—synergistic roles of NKCC1 and SUR1/TRPM4. J Neurosurg. 2010;113:622–9.CrossRefPubMedPubMedCentral Simard JM, Kahle KT, Gerzanich V. Molecular mechanisms of microvascular failure in central nervous system injury—synergistic roles of NKCC1 and SUR1/TRPM4. J Neurosurg. 2010;113:622–9.CrossRefPubMedPubMedCentral
63.
go back to reference Xu W, Mu X, Wang H, Song C, Ma W, Jolkkonen J, et al. Chloride co-transporter NKCC1 inhibitor bumetanide enhances neurogenesis and behavioral recovery in rats after experimental stroke. Mol Neurobiol. 2017;54:2406–14.CrossRefPubMed Xu W, Mu X, Wang H, Song C, Ma W, Jolkkonen J, et al. Chloride co-transporter NKCC1 inhibitor bumetanide enhances neurogenesis and behavioral recovery in rats after experimental stroke. Mol Neurobiol. 2017;54:2406–14.CrossRefPubMed
64.
go back to reference Carney N, Totten AM, O’Reilly C, Ullman JS, Hawryluk GWJ, Bell MJ, et al. Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery. 2017;80:6–15.CrossRefPubMed Carney N, Totten AM, O’Reilly C, Ullman JS, Hawryluk GWJ, Bell MJ, et al. Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery. 2017;80:6–15.CrossRefPubMed
65.
go back to reference Marmarou A, Fatouros PP, Barzó P, Portella G, Yoshihara M, Tsuji O, et al. Contribution of edema and cerebral blood volume to traumatic brain swelling in head-injured patients. J Neurosurg. 2000;93:183–93.CrossRefPubMed Marmarou A, Fatouros PP, Barzó P, Portella G, Yoshihara M, Tsuji O, et al. Contribution of edema and cerebral blood volume to traumatic brain swelling in head-injured patients. J Neurosurg. 2000;93:183–93.CrossRefPubMed
66.
go back to reference Lafrenaye AD, Krahe TE, Povlishock JT. Moderately elevated intracranial pressure after diffuse traumatic brain injury is associated with exacerbated neuronal pathology and behavioral morbidity in the rat. J Cereb Blood Flow Metab. 2014;34:1628–36.CrossRefPubMedPubMedCentral Lafrenaye AD, Krahe TE, Povlishock JT. Moderately elevated intracranial pressure after diffuse traumatic brain injury is associated with exacerbated neuronal pathology and behavioral morbidity in the rat. J Cereb Blood Flow Metab. 2014;34:1628–36.CrossRefPubMedPubMedCentral
67.
go back to reference Jha RM, Elmer J, Zusman BE, Desai S, Puccio AM, Okonkwo DO, et al. Intracranial pressure trajectories: a novel approach to informing severe traumatic brain injury phenotypes. Crit Care Med. 2018;46:1792–802.CrossRefPubMedPubMedCentral Jha RM, Elmer J, Zusman BE, Desai S, Puccio AM, Okonkwo DO, et al. Intracranial pressure trajectories: a novel approach to informing severe traumatic brain injury phenotypes. Crit Care Med. 2018;46:1792–802.CrossRefPubMedPubMedCentral
68.
go back to reference Calviello LA, de Riva N, Donnelly J, Czosnyka M, Smielewski P, Menon DK, et al. Relationship between brain pulsatility and cerebral perfusion pressure: replicated validation using different drivers of CPP change. Neurocrit Care. 2017;27:392–400.CrossRefPubMedPubMedCentral Calviello LA, de Riva N, Donnelly J, Czosnyka M, Smielewski P, Menon DK, et al. Relationship between brain pulsatility and cerebral perfusion pressure: replicated validation using different drivers of CPP change. Neurocrit Care. 2017;27:392–400.CrossRefPubMedPubMedCentral
69.
go back to reference Zeiler FA, Donnelly J, Smielewski P, Menon DK, Hutchinson PJ, Czosnyka M. Critical thresholds of intracranial pressure-derived continuous cerebrovascular reactivity indices for outcome prediction in noncraniectomized patients with traumatic brain injury. J Neurotrauma. 2018;35:1107–15.CrossRefPubMed Zeiler FA, Donnelly J, Smielewski P, Menon DK, Hutchinson PJ, Czosnyka M. Critical thresholds of intracranial pressure-derived continuous cerebrovascular reactivity indices for outcome prediction in noncraniectomized patients with traumatic brain injury. J Neurotrauma. 2018;35:1107–15.CrossRefPubMed
70.
go back to reference Candanedo C, Doron O, Hemphill JC, Ramirez de Noriega F, Manley GT, Patal R, et al. Characterizing the response to cerebrospinal fluid drainage in patients with an external ventricular drain: the pressure equalization ratio. Neurocrit Care. 2019;30:340–7.CrossRefPubMed Candanedo C, Doron O, Hemphill JC, Ramirez de Noriega F, Manley GT, Patal R, et al. Characterizing the response to cerebrospinal fluid drainage in patients with an external ventricular drain: the pressure equalization ratio. Neurocrit Care. 2019;30:340–7.CrossRefPubMed
72.
go back to reference Kirkman MA, Smith M. Intracranial pressure monitoring, cerebral perfusion pressure estimation, and ICP/CPP-guided therapy: a standard of care or optional extra after brain injury? Br J Anaesth. 2014;112:35–46.CrossRefPubMed Kirkman MA, Smith M. Intracranial pressure monitoring, cerebral perfusion pressure estimation, and ICP/CPP-guided therapy: a standard of care or optional extra after brain injury? Br J Anaesth. 2014;112:35–46.CrossRefPubMed
73.
go back to reference Mouchtouris N, Turpin J, Chalouhi N, Al Saiegh F, Theofanis T, Das S, et al. Statewide trends in intracranial pressure monitor use in 36,915 patients with severe traumatic brain injury in a mature trauma system over the past 18 years. World Neurosurg. 2019;130:e166–71. Mouchtouris N, Turpin J, Chalouhi N, Al Saiegh F, Theofanis T, Das S, et al. Statewide trends in intracranial pressure monitor use in 36,915 patients with severe traumatic brain injury in a mature trauma system over the past 18 years. World Neurosurg. 2019;130:e166–71.
74.
go back to reference Ahl R, Sarani B, Sjolin G, Mohseni S. The association of intracranial pressure monitoring and mortality: a propensity score-matched cohort of isolated severe blunt traumatic brain injury. J Emerg Trauma Shock. 2019;12:18–22.PubMedPubMedCentral Ahl R, Sarani B, Sjolin G, Mohseni S. The association of intracranial pressure monitoring and mortality: a propensity score-matched cohort of isolated severe blunt traumatic brain injury. J Emerg Trauma Shock. 2019;12:18–22.PubMedPubMedCentral
75.
go back to reference Newman WC, Chivukula S, Grandhi R. From mystics to modern times: a history of craniotomy & religion. World Neurosurg. 2016;92:148–50.CrossRefPubMed Newman WC, Chivukula S, Grandhi R. From mystics to modern times: a history of craniotomy & religion. World Neurosurg. 2016;92:148–50.CrossRefPubMed
76.
go back to reference Missios S. Hippocrates, Galen, and the uses of trepanation in the ancient classical world. Neurosurg Focus. 2007;23:1–9.CrossRef Missios S. Hippocrates, Galen, and the uses of trepanation in the ancient classical world. Neurosurg Focus. 2007;23:1–9.CrossRef
77.
go back to reference Panourias IG, Skiadas PK, Sakas DE, Marketos SG. Hippocrates: a pioneer in the treatment of head injuries. Neurosurgery. 2005;57:181–9 discussion 181.CrossRefPubMed Panourias IG, Skiadas PK, Sakas DE, Marketos SG. Hippocrates: a pioneer in the treatment of head injuries. Neurosurgery. 2005;57:181–9 discussion 181.CrossRefPubMed
79.
go back to reference Cooper DJ, Rosenfeld JV, Murray L, Arabi YM, Davies AR, D’Urso P, et al. Decompressive craniectomy in diffuse traumatic brain injury. N Engl J Med. 2011;364:1493–502.CrossRefPubMed Cooper DJ, Rosenfeld JV, Murray L, Arabi YM, Davies AR, D’Urso P, et al. Decompressive craniectomy in diffuse traumatic brain injury. N Engl J Med. 2011;364:1493–502.CrossRefPubMed
80.
go back to reference Münch E, Horn P, Schürer L, Piepgras A, Paul T, Schmiedek P. Management of severe traumatic brain injury by decompressive craniectomy. Neurosurgery. 2000;47:315–22 discussion 322.CrossRefPubMed Münch E, Horn P, Schürer L, Piepgras A, Paul T, Schmiedek P. Management of severe traumatic brain injury by decompressive craniectomy. Neurosurgery. 2000;47:315–22 discussion 322.CrossRefPubMed
81.
go back to reference Timofeev I, Kirkpatrick PJ, Corteen E, Hiler M, Czosnyka M, Menon DK, et al. Decompressive craniectomy in traumatic brain injury: outcome following protocol-driven therapy. Acta Neurochir Suppl. 2006;96:11–6.CrossRefPubMed Timofeev I, Kirkpatrick PJ, Corteen E, Hiler M, Czosnyka M, Menon DK, et al. Decompressive craniectomy in traumatic brain injury: outcome following protocol-driven therapy. Acta Neurochir Suppl. 2006;96:11–6.CrossRefPubMed
82.
go back to reference Whitfield PC, Patel H, Hutchinson PJ, Czosnyka M, Parry D, Menon D, et al. Bifrontal decompressive craniectomy in the management of posttraumatic intracranial hypertension. Br J Neurosurg. 2001;15:500–7.CrossRefPubMed Whitfield PC, Patel H, Hutchinson PJ, Czosnyka M, Parry D, Menon D, et al. Bifrontal decompressive craniectomy in the management of posttraumatic intracranial hypertension. Br J Neurosurg. 2001;15:500–7.CrossRefPubMed
83.
