Skip to main content
Top
Published in: Critical Care 1/2017

Open Access 01-12-2017 | Research

Association between continuous hyperosmolar therapy and survival in patients with traumatic brain injury – a multicentre prospective cohort study and systematic review

Authors: Karim Asehnoune, Sigismond Lasocki, Philippe Seguin, Thomas Geeraerts, Pierre François Perrigault, Claire Dahyot-Fizelier, Catherine Paugam Burtz, Fabrice Cook, Dominique Demeure dit latte, Raphael Cinotti, Pierre Joachim Mahe, Camille Fortuit, Romain Pirracchio, Fanny Feuillet, Véronique Sébille, Antoine Roquilly, For the ATLANREA group, For the COBI group

Published in: Critical Care | Issue 1/2017

Login to get access

Abstract

Background

Intracranial hypertension (ICH) is a major cause of death after traumatic brain injury (TBI). Continuous hyperosmolar therapy (CHT) has been proposed for the treatment of ICH, but its effectiveness is controversial. We compared the mortality and outcomes in patients with TBI with ICH treated or not with CHT.

Methods

We included patients with TBI (Glasgow Coma Scale ≤ 12 and trauma-associated lesion on brain computed tomography (CT) scan) from the databases of the prospective multicentre trials Corti-TC, BI-VILI and ATLANREA. CHT consisted of an intravenous infusion of NaCl 20% for 24 hours or more. The primary outcome was the risk of survival at day 90, adjusted for predefined covariates and baseline differences, allowing us to reduce the bias resulting from confounding factors in observational studies. A systematic review was conducted including studies published from 1966 to December 2016.

Results

Among the 1086 included patients, 545 (51.7%) developed ICH (143 treated and 402 not treated with CHT). In patients with ICH, the relative risk of survival at day 90 with CHT was 1.43 (95% CI, 0.99–2.06, p = 0.05). The adjusted hazard ratio for survival was 1.74 (95% CI, 1.36–2.23, p < 0.001) in propensity-score-adjusted analysis. At day 90, favourable outcomes (Glasgow Outcome Scale 4–5) occurred in 45.2% of treated patients with ICH and in 35.8% of patients with ICH not treated with CHT (p = 0.06). A review of the literature including 1304 patients from eight studies suggests that CHT is associated with a reduction of in-ICU mortality (intervention, 112/474 deaths (23.6%) vs. control, 244/781 deaths (31.2%); OR 1.42 (95% CI, 1.04–1.95), p = 0.03, I2 = 15%).

Conclusions

CHT for the treatment of posttraumatic ICH was associated with improved adjusted 90-day survival. This result was strengthened by a review of the literature.
Appendix
Available only for authorised users
Literature
1.
go back to reference Mokdad AH, Forouzanfar MH, Daoud F, Mokdad AA, El Bcheraoui C, Moradi-Lakeh M, et al. Global burden of diseases, injuries, and risk factors for young people's health during 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2016;387:2383–401.CrossRefPubMed Mokdad AH, Forouzanfar MH, Daoud F, Mokdad AA, El Bcheraoui C, Moradi-Lakeh M, et al. Global burden of diseases, injuries, and risk factors for young people's health during 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2016;387:2383–401.CrossRefPubMed
2.
go back to reference Myburgh JA, Cooper DJ, Finfer SR, Venkatesh B, Jones D, Higgins A, et al. Epidemiology and 12-month outcomes from traumatic brain injury in Australia and New Zealand. J Trauma. 2008;64:854–62.CrossRefPubMed Myburgh JA, Cooper DJ, Finfer SR, Venkatesh B, Jones D, Higgins A, et al. Epidemiology and 12-month outcomes from traumatic brain injury in Australia and New Zealand. J Trauma. 2008;64:854–62.CrossRefPubMed
3.
go back to reference Davidson GH, Hamlat CA, Rivara FP, Koepsell TD, Jurkovich GJ, Arbabi S. Long-term survival of adult trauma patients. JAMA. 2011;305:1001–7.CrossRefPubMed Davidson GH, Hamlat CA, Rivara FP, Koepsell TD, Jurkovich GJ, Arbabi S. Long-term survival of adult trauma patients. JAMA. 2011;305:1001–7.CrossRefPubMed
4.
go back to reference Olesen J, Gustavsson A, Svensson M, Wittchen HU, Jönsson B, CDBE2010 study group, et al. The economic cost of brain disorders in Europe. Eur J Neurol. 2012;19:155–62.CrossRefPubMed Olesen J, Gustavsson A, Svensson M, Wittchen HU, Jönsson B, CDBE2010 study group, et al. The economic cost of brain disorders in Europe. Eur J Neurol. 2012;19:155–62.CrossRefPubMed
5.
go back to reference Dutton RP, Stansbury LG, Leone S, Kramer E, Hess JR, Scalea TM. Trauma mortality in mature trauma systems: are we doing better? An analysis of trauma mortality patterns, 1997-2008. J Trauma. 2010;69:620–6.CrossRefPubMed Dutton RP, Stansbury LG, Leone S, Kramer E, Hess JR, Scalea TM. Trauma mortality in mature trauma systems: are we doing better? An analysis of trauma mortality patterns, 1997-2008. J Trauma. 2010;69:620–6.CrossRefPubMed
6.
go back to reference Brain Trauma Foundation, American Association of Neurological Surgeons, Congress of Neurological Surgeons. Guidelines for the management of severe traumatic brain injury. J. Neurotrauma. 2007. pp. S1–106. Brain Trauma Foundation, American Association of Neurological Surgeons, Congress of Neurological Surgeons. Guidelines for the management of severe traumatic brain injury. J. Neurotrauma. 2007. pp. S1–106.
7.
go back to reference Francony G, Fauvage B, Falcon D, Canet C, Dilou H, Lavagne P, et al. Equimolar doses of mannitol and hypertonic saline in the treatment of increased intracranial pressure. Crit Care Med. 2008;36:795–800.CrossRefPubMed Francony G, Fauvage B, Falcon D, Canet C, Dilou H, Lavagne P, et al. Equimolar doses of mannitol and hypertonic saline in the treatment of increased intracranial pressure. Crit Care Med. 2008;36:795–800.CrossRefPubMed
8.
go back to reference Ichai C, Armando G, Orban J-C, Berthier F, Rami L, Samat-Long C, et al. Sodium lactate versus mannitol in the treatment of intracranial hypertensive episodes in severe traumatic brain-injured patients. Intensive Care Med. 2009;35:471–9.CrossRefPubMed Ichai C, Armando G, Orban J-C, Berthier F, Rami L, Samat-Long C, et al. Sodium lactate versus mannitol in the treatment of intracranial hypertensive episodes in severe traumatic brain-injured patients. Intensive Care Med. 2009;35:471–9.CrossRefPubMed
9.
go back to reference Tyagi R, Donaldson K, Loftus CM, Jallo J. Hypertonic saline: a clinical review. Neurosurg Rev. 2007;30:277–89. discussion289–90.CrossRefPubMed Tyagi R, Donaldson K, Loftus CM, Jallo J. Hypertonic saline: a clinical review. Neurosurg Rev. 2007;30:277–89. discussion289–90.CrossRefPubMed