go back to reference Chibbaro S, Tacconi L. Role of decompressive craniectomy in the management of severe head injury with refractory cerebral edema and intractable intracranial pressure. Our experience with 48 cases. Surg Neurol. 2007;68:632–8.CrossRefPubMed Chibbaro S, Tacconi L. Role of decompressive craniectomy in the management of severe head injury with refractory cerebral edema and intractable intracranial pressure. Our experience with 48 cases. Surg Neurol. 2007;68:632–8.CrossRefPubMed
84.
go back to reference Olivecrona M, Rodling-Wahlström M, Naredi S, Koskinen L-OD. Effective ICP reduction by decompressive craniectomy in patients with severe traumatic brain injury treated by an ICP-targeted therapy. J Neurotrauma. 2007;24:927–35.CrossRefPubMed Olivecrona M, Rodling-Wahlström M, Naredi S, Koskinen L-OD. Effective ICP reduction by decompressive craniectomy in patients with severe traumatic brain injury treated by an ICP-targeted therapy. J Neurotrauma. 2007;24:927–35.CrossRefPubMed
85.
go back to reference Amorim RL, Bor-Seng-Shu E, Gattás GS, Paiva W, de Andrade AF, Teixeira MJ. Decompressive craniectomy and cerebral blood flow regulation in head injured patients: a case studied by perfusion CT. J Neuroradiol. 2012;39:346–9.CrossRefPubMed Amorim RL, Bor-Seng-Shu E, Gattás GS, Paiva W, de Andrade AF, Teixeira MJ. Decompressive craniectomy and cerebral blood flow regulation in head injured patients: a case studied by perfusion CT. J Neuroradiol. 2012;39:346–9.CrossRefPubMed
86.
go back to reference Ho CL, Wang CM, Lee KK, Ng I, Ang BT. Cerebral oxygenation, vascular reactivity, and neurochemistry following decompressive craniectomy for severe traumatic brain injury. J Neurosurg. 2008;108:943–9.CrossRefPubMed Ho CL, Wang CM, Lee KK, Ng I, Ang BT. Cerebral oxygenation, vascular reactivity, and neurochemistry following decompressive craniectomy for severe traumatic brain injury. J Neurosurg. 2008;108:943–9.CrossRefPubMed
87.
go back to reference Aarabi B, Hesdorffer DC, Ahn ES, Aresco C, Scalea TM, Eisenberg HM. Outcome following decompressive craniectomy for malignant swelling due to severe head injury. J Neurosurg. 2006;104:469–79.CrossRefPubMed Aarabi B, Hesdorffer DC, Ahn ES, Aresco C, Scalea TM, Eisenberg HM. Outcome following decompressive craniectomy for malignant swelling due to severe head injury. J Neurosurg. 2006;104:469–79.CrossRefPubMed
88.
go back to reference Kunze E, Meixensberger J, Janka M, Sörensen N, Roosen K. Decompressive craniectomy in patients with uncontrollable intracranial hypertension. Acta Neurochir Suppl. 1998;71:16–8.PubMed Kunze E, Meixensberger J, Janka M, Sörensen N, Roosen K. Decompressive craniectomy in patients with uncontrollable intracranial hypertension. Acta Neurochir Suppl. 1998;71:16–8.PubMed
89.
go back to reference Eberle BM, Schnüriger B, Inaba K, Gruen JP, Demetriades D, Belzberg H. Decompressive craniectomy: surgical control of traumatic intracranial hypertension may improve outcome. Injury. 2010;41:894–8.CrossRefPubMed Eberle BM, Schnüriger B, Inaba K, Gruen JP, Demetriades D, Belzberg H. Decompressive craniectomy: surgical control of traumatic intracranial hypertension may improve outcome. Injury. 2010;41:894–8.CrossRefPubMed
90.
go back to reference Nambiar M, MacIsaac C, Grabinski R, Liew D, Kavar B. Outcomes of decompressive craniectomy in patients after traumatic brain injury. Crit Care Resusc. 2015;17:67–72.PubMed Nambiar M, MacIsaac C, Grabinski R, Liew D, Kavar B. Outcomes of decompressive craniectomy in patients after traumatic brain injury. Crit Care Resusc. 2015;17:67–72.PubMed
91.
go back to reference Hutchinson PJ, Kolias AG, Tajsic T, Adeleye A, Aklilu AT, Apriawan T, et al. Consensus statement from the International Consensus Meeting on the role of decompressive craniectomy in the management of traumatic brain injury: consensus statement. Acta Neurochir. 2019;161:1261–74.CrossRefPubMed Hutchinson PJ, Kolias AG, Tajsic T, Adeleye A, Aklilu AT, Apriawan T, et al. Consensus statement from the International Consensus Meeting on the role of decompressive craniectomy in the management of traumatic brain injury: consensus statement. Acta Neurochir. 2019;161:1261–74.CrossRefPubMed
93.
go back to reference Srinivasan VM, O’Neill BR, Jho D, Whiting DM, Oh MY. The history of external ventricular drainage. J Neurosurg. 2014;120:228–36.CrossRefPubMed Srinivasan VM, O’Neill BR, Jho D, Whiting DM, Oh MY. The history of external ventricular drainage. J Neurosurg. 2014;120:228–36.CrossRefPubMed
94.
go back to reference Lundberg N. Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta Psychiatr Scand Suppl. 1960;36:1–193.PubMed Lundberg N. Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta Psychiatr Scand Suppl. 1960;36:1–193.PubMed
95.
go back to reference Lundberg N, Troupp H, Lorin H. Continuous recording of the ventricular-fluid pressure in patients with severe acute traumatic brain injury. A preliminary report. J Neurosurg. 1965;22:581–90.CrossRefPubMed Lundberg N, Troupp H, Lorin H. Continuous recording of the ventricular-fluid pressure in patients with severe acute traumatic brain injury. A preliminary report. J Neurosurg. 1965;22:581–90.CrossRefPubMed
96.
go back to reference Narayan RK, Kishore PR, Becker DP, Ward JD, Enas GG, Greenberg RP, et al. Intracranial pressure: to monitor or not to monitor? A review of our experience with severe head injury. J Neurosurg. 1982;56:650–9.CrossRefPubMed Narayan RK, Kishore PR, Becker DP, Ward JD, Enas GG, Greenberg RP, et al. Intracranial pressure: to monitor or not to monitor? A review of our experience with severe head injury. J Neurosurg. 1982;56:650–9.CrossRefPubMed
97.
go back to reference Farahvar A, Gerber LM, Chiu Y-L, Carney N, Härtl R, Ghajar J. Increased mortality in patients with severe traumatic brain injury treated without intracranial pressure monitoring. J Neurosurg. 2012;117:729–34.CrossRefPubMed Farahvar A, Gerber LM, Chiu Y-L, Carney N, Härtl R, Ghajar J. Increased mortality in patients with severe traumatic brain injury treated without intracranial pressure monitoring. J Neurosurg. 2012;117:729–34.CrossRefPubMed
98.
go back to reference Rønning P, Helseth E, Skaga N-O, Stavem K, Langmoen IA. The effect of ICP monitoring in severe traumatic brain injury: a propensity score-weighted and adjusted regression approach. J Neurosurg. 2018;131:1896–904. Rønning P, Helseth E, Skaga N-O, Stavem K, Langmoen IA. The effect of ICP monitoring in severe traumatic brain injury: a propensity score-weighted and adjusted regression approach. J Neurosurg. 2018;131:1896–904.
99.
go back to reference Shen L, Wang Z, Su Z, Qiu S, Xu J, Zhou Y, et al. Effects of intracranial pressure monitoring on mortality in patients with severe traumatic brain injury: a meta-analysis. PLoS One. 2016;11:e0168901.CrossRefPubMedPubMedCentral Shen L, Wang Z, Su Z, Qiu S, Xu J, Zhou Y, et al. Effects of intracranial pressure monitoring on mortality in patients with severe traumatic brain injury: a meta-analysis. PLoS One. 2016;11:e0168901.CrossRefPubMedPubMedCentral
100.
go back to reference Nwachuku EL, Puccio AM, Fetzick A, Scruggs B, Chang Y-F, Shutter LA, et al. Intermittent versus continuous cerebrospinal fluid drainage management in adult severe traumatic brain injury: assessment of intracranial pressure burden. Neurocrit Care. 2014;20:49–53.CrossRefPubMed Nwachuku EL, Puccio AM, Fetzick A, Scruggs B, Chang Y-F, Shutter LA, et al. Intermittent versus continuous cerebrospinal fluid drainage management in adult severe traumatic brain injury: assessment of intracranial pressure burden. Neurocrit Care. 2014;20:49–53.CrossRefPubMed
101.
go back to reference Akbik OS, Krasberg M, Nemoto EM, Yonas H. Effect of cerebrospinal fluid drainage on brain tissue oxygenation in traumatic brain injury. J Neurotrauma. 2017;34:3153–7.CrossRefPubMed Akbik OS, Krasberg M, Nemoto EM, Yonas H. Effect of cerebrospinal fluid drainage on brain tissue oxygenation in traumatic brain injury. J Neurotrauma. 2017;34:3153–7.CrossRefPubMed
102.
go back to reference Lescot T, Boroli F, Reina V, Chauvet D, Boch AL, Puybasset L. Effect of continuous cerebrospinal fluid drainage on therapeutic intensity in severe traumatic brain injury. Neurochirurgie. 2012;58:235–40.CrossRefPubMed Lescot T, Boroli F, Reina V, Chauvet D, Boch AL, Puybasset L. Effect of continuous cerebrospinal fluid drainage on therapeutic intensity in severe traumatic brain injury. Neurochirurgie. 2012;58:235–40.CrossRefPubMed
103.
go back to reference Kerr ME, Weber BB, Sereika SM, Wilberger J, Marion DW. Dose response to cerebrospinal fluid drainage on cerebral perfusion in traumatic brain-injured adults. Neurosurg Focus. 2001;11:E1.CrossRefPubMed Kerr ME, Weber BB, Sereika SM, Wilberger J, Marion DW. Dose response to cerebrospinal fluid drainage on cerebral perfusion in traumatic brain-injured adults. Neurosurg Focus. 2001;11:E1.CrossRefPubMed
104.