10.
go back to reference Roquilly A, Mahe P, Latte D, Loutrel O, Champin P, Di Falco C, et al. Continuous controlled-infusion of hypertonic saline solution in traumatic brain-injured patients: a 9-year retrospective study. Crit Care BioMed Central Ltd. 2011;15:R260. Roquilly A, Mahe P, Latte D, Loutrel O, Champin P, Di Falco C, et al. Continuous controlled-infusion of hypertonic saline solution in traumatic brain-injured patients: a 9-year retrospective study. Crit Care BioMed Central Ltd. 2011;15:R260.
11.
go back to reference Asehnoune K, Seguin P, Allary J, Feuillet F, Lasocki S, Cook F, et al. Hydrocortisone and fludrocortisone for prevention of hospital-acquired pneumonia in patients with severe traumatic brain injury (Corti-TC): a double-blind, multicentre phase 3, randomised placebo-controlled trial. Lancet Respir Med. 2014;2:706–16.CrossRefPubMed Asehnoune K, Seguin P, Allary J, Feuillet F, Lasocki S, Cook F, et al. Hydrocortisone and fludrocortisone for prevention of hospital-acquired pneumonia in patients with severe traumatic brain injury (Corti-TC): a double-blind, multicentre phase 3, randomised placebo-controlled trial. Lancet Respir Med. 2014;2:706–16.CrossRefPubMed
12.
go back to reference Asehnoune K, Mrozek S, Perrigault P-F, Seguin P, Dahyot-Fizelier C, Lasocki S, et al. A multi-faceted strategy to reduce ventilation-associated mortality in brain-injured patients. The BI-VILI project: a nationwide quality improvement project. Intensive Care Med. 2017;43:957–70.CrossRefPubMed Asehnoune K, Mrozek S, Perrigault P-F, Seguin P, Dahyot-Fizelier C, Lasocki S, et al. A multi-faceted strategy to reduce ventilation-associated mortality in brain-injured patients. The BI-VILI project: a nationwide quality improvement project. Intensive Care Med. 2017;43:957–70.CrossRefPubMed
13.
go back to reference Asehnoune K, Seguin P, Lasocki S, Roquilly A, Delater A, Gros A, et al. Extubation success prediction in a multicentric cohort of patients with severe brain injury. Anesthesiology. 2017;127:338–46.CrossRefPubMed Asehnoune K, Seguin P, Lasocki S, Roquilly A, Delater A, Gros A, et al. Extubation success prediction in a multicentric cohort of patients with severe brain injury. Anesthesiology. 2017;127:338–46.CrossRefPubMed
14.
go back to reference Le Borgne F, Giraudeau B, Querard AH, Giral M, Foucher Y. Comparisons of the performance of different statistical tests for time-to-event analysis with confounding factors: practical illustrations in kidney transplantation. Heinze G, Michiels S, Posch M, editors. Statist Med. 2016;35:1103–16.CrossRef Le Borgne F, Giraudeau B, Querard AH, Giral M, Foucher Y. Comparisons of the performance of different statistical tests for time-to-event analysis with confounding factors: practical illustrations in kidney transplantation. Heinze G, Michiels S, Posch M, editors. Statist Med. 2016;35:1103–16.CrossRef
15.
go back to reference Steyerberg EW, Mushkudiani N, Perel P, Butcher I, Lu J, McHugh GS, et al. Predicting outcome after traumatic brain injury: development and international validation of prognostic scores based on admission characteristics. Singer M, editor. PLoS Med. 2008;5:e165–discussione165.CrossRef Steyerberg EW, Mushkudiani N, Perel P, Butcher I, Lu J, McHugh GS, et al. Predicting outcome after traumatic brain injury: development and international validation of prognostic scores based on admission characteristics. Singer M, editor. PLoS Med. 2008;5:e165–discussione165.CrossRef
16.
17.
go back to reference Mangat HS, Chiu Y-L, Gerber LM, Alimi M, Ghajar J, Härtl R. Hypertonic saline reduces cumulative and daily intracranial pressure burdens after severe traumatic brain injury. J Neurosurg. 2015;122:202–10.CrossRefPubMed Mangat HS, Chiu Y-L, Gerber LM, Alimi M, Ghajar J, Härtl R. Hypertonic saline reduces cumulative and daily intracranial pressure burdens after severe traumatic brain injury. J Neurosurg. 2015;122:202–10.CrossRefPubMed
18.
go back to reference Carney N, Totten AM, O'Reilly C, Ullman JS, Hawryluk GWJ, Bell MJ, et al. Guidelines for the Management of Severe Traumatic Brain Injury. Fourth Edition. Neurosurgery. 2017;80:6–15.PubMed Carney N, Totten AM, O'Reilly C, Ullman JS, Hawryluk GWJ, Bell MJ, et al. Guidelines for the Management of Severe Traumatic Brain Injury. Fourth Edition. Neurosurgery. 2017;80:6–15.PubMed
19.
go back to reference Ryu JH, Walcott BP, Kahle KT, Sheth SA, Peterson RT, Nahed BV, et al. Induced and sustained hypernatremia for the prevention and treatment of cerebral edema following brain injury. Neurocrit Care Springer US. 2013;19:222–31.CrossRef Ryu JH, Walcott BP, Kahle KT, Sheth SA, Peterson RT, Nahed BV, et al. Induced and sustained hypernatremia for the prevention and treatment of cerebral edema following brain injury. Neurocrit Care Springer US. 2013;19:222–31.CrossRef
21.
go back to reference Hauer E-M, Stark D, Staykov D, Steigleder T, Schwab S, Bardutzky J. Early continuous hypertonic saline infusion in patients with severe cerebrovascular disease. Crit Care Med. 2011;39:1766–72.CrossRefPubMed Hauer E-M, Stark D, Staykov D, Steigleder T, Schwab S, Bardutzky J. Early continuous hypertonic saline infusion in patients with severe cerebrovascular disease. Crit Care Med. 2011;39:1766–72.CrossRefPubMed
22.
go back to reference Half-molar sodium lactate infusion to prevent intracranial hypertensive episodes in severe traumatic brain injured patients: a randomized controlled trial. 2013;39:1413–22. Half-molar sodium lactate infusion to prevent intracranial hypertensive episodes in severe traumatic brain injured patients: a randomized controlled trial. 2013;39:1413–22.
23.
go back to reference Wagner I, Hauer EM, Staykov D, Volbers B, Dorfler A, Schwab S, et al. Effects of continuous hypertonic saline infusion on perihemorrhagic edema evolution. Stroke. 2011;42:1540–5.CrossRefPubMed Wagner I, Hauer EM, Staykov D, Volbers B, Dorfler A, Schwab S, et al. Effects of continuous hypertonic saline infusion on perihemorrhagic edema evolution. Stroke. 2011;42:1540–5.CrossRefPubMed
24.
go back to reference Froelich M, Ni Q, Wess C, Ougorets I, Härtl R. Continuous hypertonic saline therapy and the occurrence of complications in neurocritically ill patients. Crit Care Med. 2009;37:1433–41.CrossRefPubMed Froelich M, Ni Q, Wess C, Ougorets I, Härtl R. Continuous hypertonic saline therapy and the occurrence of complications in neurocritically ill patients. Crit Care Med. 2009;37:1433–41.CrossRefPubMed
25.
go back to reference Darmon M, Timsit J-F, Francais A, Nguile-Makao M, Adrie C, Cohen Y, et al. Association between hypernatraemia acquired in the ICU and mortality: a cohort study. Nephrol Dial Transplant Oxford University Press. 2010;25:2510–5.CrossRef Darmon M, Timsit J-F, Francais A, Nguile-Makao M, Adrie C, Cohen Y, et al. Association between hypernatraemia acquired in the ICU and mortality: a cohort study. Nephrol Dial Transplant Oxford University Press. 2010;25:2510–5.CrossRef
26.
go back to reference Maggiore U, Picetti E, Antonucci E, Parenti E, Regolisti G, Mergoni M, et al. The relation between the incidence of hypernatremia and mortality in patients with severe traumatic brain injury. Crit Care BioMed Central Ltd. 2009;13:R110. Maggiore U, Picetti E, Antonucci E, Parenti E, Regolisti G, Mergoni M, et al. The relation between the incidence of hypernatremia and mortality in patients with severe traumatic brain injury. Crit Care BioMed Central Ltd. 2009;13:R110.
27.
go back to reference Aiyagari V, Deibert E, Diringer MN. Hypernatremia in the neurologic intensive care unit: how high is too high? J Crit Care. 2006;21:163–72.CrossRefPubMed Aiyagari V, Deibert E, Diringer MN. Hypernatremia in the neurologic intensive care unit: how high is too high? J Crit Care. 2006;21:163–72.CrossRefPubMed