go back to reference Kinoshita K, Sakurai A, Utagawa A, Ebihara T, Furukawa M, Moriya T, et al. Importance of cerebral perfusion pressure management using cerebrospinal drainage in severe traumatic brain injury. Acta Neurochir Suppl. 2006;96:37–9.CrossRefPubMed Kinoshita K, Sakurai A, Utagawa A, Ebihara T, Furukawa M, Moriya T, et al. Importance of cerebral perfusion pressure management using cerebrospinal drainage in severe traumatic brain injury. Acta Neurochir Suppl. 2006;96:37–9.CrossRefPubMed
105.
go back to reference Bales JW, Bonow RH, Buckley RT, Barber J, Temkin N, Chesnut RM. Primary external ventricular drainage catheter versus intraparenchymal ICP monitoring: outcome analysis. Neurocrit Care. 2019;31:11–21.CrossRefPubMed Bales JW, Bonow RH, Buckley RT, Barber J, Temkin N, Chesnut RM. Primary external ventricular drainage catheter versus intraparenchymal ICP monitoring: outcome analysis. Neurocrit Care. 2019;31:11–21.CrossRefPubMed
106.
go back to reference Liu H, Wang W, Cheng F, Yuan Q, Yang J, Hu J, et al. External ventricular drains versus intraparenchymal intracranial pressure monitors in traumatic brain injury: a prospective observational study. World Neurosurg. 2015;83:794–800.CrossRefPubMed Liu H, Wang W, Cheng F, Yuan Q, Yang J, Hu J, et al. External ventricular drains versus intraparenchymal intracranial pressure monitors in traumatic brain injury: a prospective observational study. World Neurosurg. 2015;83:794–800.CrossRefPubMed
107.
go back to reference Weed LH, McKibben PS. Experimental alteration of brain bulk. Am J Physiol-Leg Content. 1919;48:531–58.CrossRef Weed LH, McKibben PS. Experimental alteration of brain bulk. Am J Physiol-Leg Content. 1919;48:531–58.CrossRef
108.
go back to reference Weed LH, McKibben PS. Pressure changes in the cerebrospinal fluid following intravenous injection of solutions of various concentrations. Am J Phys. 1919;48:512–30.CrossRef Weed LH, McKibben PS. Pressure changes in the cerebrospinal fluid following intravenous injection of solutions of various concentrations. Am J Phys. 1919;48:512–30.CrossRef
109.
go back to reference Kellie G. Appearances observed in the dissection of two individuals; death from cold and congestion of the brain. Trans Med Chir Soc Edinburgh. 1823;1. Kellie G. Appearances observed in the dissection of two individuals; death from cold and congestion of the brain. Trans Med Chir Soc Edinburgh. 1823;1.
110.
go back to reference Otvos B, Kshettry VR, Benzel EC. The history of urea as a hyperosmolar agent to decrease brain swelling. Neurosurg Focus. 2014;36:E3.CrossRefPubMed Otvos B, Kshettry VR, Benzel EC. The history of urea as a hyperosmolar agent to decrease brain swelling. Neurosurg Focus. 2014;36:E3.CrossRefPubMed
111.
go back to reference Javid M, Settlage P. Clinical use of urea for reduction of intracranial pressure. Trans Am Neurol Assoc. 1957;82nd Meeting:151–3.PubMed Javid M, Settlage P. Clinical use of urea for reduction of intracranial pressure. Trans Am Neurol Assoc. 1957;82nd Meeting:151–3.PubMed
112.
go back to reference Javid M. Effect of urea on cerebrospinal fluid pressure in human subjects. JAMA. 1956;160:943.CrossRef Javid M. Effect of urea on cerebrospinal fluid pressure in human subjects. JAMA. 1956;160:943.CrossRef
113.
go back to reference Javid M, Settlage P. Use of hypertonic urea for the reduction of intracranial pressure. Trans Am Neurol Assoc. 1955:204–6. Javid M, Settlage P. Use of hypertonic urea for the reduction of intracranial pressure. Trans Am Neurol Assoc. 1955:204–6.
114.
go back to reference Wise BL, Chater N. Effect of mannitol on cerebrospinal fluid pressure. The actions of hypertonic mannitol solutions and of urea compared. Arch Neurol. 1961;4:200–2.CrossRefPubMed Wise BL, Chater N. Effect of mannitol on cerebrospinal fluid pressure. The actions of hypertonic mannitol solutions and of urea compared. Arch Neurol. 1961;4:200–2.CrossRefPubMed
115.
go back to reference Worthley LI, Cooper DJ, Jones N. Treatment of resistant intracranial hypertension with hypertonic saline. Report of two cases. J Neurosurg. 1988;68:478–81.CrossRefPubMed Worthley LI, Cooper DJ, Jones N. Treatment of resistant intracranial hypertension with hypertonic saline. Report of two cases. J Neurosurg. 1988;68:478–81.CrossRefPubMed
116.
go back to reference Favre JB, Ravussin P, Chiolero R, Bissonnette B. Hypertonic solutions and intracranial pressure. Schweiz Med Wochenschr. 1996;126:1635–43.PubMed Favre JB, Ravussin P, Chiolero R, Bissonnette B. Hypertonic solutions and intracranial pressure. Schweiz Med Wochenschr. 1996;126:1635–43.PubMed
117.
go back to reference Horn P, Münch E, Vajkoczy P, Herrmann P, Quintel M, Schilling L, et al. Hypertonic saline solution for control of elevated intracranial pressure in patients with exhausted response to mannitol and barbiturates. Neurol Res. 1999;21:758–64.CrossRefPubMed Horn P, Münch E, Vajkoczy P, Herrmann P, Quintel M, Schilling L, et al. Hypertonic saline solution for control of elevated intracranial pressure in patients with exhausted response to mannitol and barbiturates. Neurol Res. 1999;21:758–64.CrossRefPubMed
118.
go back to reference Härtl R, Ghajar J, Hochleuthner H, Mauritz W. Hypertonic/hyperoncotic saline reliably reduces ICP in severely head-injured patients with intracranial hypertension. Acta Neurochir Suppl. 1997;70:126–9.PubMed Härtl R, Ghajar J, Hochleuthner H, Mauritz W. Hypertonic/hyperoncotic saline reliably reduces ICP in severely head-injured patients with intracranial hypertension. Acta Neurochir Suppl. 1997;70:126–9.PubMed
119.
go back to reference Fisher B, Thomas D, Peterson B. Hypertonic saline lowers raised intracranial pressure in children after head trauma. J Neurosurg Anesthesiol. 1992;4:4–10.CrossRefPubMed Fisher B, Thomas D, Peterson B. Hypertonic saline lowers raised intracranial pressure in children after head trauma. J Neurosurg Anesthesiol. 1992;4:4–10.CrossRefPubMed
120.
go back to reference Peterson B, Khanna S, Fisher B, Marshall L. Prolonged hypernatremia controls elevated intracranial pressure in head-injured pediatric patients. Crit Care Med. 2000;28:1136–43.CrossRefPubMed Peterson B, Khanna S, Fisher B, Marshall L. Prolonged hypernatremia controls elevated intracranial pressure in head-injured pediatric patients. Crit Care Med. 2000;28:1136–43.CrossRefPubMed
121.
go back to reference Kamel H, Navi BB, Nakagawa K, Hemphill JC, Ko NU. Hypertonic saline versus mannitol for the treatment of elevated intracranial pressure: a meta-analysis of randomized clinical trials. Crit Care Med. 2011;39:554–9.CrossRefPubMed Kamel H, Navi BB, Nakagawa K, Hemphill JC, Ko NU. Hypertonic saline versus mannitol for the treatment of elevated intracranial pressure: a meta-analysis of randomized clinical trials. Crit Care Med. 2011;39:554–9.CrossRefPubMed
122.
go back to reference Li M, Chen T, Chen S, Cai J, Hu Y-H. Comparison of equimolar doses of mannitol and hypertonic saline for the treatment of elevated intracranial pressure after traumatic brain injury: a systematic review and meta-analysis. Medicine. 2015;94:e736.CrossRef Li M, Chen T, Chen S, Cai J, Hu Y-H. Comparison of equimolar doses of mannitol and hypertonic saline for the treatment of elevated intracranial pressure after traumatic brain injury: a systematic review and meta-analysis. Medicine. 2015;94:e736.CrossRef
123.
go back to reference Anstey JR, Taccone FS, Udy AA, Citerio G, Duranteau J, Ichai C, et al. Early osmotherapy in severe traumatic brain injury: an international multicenter study. J Neurotrauma. 2020;37:178–84. Anstey JR, Taccone FS, Udy AA, Citerio G, Duranteau J, Ichai C, et al. Early osmotherapy in severe traumatic brain injury: an international multicenter study. J Neurotrauma. 2020;37:178–84.
124.
go back to reference Patil H, Gupta R. A comparative study of bolus dose of hypertonic saline, mannitol, and mannitol plus glycerol combination in patients with severe traumatic brain injury. World Neurosurg. 2019;125:e221–8. Patil H, Gupta R. A comparative study of bolus dose of hypertonic saline, mannitol, and mannitol plus glycerol combination in patients with severe traumatic brain injury. World Neurosurg. 2019;125:e221–8.
125.
go back to reference Jagannatha AT, Sriganesh K, Devi BI, Rao GSU. An equiosmolar study on early intracranial physiology and long term outcome in severe traumatic brain injury comparing mannitol and hypertonic saline. J Clin Neurosci. 2016;27:68–73.CrossRefPubMed Jagannatha AT, Sriganesh K, Devi BI, Rao GSU. An equiosmolar study on early intracranial physiology and long term outcome in severe traumatic brain injury comparing mannitol and hypertonic saline. J Clin Neurosci. 2016;27:68–73.CrossRefPubMed
126.
go back to reference Mangat HS, Wu X, Gerber LM, Schwarz JT, Fakhar M, Murthy SB, et al. Hypertonic saline is superior to mannitol for the combined effect on intracranial pressure and cerebral perfusion pressure burdens in patients with severe traumatic brain injury. Neurosurgery. 2020;86:221–30. Mangat HS, Wu X, Gerber LM, Schwarz JT, Fakhar M, Murthy SB, et al. Hypertonic saline is superior to mannitol for the combined effect on intracranial pressure and cerebral perfusion pressure burdens in patients with severe traumatic brain injury. Neurosurgery. 2020;86:221–30.
127.
go back to reference Kumar SA, Devi BI, Reddy M, Shukla D. Comparison of equiosmolar dose of hyperosmolar agents in reducing intracranial pressure—a randomized control study in pediatric traumatic brain injury. Childs Nerv Syst. 2019;35:999–1005.CrossRefPubMed Kumar SA, Devi BI, Reddy M, Shukla D. Comparison of equiosmolar dose of hyperosmolar agents in reducing intracranial pressure—a randomized control study in pediatric traumatic brain injury. Childs Nerv Syst. 2019;35:999–1005.CrossRefPubMed
128.
go back to reference Boone MD, Oren-Grinberg A, Robinson TM, Chen CC, Kasper EM. Mannitol or hypertonic saline in the setting of traumatic brain injury: what have we learned? Surg Neurol Int. 2015;6:177.CrossRefPubMedPubMedCentral Boone MD, Oren-Grinberg A, Robinson TM, Chen CC, Kasper EM. Mannitol or hypertonic saline in the setting of traumatic brain injury: what have we learned? Surg Neurol Int. 2015;6:177.CrossRefPubMedPubMedCentral
129.
go back to reference Burgess S, Abu-Laban RB, Slavik RS, Vu EN, Zed PJ. A systematic review of randomized controlled trials comparing hypertonic sodium solutions and mannitol for traumatic brain injury: implications for emergency department management. Ann Pharmacother. 2016;50:291–300.CrossRefPubMed Burgess S, Abu-Laban RB, Slavik RS, Vu EN, Zed PJ. A systematic review of randomized controlled trials comparing hypertonic sodium solutions and mannitol for traumatic brain injury: implications for emergency department management. Ann Pharmacother. 2016;50:291–300.CrossRefPubMed
130.
go back to reference Oddo M, Levine JM, Frangos S, Carrera E, Maloney-Wilensky E, Pascual JL, et al. Effect of mannitol and hypertonic saline on cerebral oxygenation in patients with severe traumatic brain injury and refractory intracranial hypertension. J Neurol Neurosurg Psychiatry. 2009;80:916–20.CrossRefPubMed Oddo M, Levine JM, Frangos S, Carrera E, Maloney-Wilensky E, Pascual JL, et al. Effect of mannitol and hypertonic saline on cerebral oxygenation in patients with severe traumatic brain injury and refractory intracranial hypertension. J Neurol Neurosurg Psychiatry. 2009;80:916–20.CrossRefPubMed
131.
go back to reference Fatima N, Ayyad A, Shuaib A, Saqqur M. Hypertonic solutions in traumatic brain injury: a systematic review and meta-analysis. Asian J Neurosurg. 2019;14:382–91.CrossRefPubMedPubMedCentral Fatima N, Ayyad A, Shuaib A, Saqqur M. Hypertonic solutions in traumatic brain injury: a systematic review and meta-analysis. Asian J Neurosurg. 2019;14:382–91.CrossRefPubMedPubMedCentral
133.
go back to reference Shein SL, Ferguson NM, Kochanek PM, Bayir H, Clark RSB, Fink EL, et al. Effectiveness of pharmacological therapies for intracranial hypertension in children with severe traumatic brain injury—results from an automated data collection system time-synched to drug administration. Pediatr Crit Care Med. 2016;17:236–45.CrossRefPubMedPubMedCentral Shein SL, Ferguson NM, Kochanek PM, Bayir H, Clark RSB, Fink EL, et al. Effectiveness of pharmacological therapies for intracranial hypertension in children with severe traumatic brain injury—results from an automated data collection system time-synched to drug administration. Pediatr Crit Care Med. 2016;17:236–45.CrossRefPubMedPubMedCentral
134.
go back to reference Kochanek PM, Tasker RC, Carney N, Totten AM, Adelson PD, Selden NR, et al. Guidelines for the management of pediatric severe traumatic brain injury, third edition: update of the brain trauma foundation guidelines. Pediatr Crit Care Med. 2019;20:S1–S82.CrossRefPubMed Kochanek PM, Tasker RC, Carney N, Totten AM, Adelson PD, Selden NR, et al. Guidelines for the management of pediatric severe traumatic brain injury, third edition: update of the brain trauma foundation guidelines. Pediatr Crit Care Med. 2019;20:S1–S82.CrossRefPubMed
136.
go back to reference Sold M, Gaab MR, Poch B, Heller V. Brain protection by barbiturate after head injury? clinical and experimental results. In: Wiedemann K, Hoyer S, editors. Brain protection. Berlin, Heidelberg: Springer Berlin Heidelberg; 1983. p. 134–45.CrossRef Sold M, Gaab MR, Poch B, Heller V. Brain protection by barbiturate after head injury? clinical and experimental results. In: Wiedemann K, Hoyer S, editors. Brain protection. Berlin, Heidelberg: Springer Berlin Heidelberg; 1983. p. 134–45.CrossRef
137.
go back to reference Singbartl G, Cunitz G. Pathophysiologic principles, emergency medical aspects and anesthesiologic measures in severe brain trauma. Anaesthesist. 1987;36:321–32.PubMed Singbartl G, Cunitz G. Pathophysiologic principles, emergency medical aspects and anesthesiologic measures in severe brain trauma. Anaesthesist. 1987;36:321–32.PubMed
138.
go back to reference Horvat CM, Au AK, Conley YL, Kochanek PM, Li L, Poloyac SL, et al. ABCB1 genotype is associated with fentanyl requirements in critically Ill children. Pediatr Res. 2017;82:29–35.CrossRefPubMedPubMedCentral Horvat CM, Au AK, Conley YL, Kochanek PM, Li L, Poloyac SL, et al. ABCB1 genotype is associated with fentanyl requirements in critically Ill children. Pediatr Res. 2017;82:29–35.CrossRefPubMedPubMedCentral
139.
go back to reference Saiz-Rodríguez M, Ochoa D, Herrador C, Belmonte C, Román M, Alday E, et al. Polymorphisms associated with fentanyl pharmacokinetics, pharmacodynamics and adverse effects. Basic Clin Pharmacol Toxicol. 2019;124:321–9.CrossRefPubMed Saiz-Rodríguez M, Ochoa D, Herrador C, Belmonte C, Román M, Alday E, et al. Polymorphisms associated with fentanyl pharmacokinetics, pharmacodynamics and adverse effects. Basic Clin Pharmacol Toxicol. 2019;124:321–9.CrossRefPubMed
140.
go back to reference Grimsrud KN, Ivanova X, Sherwin CM, Palmieri TL, Tran NK. Identification of cytochrome P450 polymorphisms in burn patients and impact on fentanyl pharmacokinetics: a pilot study. J Burn Care Res. 2019;40:91–6.CrossRefPubMed Grimsrud KN, Ivanova X, Sherwin CM, Palmieri TL, Tran NK. Identification of cytochrome P450 polymorphisms in burn patients and impact on fentanyl pharmacokinetics: a pilot study. J Burn Care Res. 2019;40:91–6.CrossRefPubMed
141.
go back to reference Xie W, Zhuang W, Chen L, Xie W, Jiang C, Liu N. 4218T/C polymorphism associations with post-cesarean patient-controlled epidural fentanyl consumption and pain perception. Acta Anaesthesiol Scand. 2018;62:376–83.CrossRefPubMed Xie W, Zhuang W, Chen L, Xie W, Jiang C, Liu N. 4218T/C polymorphism associations with post-cesarean patient-controlled epidural fentanyl consumption and pain perception. Acta Anaesthesiol Scand. 2018;62:376–83.CrossRefPubMed
142.
go back to reference Yan Q, Su Y, Gao L, Ding N, Zhang H-Y, E W, et al. Impact of CYP3A4*1G polymorphism on fentanyl analgesia assessed by analgesia nociception index in Chinese patients undergoing hysteroscopy. Chin Med J. 2018;131:2693–8.CrossRefPubMedPubMedCentral Yan Q, Su Y, Gao L, Ding N, Zhang H-Y, E W, et al. Impact of CYP3A4*1G polymorphism on fentanyl analgesia assessed by analgesia nociception index in Chinese patients undergoing hysteroscopy. Chin Med J. 2018;131:2693–8.CrossRefPubMedPubMedCentral
143.
go back to reference Ma J, Li W, Chai Q, Tan X, Zhang K. Correlation of P2RX7 gene rs1718125 polymorphism with postoperative fentanyl analgesia in patients with lung cancer. Medicine. 2019;98:e14445.CrossRefPubMedPubMedCentral Ma J, Li W, Chai Q, Tan X, Zhang K. Correlation of P2RX7 gene rs1718125 polymorphism with postoperative fentanyl analgesia in patients with lung cancer. Medicine. 2019;98:e14445.CrossRefPubMedPubMedCentral
144.
go back to reference Phelps C. Traumatic injuries of the brain and its membranes. New York, NY: D. Appleton & Co; 1897. p. 223–4. Phelps C. Traumatic injuries of the brain and its membranes. New York, NY: D. Appleton & Co; 1897. p. 223–4.
145.
go back to reference Ahmed AI, Bullock MR, Dietrich WD. Hypothermia in traumatic brain injury. Neurosurg Clin N Am. 2016;27:489–97.CrossRefPubMed Ahmed AI, Bullock MR, Dietrich WD. Hypothermia in traumatic brain injury. Neurosurg Clin N Am. 2016;27:489–97.CrossRefPubMed
146.
go back to reference Fay T. Early experiences with local and generalized refrigeration of the human brain. J Neurosurg. 1959;16:239–59. discussion 259. Fay T. Early experiences with local and generalized refrigeration of the human brain. J Neurosurg. 1959;16:239–59. discussion 259.
147.
go back to reference •• PJD A, Sinclair HL, Rodriguez A, Harris BA, Battison CG, JKJ R, et al. Hypothermia for intracranial hypertension after traumatic brain injury. N Engl J Med. 2015;373:2403–12. This study, also known as the Eurotherm3235 trial, is a recent landmark RCT assessing the use of hypothermia specifically for the management of intracranial hypertension after TBI. The investigators found that hypothermia reduced the number of additional interventions required to control intracranial hypertension but did not result in an overall reduction of ICP. The trial was stopped early due to lower GOS-E scores in the hypothermia arm vs the standard care arm.CrossRef •• PJD A, Sinclair HL, Rodriguez A, Harris BA, Battison CG, JKJ R, et al. Hypothermia for intracranial hypertension after traumatic brain injury. N Engl J Med. 2015;373:2403–12. This study, also known as the Eurotherm3235 trial, is a recent landmark RCT assessing the use of hypothermia specifically for the management of intracranial hypertension after TBI. The investigators found that hypothermia reduced the number of additional interventions required to control intracranial hypertension but did not result in an overall reduction of ICP. The trial was stopped early due to lower GOS-E scores in the hypothermia arm vs the standard care arm.CrossRef
148.
go back to reference Cooper DJ, Nichol AD, Bailey M, Bernard S, Cameron PA, Pili-Floury S, et al. Effect of early sustained prophylactic hypothermia on neurologic outcomes among patients with severe traumatic brain injury: the POLAR randomized clinical trial. JAMA. 2018;320:2211–20.CrossRefPubMedPubMedCentral Cooper DJ, Nichol AD, Bailey M, Bernard S, Cameron PA, Pili-Floury S, et al. Effect of early sustained prophylactic hypothermia on neurologic outcomes among patients with severe traumatic brain injury: the POLAR randomized clinical trial. JAMA. 2018;320:2211–20.CrossRefPubMedPubMedCentral
149.
go back to reference Liu WG, Qiu WS, Zhang Y, Wang WM, Lu F, Yang XF. Effects of selective brain cooling in patients with severe traumatic brain injury: a preliminary study. J Int Med Res. 2006;34:58–64.CrossRefPubMed Liu WG, Qiu WS, Zhang Y, Wang WM, Lu F, Yang XF. Effects of selective brain cooling in patients with severe traumatic brain injury: a preliminary study. J Int Med Res. 2006;34:58–64.CrossRefPubMed
150.
go back to reference Villa O, Dimitrov A, Moscote-Salazar LR, Agrawal A. Commentary: therapeutic hypothermia in patients with severe traumatic brain injury: where do we go now? Neurosurgery. 2019;85:E957–8. Villa O, Dimitrov A, Moscote-Salazar LR, Agrawal A. Commentary: therapeutic hypothermia in patients with severe traumatic brain injury: where do we go now? Neurosurgery. 2019;85:E957–8.
151.
go back to reference Jackson TC, Kochanek PM. A new vision for therapeutic hypothermia in the era of targeted temperature management: a speculative synthesis. Ther Hypothermia Temp Manag. 2019;9:13–47.CrossRefPubMedPubMedCentral Jackson TC, Kochanek PM. A new vision for therapeutic hypothermia in the era of targeted temperature management: a speculative synthesis. Ther Hypothermia Temp Manag. 2019;9:13–47.CrossRefPubMedPubMedCentral
152.
go back to reference Rashid A, Ahmad M, Minhas MU, Hassan IJ, Malik MZ. Pharmacokinetic studies of metformin and glibenclamide in normal human volunteers. Pak J Pharm Sci. 2014;27:153–9.PubMed Rashid A, Ahmad M, Minhas MU, Hassan IJ, Malik MZ. Pharmacokinetic studies of metformin and glibenclamide in normal human volunteers. Pak J Pharm Sci. 2014;27:153–9.PubMed
153.
go back to reference Ghozzi H, Hammami S, Affes H, Ksouda K, Sahnoun Z, Hakim A, et al. Bioequivalence evaluation of glibenclamide 5-mg tablets: diabenil® and daonil® (in 24 healthy volunteers). Tunis Med. 2015;93:96–100.PubMed Ghozzi H, Hammami S, Affes H, Ksouda K, Sahnoun Z, Hakim A, et al. Bioequivalence evaluation of glibenclamide 5-mg tablets: diabenil® and daonil® (in 24 healthy volunteers). Tunis Med. 2015;93:96–100.PubMed
154.
go back to reference •• Woo SK, Kwon MS, Ivanov A, Gerzanich V, Simard JM. The sulfonylurea receptor 1 (Sur1)-transient receptor potential melastatin 4 (Trpm4) channel. J Biol Chem. 2013;288:3655–67. This study identifies and describes properties of the Sur-1/Trpm4 channel, which has been found to play a key role in multiple CNS pathologies. This study highlights the promise of mechanistically driven therapies for cerebral edema, as trials of pharmacologic inhibition of Sur-1 in SAH, TBI, and CVA are ongoing.CrossRefPubMed •• Woo SK, Kwon MS, Ivanov A, Gerzanich V, Simard JM. The sulfonylurea receptor 1 (Sur1)-transient receptor potential melastatin 4 (Trpm4) channel. J Biol Chem. 2013;288:3655–67. This study identifies and describes properties of the Sur-1/Trpm4 channel, which has been found to play a key role in multiple CNS pathologies. This study highlights the promise of mechanistically driven therapies for cerebral edema, as trials of pharmacologic inhibition of Sur-1 in SAH, TBI, and CVA are ongoing.CrossRefPubMed
155.
go back to reference Patel AD, Gerzanich V, Geng Z, Simard JM. Glibenclamide reduces hippocampal injury and preserves rapid spatial learning in a model of traumatic brain injury. J Neuropathol Exp Neurol. 2010;69:1177–90.CrossRefPubMed Patel AD, Gerzanich V, Geng Z, Simard JM. Glibenclamide reduces hippocampal injury and preserves rapid spatial learning in a model of traumatic brain injury. J Neuropathol Exp Neurol. 2010;69:1177–90.CrossRefPubMed
156.
go back to reference Jha RM, Puccio AM, Chou SH-Y, Chang C-CH, Wallisch JS, Molyneaux BJ, et al. Sulfonylurea receptor-1: a novel biomarker for cerebral edema in severe traumatic brain injury. Crit Care Med. 2017;45:e255–64.CrossRefPubMedPubMedCentral Jha RM, Puccio AM, Chou SH-Y, Chang C-CH, Wallisch JS, Molyneaux BJ, et al. Sulfonylurea receptor-1: a novel biomarker for cerebral edema in severe traumatic brain injury. Crit Care Med. 2017;45:e255–64.CrossRefPubMedPubMedCentral
157.
go back to reference Tosun C, Kurland DB, Mehta R, Castellani RJ, de Jong JL, Kwon MS, et al. Inhibition of the Sur1-Trpm4 channel reduces neuroinflammation and cognitive impairment in subarachnoid hemorrhage. Stroke. 2013;44:3522–8.CrossRefPubMedPubMedCentral Tosun C, Kurland DB, Mehta R, Castellani RJ, de Jong JL, Kwon MS, et al. Inhibition of the Sur1-Trpm4 channel reduces neuroinflammation and cognitive impairment in subarachnoid hemorrhage. Stroke. 2013;44:3522–8.CrossRefPubMedPubMedCentral
158.
go back to reference Simard JM, Geng Z, Woo SK, Ivanova S, Tosun C, Melnichenko L, et al. Glibenclamide reduces inflammation, vasogenic edema, and caspase-3 activation after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2009;29:317–30.CrossRefPubMed Simard JM, Geng Z, Woo SK, Ivanova S, Tosun C, Melnichenko L, et al. Glibenclamide reduces inflammation, vasogenic edema, and caspase-3 activation after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2009;29:317–30.CrossRefPubMed
159.
go back to reference Mehta RI, Ivanova S, Tosun C, Castellani RJ, Gerzanich V, Simard JM. Sulfonylurea receptor 1 expression in human cerebral infarcts. J Neuropathol Exp Neurol. 2013;72:871–83.CrossRefPubMed Mehta RI, Ivanova S, Tosun C, Castellani RJ, Gerzanich V, Simard JM. Sulfonylurea receptor 1 expression in human cerebral infarcts. J Neuropathol Exp Neurol. 2013;72:871–83.CrossRefPubMed
160.
go back to reference Simard JM, Woo SK, Schwartzbauer GT, Gerzanich V. Sulfonylurea receptor 1 in central nervous system injury: a focused review. J Cereb Blood Flow Metab. 2012;32:1699–717.CrossRefPubMedPubMedCentral Simard JM, Woo SK, Schwartzbauer GT, Gerzanich V. Sulfonylurea receptor 1 in central nervous system injury: a focused review. J Cereb Blood Flow Metab. 2012;32:1699–717.CrossRefPubMedPubMedCentral
161.
go back to reference Stokum JA, Kwon MS, Woo SK, Tsymbalyuk O, Vennekens R, Gerzanich V, et al. SUR1-TRPM4 and AQP4 form a heteromultimeric complex that amplifies ion/water osmotic coupling and drives astrocyte swelling. Glia. 2018;66:108–25.CrossRefPubMed Stokum JA, Kwon MS, Woo SK, Tsymbalyuk O, Vennekens R, Gerzanich V, et al. SUR1-TRPM4 and AQP4 form a heteromultimeric complex that amplifies ion/water osmotic coupling and drives astrocyte swelling. Glia. 2018;66:108–25.CrossRefPubMed
162.
go back to reference Jha RM, Molyneaux BJ, Jackson TC, Wallisch JS, Park S-Y, Poloyac S, et al. Glibenclamide produces region-dependent effects on cerebral edema in a combined injury model of traumatic brain injury and hemorrhagic shock in mice. J Neurotrauma. 2018;35:2125–35.CrossRefPubMedPubMedCentral Jha RM, Molyneaux BJ, Jackson TC, Wallisch JS, Park S-Y, Poloyac S, et al. Glibenclamide produces region-dependent effects on cerebral edema in a combined injury model of traumatic brain injury and hemorrhagic shock in mice. J Neurotrauma. 2018;35:2125–35.CrossRefPubMedPubMedCentral
163.
go back to reference Ortega FJ, Gimeno-Bayon J, Espinosa-Parrilla JF, Carrasco JL, Batlle M, Pugliese M, et al. ATP-dependent potassium channel blockade strengthens microglial neuroprotection after hypoxia-ischemia in rats. Exp Neurol. 2012;235:282–96.CrossRefPubMed Ortega FJ, Gimeno-Bayon J, Espinosa-Parrilla JF, Carrasco JL, Batlle M, Pugliese M, et al. ATP-dependent potassium channel blockade strengthens microglial neuroprotection after hypoxia-ischemia in rats. Exp Neurol. 2012;235:282–96.CrossRefPubMed
164.
go back to reference Martínez-Valverde T, Vidal-Jorge M, Martínez-Saez E, Castro L, Arikan F, Cordero E, et al. Sulfonylurea receptor 1 in humans with post-traumatic brain contusions. J Neurotrauma. 2015;32:1478–87.CrossRefPubMedPubMedCentral Martínez-Valverde T, Vidal-Jorge M, Martínez-Saez E, Castro L, Arikan F, Cordero E, et al. Sulfonylurea receptor 1 in humans with post-traumatic brain contusions. J Neurotrauma. 2015;32:1478–87.CrossRefPubMedPubMedCentral
165.
go back to reference Xu Z-M, Yuan F, Liu Y-L, Ding J, Tian H-L. Glibenclamide attenuates blood-brain barrier disruption in adult mice after traumatic brain injury. J Neurotrauma. 2016;34:925–33.CrossRefPubMed Xu Z-M, Yuan F, Liu Y-L, Ding J, Tian H-L. Glibenclamide attenuates blood-brain barrier disruption in adult mice after traumatic brain injury. J Neurotrauma. 2016;34:925–33.CrossRefPubMed
166.
167.
go back to reference Zhang G, Lin X, Zhang S, Xiu H, Pan C, Cui W. A protective role of glibenclamide in inflammation-associated injury. Mediat Inflamm. 2017;2017:3578702. Zhang G, Lin X, Zhang S, Xiu H, Pan C, Cui W. A protective role of glibenclamide in inflammation-associated injury. Mediat Inflamm. 2017;2017:3578702.
168.
go back to reference Kochanek PM, Bramlett HM, Dixon CE, Dietrich WD, Mondello S, Wang KKW, et al. Operation brain trauma therapy: 2016 update. Mil Med. 2018;183:303–12.CrossRefPubMed Kochanek PM, Bramlett HM, Dixon CE, Dietrich WD, Mondello S, Wang KKW, et al. Operation brain trauma therapy: 2016 update. Mil Med. 2018;183:303–12.CrossRefPubMed
169.
go back to reference Simard JM, Kilbourne M, Tsymbalyuk O, Tosun C, Caridi J, Ivanova S, et al. Key role of sulfonylurea receptor 1 in progressive secondary hemorrhage after brain contusion. J Neurotrauma. 2009;26:2257–67.CrossRefPubMedPubMedCentral Simard JM, Kilbourne M, Tsymbalyuk O, Tosun C, Caridi J, Ivanova S, et al. Key role of sulfonylurea receptor 1 in progressive secondary hemorrhage after brain contusion. J Neurotrauma. 2009;26:2257–67.CrossRefPubMedPubMedCentral
170.
go back to reference Kurland DB, Gerzanich V, Karimy JK, Woo SK, Vennekens R, Freichel M, et al. The Sur1-Trpm4 channel regulates NOS2 transcription in TLR4-activated microglia. J Neuroinflammation. 2016;13:130.CrossRefPubMedPubMedCentral Kurland DB, Gerzanich V, Karimy JK, Woo SK, Vennekens R, Freichel M, et al. The Sur1-Trpm4 channel regulates NOS2 transcription in TLR4-activated microglia. J Neuroinflammation. 2016;13:130.CrossRefPubMedPubMedCentral
171.
go back to reference Zafardoost P, Ghasemi AA, Salehpour F, Piroti C, Ziaeii E. Evaluation of the effect of glibenclamide in patients with diffuse axonal injury due to moderate to severe head trauma. Trauma Mon. 2016;21:e25113.CrossRefPubMedPubMedCentral Zafardoost P, Ghasemi AA, Salehpour F, Piroti C, Ziaeii E. Evaluation of the effect of glibenclamide in patients with diffuse axonal injury due to moderate to severe head trauma. Trauma Mon. 2016;21:e25113.CrossRefPubMedPubMedCentral
172.
go back to reference Khalili H, Derakhshan N, Niakan A, Ghaffarpasand F, Salehi M, Eshraghian H, et al. Effects of oral glibenclamide on brain contusion volume and functional outcome of patients with moderate and severe traumatic brain injuries: a randomized double-blind placebo-controlled clinical trial. World Neurosurg. 2017;101:130–6.CrossRefPubMed Khalili H, Derakhshan N, Niakan A, Ghaffarpasand F, Salehi M, Eshraghian H, et al. Effects of oral glibenclamide on brain contusion volume and functional outcome of patients with moderate and severe traumatic brain injuries: a randomized double-blind placebo-controlled clinical trial. World Neurosurg. 2017;101:130–6.CrossRefPubMed
173.
go back to reference •• Eisenberg HM, Shenton ME, Pasternak O, Simard JM, Okonkwo DO, Aldrich C, et al. Magnetic resonance imaging pilot study of intravenous glyburide in traumatic brain injury. J. Neurotrauma. 2020;37:185–93. This small phase II trial provides an example of the translation of research into the molecular mechanisms of cerebral edema to the bedside in the treatment of traumatic brain injury. Despite the fact that this was a negative trial, likely because it was underpowered due to low enrollment, some of the post hoc radiographic analyses suggest that mechanistic treatments may successfully arrest edema. A larger phase II trial is currently ongoing (NCT03954041). •• Eisenberg HM, Shenton ME, Pasternak O, Simard JM, Okonkwo DO, Aldrich C, et al. Magnetic resonance imaging pilot study of intravenous glyburide in traumatic brain injury. J. Neurotrauma. 2020;37:185–93. This small phase II trial provides an example of the translation of research into the molecular mechanisms of cerebral edema to the bedside in the treatment of traumatic brain injury. Despite the fact that this was a negative trial, likely because it was underpowered due to low enrollment, some of the post hoc radiographic analyses suggest that mechanistic treatments may successfully arrest edema. A larger phase II trial is currently ongoing (NCT03954041).
174.
go back to reference Chen J-Q, Zhang C-C, Jiang S-N, Lu H, Wang W. Effects of aquaporin 4 knockdown on brain edema of the uninjured side after traumatic brain injury in rats. Med Sci Monit. 2016;22:4809–19.CrossRefPubMedPubMedCentral Chen J-Q, Zhang C-C, Jiang S-N, Lu H, Wang W. Effects of aquaporin 4 knockdown on brain edema of the uninjured side after traumatic brain injury in rats. Med Sci Monit. 2016;22:4809–19.CrossRefPubMedPubMedCentral
175.
go back to reference Ren Z, Iliff JJ, Yang L, Yang J, Chen X, Chen MJ, et al. Hit & run ’ model of closed-skull traumatic brain injury (TBI) reveals complex patterns of post-traumatic AQP4 dysregulation. J Cereb Blood Flow Metab. 2013;33:834–45.CrossRefPubMedPubMedCentral Ren Z, Iliff JJ, Yang L, Yang J, Chen X, Chen MJ, et al. Hit & run ’ model of closed-skull traumatic brain injury (TBI) reveals complex patterns of post-traumatic AQP4 dysregulation. J Cereb Blood Flow Metab. 2013;33:834–45.CrossRefPubMedPubMedCentral
176.
go back to reference Fukuda AM, Adami A, Pop V, Bellone JA, Coats JS, Hartman RE, et al. Posttraumatic reduction of edema with aquaporin-4 RNA interference improves acute and chronic functional recovery. J Cereb Blood Flow Metab. 2013;33:1621–32.CrossRefPubMedPubMedCentral Fukuda AM, Adami A, Pop V, Bellone JA, Coats JS, Hartman RE, et al. Posttraumatic reduction of edema with aquaporin-4 RNA interference improves acute and chronic functional recovery. J Cereb Blood Flow Metab. 2013;33:1621–32.CrossRefPubMedPubMedCentral
177.
go back to reference Chu H, Tang Y, Dong Q. Protection of vascular endothelial growth factor to brain edema following intracerebral hemorrhage and its involved mechanisms: effect of aquaporin-4. PLoS One. 2013;8:e66051.CrossRefPubMedPubMedCentral Chu H, Tang Y, Dong Q. Protection of vascular endothelial growth factor to brain edema following intracerebral hemorrhage and its involved mechanisms: effect of aquaporin-4. PLoS One. 2013;8:e66051.CrossRefPubMedPubMedCentral
178.
go back to reference Ding Z, Zhang J, Xu J, Sheng G, Huang G. Propofol administration modulates AQP-4 expression and brain edema after traumatic brain injury. Cell Biochem Biophys. 2013;67:615–22.CrossRefPubMed Ding Z, Zhang J, Xu J, Sheng G, Huang G. Propofol administration modulates AQP-4 expression and brain edema after traumatic brain injury. Cell Biochem Biophys. 2013;67:615–22.CrossRefPubMed
179.
go back to reference Kitchen P, Day RE, Taylor LHJ, Salman MM, Bill RM, Conner MT, et al. Identification and molecular mechanisms of the rapid tonicity-induced relocalization of the aquaporin 4 channel. J Biol Chem. 2015;290:16873–81.CrossRefPubMedPubMedCentral Kitchen P, Day RE, Taylor LHJ, Salman MM, Bill RM, Conner MT, et al. Identification and molecular mechanisms of the rapid tonicity-induced relocalization of the aquaporin 4 channel. J Biol Chem. 2015;290:16873–81.CrossRefPubMedPubMedCentral
180.
go back to reference Szczygielski J, Glameanu C, Müller A, Klotz M, Sippl C, Hubertus V, et al. Changes in posttraumatic brain edema in craniectomy-selective brain hypothermia model are associated with modulation of aquaporin-4 level. Front Neurol. 2018;9:799.CrossRefPubMedPubMedCentral Szczygielski J, Glameanu C, Müller A, Klotz M, Sippl C, Hubertus V, et al. Changes in posttraumatic brain edema in craniectomy-selective brain hypothermia model are associated with modulation of aquaporin-4 level. Front Neurol. 2018;9:799.CrossRefPubMedPubMedCentral
181.
go back to reference Papadopoulos MC, Manley GT, Krishna S, Verkman AS. Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J. 2004;18:1291–3.CrossRefPubMed Papadopoulos MC, Manley GT, Krishna S, Verkman AS. Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J. 2004;18:1291–3.CrossRefPubMed
182.
go back to reference Yao X, Uchida K, Papadopoulos MC, Zador Z, Manley GT, Verkman AS. Mildly reduced brain swelling and improved neurological outcome in aquaporin-4 knockout mice following controlled cortical impact brain injury. J Neurotrauma. 2015;32:1458–64.CrossRefPubMedPubMedCentral Yao X, Uchida K, Papadopoulos MC, Zador Z, Manley GT, Verkman AS. Mildly reduced brain swelling and improved neurological outcome in aquaporin-4 knockout mice following controlled cortical impact brain injury. J Neurotrauma. 2015;32:1458–64.CrossRefPubMedPubMedCentral
183.
go back to reference Liang F, Luo C, Xu G, Su F, He X, Long S, et al. Deletion of aquaporin-4 is neuroprotective during the acute stage of micro traumatic brain injury in mice. Neurosci Lett. 2015;598:29–35.CrossRefPubMed Liang F, Luo C, Xu G, Su F, He X, Long S, et al. Deletion of aquaporin-4 is neuroprotective during the acute stage of micro traumatic brain injury in mice. Neurosci Lett. 2015;598:29–35.CrossRefPubMed
184.
go back to reference Cartagena CM, Phillips KL, Tortella FC, Dave JR, Schmid KE. Temporal alterations in aquaporin and transcription factor HIF1α expression following penetrating ballistic-like brain injury (PBBI). Mol Cell Neurosci. 2014;60:81–7.CrossRefPubMed Cartagena CM, Phillips KL, Tortella FC, Dave JR, Schmid KE. Temporal alterations in aquaporin and transcription factor HIF1α expression following penetrating ballistic-like brain injury (PBBI). Mol Cell Neurosci. 2014;60:81–7.CrossRefPubMed
185.
go back to reference Ke C, Poon WS, Ng HK, Pang JC, Chan Y. Heterogeneous responses of aquaporin-4 in oedema formation in a replicated severe traumatic brain injury model in rats. Neurosci Lett. 2001;301:21–4.CrossRefPubMed Ke C, Poon WS, Ng HK, Pang JC, Chan Y. Heterogeneous responses of aquaporin-4 in oedema formation in a replicated severe traumatic brain injury model in rats. Neurosci Lett. 2001;301:21–4.CrossRefPubMed
186.
go back to reference Kiening KL, van Landeghem FKH, Schreiber S, Thomale UW, von Deimling A, Unterberg AW, et al. Decreased hemispheric aquaporin-4 is linked to evolving brain edema following controlled cortical impact injury in rats. Neurosci Lett. 2002;324:105–8.CrossRefPubMed Kiening KL, van Landeghem FKH, Schreiber S, Thomale UW, von Deimling A, Unterberg AW, et al. Decreased hemispheric aquaporin-4 is linked to evolving brain edema following controlled cortical impact injury in rats. Neurosci Lett. 2002;324:105–8.CrossRefPubMed
187.
go back to reference Liu H, Ping QG, Zhuo F, Hua YW, Quan SS, Hong LF. Lost polarization of aquaporin4 and dystroglycan in the core lesion after traumatic brain injury suggests functional divergence in evolution. Biomed Res Int. et al, 2015;2015:471631. Liu H, Ping QG, Zhuo F, Hua YW, Quan SS, Hong LF. Lost polarization of aquaporin4 and dystroglycan in the core lesion after traumatic brain injury suggests functional divergence in evolution. Biomed Res Int. et al, 2015;2015:471631.
188.
go back to reference Taya K, Marmarou CR, Okuno K, Prieto R, Marmarou A. Effect of secondary insults upon aquaporin-4 water channels following experimental cortical contusion in rats. J Neurotrauma. 2010;27:229–39.CrossRefPubMedPubMedCentral Taya K, Marmarou CR, Okuno K, Prieto R, Marmarou A. Effect of secondary insults upon aquaporin-4 water channels following experimental cortical contusion in rats. J Neurotrauma. 2010;27:229–39.CrossRefPubMedPubMedCentral
189.
go back to reference Lopez-Rodriguez AB, Acaz-Fonseca E, Viveros M-P, Garcia-Segura LM. Changes in cannabinoid receptors, aquaporin 4 and vimentin expression after traumatic brain injury in adolescent male mice. Association with edema and neurological deficit. PLoS One. 2015;10:e0128782.CrossRefPubMedPubMedCentral Lopez-Rodriguez AB, Acaz-Fonseca E, Viveros M-P, Garcia-Segura LM. Changes in cannabinoid receptors, aquaporin 4 and vimentin expression after traumatic brain injury in adolescent male mice. Association with edema and neurological deficit. PLoS One. 2015;10:e0128782.CrossRefPubMedPubMedCentral
190.
go back to reference Lu H, Lei X-Y, Hu H, He Z-P. Relationship between AQP4 expression and structural damage to the blood-brain barrier at early stages of traumatic brain injury in rats. Chin Med J. 2013;126:4316–21.PubMed Lu H, Lei X-Y, Hu H, He Z-P. Relationship between AQP4 expression and structural damage to the blood-brain barrier at early stages of traumatic brain injury in rats. Chin Med J. 2013;126:4316–21.PubMed
191.
go back to reference Higashida T, Kreipke CW, Rafols JA, Peng C, Schafer S, Schafer P, et al. The role of hypoxia-inducible factor-1α, aquaporin-4, and matrix metalloproteinase-9 in blood-brain barrier disruption and brain edema after traumatic brain injury. J Neurosurg. 2011;114:92–101.CrossRefPubMed Higashida T, Kreipke CW, Rafols JA, Peng C, Schafer S, Schafer P, et al. The role of hypoxia-inducible factor-1α, aquaporin-4, and matrix metalloproteinase-9 in blood-brain barrier disruption and brain edema after traumatic brain injury. J Neurosurg. 2011;114:92–101.CrossRefPubMed
192.
go back to reference Wang F, Wang X, Shapiro LA, Cotrina ML, Liu W, Wang EW, et al. NKCC1 up-regulation contributes to early post-traumatic seizures and increased post-traumatic seizure susceptibility. Brain Struct Funct. 2017;222:1543–56.CrossRefPubMed Wang F, Wang X, Shapiro LA, Cotrina ML, Liu W, Wang EW, et al. NKCC1 up-regulation contributes to early post-traumatic seizures and increased post-traumatic seizure susceptibility. Brain Struct Funct. 2017;222:1543–56.CrossRefPubMed
193.
go back to reference Zhang M, Cui Z, Cui H, Cao Y, Zhong C, Wang Y. Astaxanthin alleviates cerebral edema by modulating NKCC1 and AQP4 expression after traumatic brain injury in mice. BMC Neurosci. 2016;17:60.CrossRefPubMedPubMedCentral Zhang M, Cui Z, Cui H, Cao Y, Zhong C, Wang Y. Astaxanthin alleviates cerebral edema by modulating NKCC1 and AQP4 expression after traumatic brain injury in mice. BMC Neurosci. 2016;17:60.CrossRefPubMedPubMedCentral
194.
go back to reference Lu K-T, Huang T-C, Tsai Y-H, Yang Y-L. Transient receptor potential vanilloid type 4 channels mediate Na-K-Cl-co-transporter-induced brain edema after traumatic brain injury. J Neurochem. 2017;140:718–27.CrossRefPubMed Lu K-T, Huang T-C, Tsai Y-H, Yang Y-L. Transient receptor potential vanilloid type 4 channels mediate Na-K-Cl-co-transporter-induced brain edema after traumatic brain injury. J Neurochem. 2017;140:718–27.CrossRefPubMed
195.
go back to reference Hui H, Rao W, Zhang L, Xie Z, Peng C, Su N, et al. Inhibition of Na(+)-K(+)-2Cl(-) cotransporter-1 attenuates traumatic brain injury-induced neuronal apoptosis via regulation of Erk signaling. Neurochem Int. 2016;94:23–31.CrossRefPubMed Hui H, Rao W, Zhang L, Xie Z, Peng C, Su N, et al. Inhibition of Na(+)-K(+)-2Cl(-) cotransporter-1 attenuates traumatic brain injury-induced neuronal apoptosis via regulation of Erk signaling. Neurochem Int. 2016;94:23–31.CrossRefPubMed
196.
go back to reference Jayakumar AR, Panickar KS, Curtis KM, Tong XY, Moriyama M, Norenberg MD. Na-K-Cl cotransporter-1 in the mechanism of cell swelling in cultured astrocytes after fluid percussion injury. J Neurochem. 2011;117:437–48.CrossRefPubMed Jayakumar AR, Panickar KS, Curtis KM, Tong XY, Moriyama M, Norenberg MD. Na-K-Cl cotransporter-1 in the mechanism of cell swelling in cultured astrocytes after fluid percussion injury. J Neurochem. 2011;117:437–48.CrossRefPubMed
197.
go back to reference Halladay SC, Sipes IG, Carter DE. Diuretic effect and metabolism of bumetanide in man. Clin Pharmacol Ther. 1977;22:179–87.CrossRefPubMed Halladay SC, Sipes IG, Carter DE. Diuretic effect and metabolism of bumetanide in man. Clin Pharmacol Ther. 1977;22:179–87.CrossRefPubMed
199.
go back to reference Zhang J, Pu H, Zhang H, Wei Z, Jiang X, Xu M, et al. Inhibition of Na+-K+-2Cl- cotransporter attenuates blood-brain-barrier disruption in a mouse model of traumatic brain injury. Neurochem Int. 2017;111:23–31.CrossRefPubMed Zhang J, Pu H, Zhang H, Wei Z, Jiang X, Xu M, et al. Inhibition of Na+-K+-2Cl- cotransporter attenuates blood-brain-barrier disruption in a mouse model of traumatic brain injury. Neurochem Int. 2017;111:23–31.CrossRefPubMed
200.
go back to reference Yan X, Liu J, Wang X, Li W, Chen J, Sun H. Pretreatment with AQP4 and NKCC1 inhibitors concurrently attenuated spinal cord edema and tissue damage after spinal cord injury in rats. Front Physiol. 2018;9:6.CrossRefPubMedPubMedCentral Yan X, Liu J, Wang X, Li W, Chen J, Sun H. Pretreatment with AQP4 and NKCC1 inhibitors concurrently attenuated spinal cord edema and tissue damage after spinal cord injury in rats. Front Physiol. 2018;9:6.CrossRefPubMedPubMedCentral
201.
go back to reference Römermann K, Fedrowitz M, Hampel P, Kaczmarek E, Töllner K, Erker T, et al. Multiple blood-brain barrier transport mechanisms limit bumetanide accumulation, and therapeutic potential, in the mammalian brain. Neuropharmacology. 2017;117:182–94.CrossRefPubMed Römermann K, Fedrowitz M, Hampel P, Kaczmarek E, Töllner K, Erker T, et al. Multiple blood-brain barrier transport mechanisms limit bumetanide accumulation, and therapeutic potential, in the mammalian brain. Neuropharmacology. 2017;117:182–94.CrossRefPubMed
202.
go back to reference Wilkinson CM, Fedor BA, Aziz JR, Nadeau CA, Brar PS, Clark JJA, et al. Failure of bumetanide to improve outcome after intracerebral hemorrhage in rat. PLoS One. 2019;14:e0210660.CrossRefPubMedPubMedCentral Wilkinson CM, Fedor BA, Aziz JR, Nadeau CA, Brar PS, Clark JJA, et al. Failure of bumetanide to improve outcome after intracerebral hemorrhage in rat. PLoS One. 2019;14:e0210660.CrossRefPubMedPubMedCentral
203.
go back to reference Kleindienst A, Dunbar JG, Glisson R, Marmarou A. The role of vasopressin V1A receptors in cytotoxic brain edema formation following brain injury. Acta Neurochir. 2013;155:151–64.CrossRefPubMed Kleindienst A, Dunbar JG, Glisson R, Marmarou A. The role of vasopressin V1A receptors in cytotoxic brain edema formation following brain injury. Acta Neurochir. 2013;155:151–64.CrossRefPubMed
204.
go back to reference Rosenberg GA, Estrada E, Kyner WT. Vasopressin-induced brain edema is mediated by the V1 receptor. Adv Neurol. 1990;52:149–54.PubMed Rosenberg GA, Estrada E, Kyner WT. Vasopressin-induced brain edema is mediated by the V1 receptor. Adv Neurol. 1990;52:149–54.PubMed
205.
go back to reference Marmarou CR, Liang X, Abidi NH, Parveen S, Taya K, Henderson SC, et al. Selective vasopressin-1a receptor antagonist prevents brain edema, reduces astrocytic cell swelling and GFAP, V1aR and AQP4 expression after focal traumatic brain injury. Brain Res. 2014;1581:89–102.CrossRefPubMedPubMedCentral Marmarou CR, Liang X, Abidi NH, Parveen S, Taya K, Henderson SC, et al. Selective vasopressin-1a receptor antagonist prevents brain edema, reduces astrocytic cell swelling and GFAP, V1aR and AQP4 expression after focal traumatic brain injury. Brain Res. 2014;1581:89–102.CrossRefPubMedPubMedCentral
206.
go back to reference Krieg SM, Trabold R, Plesnila N. Time-dependent effects of arginine-vasopressin V1 receptor inhibition on secondary brain damage after traumatic brain injury. J Neurotrauma. 2017;34:1329–36.CrossRefPubMed Krieg SM, Trabold R, Plesnila N. Time-dependent effects of arginine-vasopressin V1 receptor inhibition on secondary brain damage after traumatic brain injury. J Neurotrauma. 2017;34:1329–36.CrossRefPubMed
207.
go back to reference Rauen K, Trabold R, Brem C, Terpolilli NA, Plesnila N. Arginine vasopressin V1a receptor-deficient mice have reduced brain edema and secondary brain damage following traumatic brain injury. J Neurotrauma. 2013;30:1442–8.CrossRefPubMed Rauen K, Trabold R, Brem C, Terpolilli NA, Plesnila N. Arginine vasopressin V1a receptor-deficient mice have reduced brain edema and secondary brain damage following traumatic brain injury. J Neurotrauma. 2013;30:1442–8.CrossRefPubMed
208.
go back to reference Allen CJ, Subhawong TK, Hanna MM, Chelala L, Bullock MR, Schulman CI, et al. Does vasopressin exacerbate cerebral edema in patients with severe traumatic brain injury? Am Surg. 2018;84:43–50.PubMed Allen CJ, Subhawong TK, Hanna MM, Chelala L, Bullock MR, Schulman CI, et al. Does vasopressin exacerbate cerebral edema in patients with severe traumatic brain injury? Am Surg. 2018;84:43–50.PubMed
209.
go back to reference Van Haren RM, Thorson CM, Ogilvie MP, Valle EJ, Guarch GA, Jouria JA, et al. Vasopressin for cerebral perfusion pressure management in patients with severe traumatic brain injury: preliminary results of a randomized controlled trial. J Trauma Acute Care Surg. 2013;75:1024–30 discussion 1030.CrossRefPubMed Van Haren RM, Thorson CM, Ogilvie MP, Valle EJ, Guarch GA, Jouria JA, et al. Vasopressin for cerebral perfusion pressure management in patients with severe traumatic brain injury: preliminary results of a randomized controlled trial. J Trauma Acute Care Surg. 2013;75:1024–30 discussion 1030.CrossRefPubMed
210.
go back to reference Galton C, Deem S, Yanez ND, Souter M, Chesnut R, Dagal A, et al. Open-label randomized trial of the safety and efficacy of a single dose conivaptan to raise serum sodium in patients with traumatic brain injury. Neurocrit Care. 2011;14:354–60.CrossRefPubMed Galton C, Deem S, Yanez ND, Souter M, Chesnut R, Dagal A, et al. Open-label randomized trial of the safety and efficacy of a single dose conivaptan to raise serum sodium in patients with traumatic brain injury. Neurocrit Care. 2011;14:354–60.CrossRefPubMed
211.
go back to reference Roberts JD, Wells GA, Le May MR, Labinaz M, Glover C, Froeschl M, et al. Point-of-care genetic testing for personalisation of antiplatelet treatment (RAPID GENE): a prospective, randomised, proof-of-concept trial. Lancet. 2012;379:1705–11.CrossRefPubMed Roberts JD, Wells GA, Le May MR, Labinaz M, Glover C, Froeschl M, et al. Point-of-care genetic testing for personalisation of antiplatelet treatment (RAPID GENE): a prospective, randomised, proof-of-concept trial. Lancet. 2012;379:1705–11.CrossRefPubMed
212.
go back to reference Mega JL, Close SL, Wiviott SD, Shen L, Hockett RD, Brandt JT, et al. Cytochrome p-450 polymorphisms and response to clopidogrel. N Engl J Med. 2009;360:354–62.CrossRefPubMed Mega JL, Close SL, Wiviott SD, Shen L, Hockett RD, Brandt JT, et al. Cytochrome p-450 polymorphisms and response to clopidogrel. N Engl J Med. 2009;360:354–62.CrossRefPubMed
213.
go back to reference Shuldiner AR, O’Connell JR, Bliden KP, Gandhi A, Ryan K, Horenstein RB, et al. Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy. JAMA. 2009;302:849–57.CrossRefPubMedPubMedCentral Shuldiner AR, O’Connell JR, Bliden KP, Gandhi A, Ryan K, Horenstein RB, et al. Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy. JAMA. 2009;302:849–57.CrossRefPubMedPubMedCentral
214.
go back to reference Lee CR, Sriramoju VB, Cervantes A, Howell LA, Varunok N, Madan S, et al. Clinical outcomes and sustainability of using CYP2C19 genotype-guided antiplatelet therapy after percutaneous coronary intervention. Circ Genom Precis Med. 2018;11:e002069.PubMedPubMedCentral Lee CR, Sriramoju VB, Cervantes A, Howell LA, Varunok N, Madan S, et al. Clinical outcomes and sustainability of using CYP2C19 genotype-guided antiplatelet therapy after percutaneous coronary intervention. Circ Genom Precis Med. 2018;11:e002069.PubMedPubMedCentral
215.
go back to reference Leentjens J, Kox M, Koch RM, Preijers F, Joosten LAB, van der Hoeven JG, et al. Reversal of immunoparalysis in humans in vivo: a double-blind, placebo-controlled, randomized pilot study. Am J Respir Crit Care Med. 2012;186:838–45.CrossRefPubMed Leentjens J, Kox M, Koch RM, Preijers F, Joosten LAB, van der Hoeven JG, et al. Reversal of immunoparalysis in humans in vivo: a double-blind, placebo-controlled, randomized pilot study. Am J Respir Crit Care Med. 2012;186:838–45.CrossRefPubMed
216.
go back to reference Koo SL, Wang WW, Toh HC. Cancer immunotherapy—the target is precisely on the cancer and also not. Ann Acad Med Singap. 2018;47:381–7.PubMed Koo SL, Wang WW, Toh HC. Cancer immunotherapy—the target is precisely on the cancer and also not. Ann Acad Med Singap. 2018;47:381–7.PubMed
Metadata
Title
Cerebral Edema in Traumatic Brain Injury: a Historical Framework for Current Therapy
Authors
Benjamin E. Zusman, BSc
Patrick M. Kochanek, MD
Ruchira M. Jha, MD MSc
Publication date
01-03-2020
Publisher
Springer US
Published in
Current Treatment Options in Neurology / Issue 3/2020
Print ISSN: 1092-8480
Electronic ISSN: 1534-3138
DOI
https://doi.org/10.1007/s11940-020-0614-x