28.
go back to reference Chesnut RM, Temkin N, Carney N, Dikmen S, Rondina C, Videtta W, et al. A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med. 2012;367:2471–81.CrossRefPubMedPubMedCentral Chesnut RM, Temkin N, Carney N, Dikmen S, Rondina C, Videtta W, et al. A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med. 2012;367:2471–81.CrossRefPubMedPubMedCentral
29.
go back to reference Darmon M, Pichon M, Schwebel C, Ruckly S, Adrie C, Haouache H, et al. Influence of early dysnatremia correction on survival of critically ill patients. Shock. 2014;41:394–9.CrossRefPubMed Darmon M, Pichon M, Schwebel C, Ruckly S, Adrie C, Haouache H, et al. Influence of early dysnatremia correction on survival of critically ill patients. Shock. 2014;41:394–9.CrossRefPubMed
30.
go back to reference Wilcox CS. Regulation of renal blood flow by plasma chloride. J Clin Invest Am Soc Clin Invest. 1983;71:726–35.CrossRef Wilcox CS. Regulation of renal blood flow by plasma chloride. J Clin Invest Am Soc Clin Invest. 1983;71:726–35.CrossRef
31.
go back to reference Shackford SR, Bourguignon PR, Wald SL, Rogers FB, Osler TM, Clark DE. Hypertonic saline resuscitation of patients with head injury: a prospective, randomized clinical trial. J Trauma. 1998;44:50–8.CrossRefPubMed Shackford SR, Bourguignon PR, Wald SL, Rogers FB, Osler TM, Clark DE. Hypertonic saline resuscitation of patients with head injury: a prospective, randomized clinical trial. J Trauma. 1998;44:50–8.CrossRefPubMed
32.
go back to reference Simma B, Burger R, Falk M, Sacher P, Fanconi S. A prospective, randomized, and controlled study of fluid management in children with severe head injury: lactated Ringer's solution versus hypertonic saline. Crit Care Med. 1998;26:1265–70.CrossRefPubMed Simma B, Burger R, Falk M, Sacher P, Fanconi S. A prospective, randomized, and controlled study of fluid management in children with severe head injury: lactated Ringer's solution versus hypertonic saline. Crit Care Med. 1998;26:1265–70.CrossRefPubMed
33.
go back to reference Concato J, Shah N, Horwitz RI. Randomized, controlled trials, observational studies, and the hierarchy of research designs. N Engl J Med. 2000;342:1887–92.CrossRefPubMedPubMedCentral Concato J, Shah N, Horwitz RI. Randomized, controlled trials, observational studies, and the hierarchy of research designs. N Engl J Med. 2000;342:1887–92.CrossRefPubMedPubMedCentral
34.
go back to reference Maas AIR, Steyerberg EW, Marmarou A, McHugh GS, Lingsma HF, Butcher I, et al. IMPACT recommendations for improving the design and analysis of clinical trials in moderate to severe traumatic brain injury. Neurotherapeutics Springer-Verlag. 2010;7:127–34.CrossRef Maas AIR, Steyerberg EW, Marmarou A, McHugh GS, Lingsma HF, Butcher I, et al. IMPACT recommendations for improving the design and analysis of clinical trials in moderate to severe traumatic brain injury. Neurotherapeutics Springer-Verlag. 2010;7:127–34.CrossRef
35.
go back to reference Bouzat P, Almeras L, Manhes P, Sanders L, Levrat A, David J-S, et al. Transcranial Doppler to predict neurologic outcome after mild to moderate traumatic brain injury. Anesthesiology. 2016;125:346–54.CrossRefPubMed Bouzat P, Almeras L, Manhes P, Sanders L, Levrat A, David J-S, et al. Transcranial Doppler to predict neurologic outcome after mild to moderate traumatic brain injury. Anesthesiology. 2016;125:346–54.CrossRefPubMed
36.
go back to reference Nichol A, French C, Little L, Haddad S, Presneill J, Arabi Y, et al. Erythropoietin in traumatic brain injury (EPO-TBI): a double-blind randomised controlled trial. Lancet Elsevier. 2015;386:2499–506.CrossRef Nichol A, French C, Little L, Haddad S, Presneill J, Arabi Y, et al. Erythropoietin in traumatic brain injury (EPO-TBI): a double-blind randomised controlled trial. Lancet Elsevier. 2015;386:2499–506.CrossRef
37.
go back to reference Tan SKR, Kolmodin L, Sekhon MS, Qiao L, Zou J, Henderson WR, et al. The effect of continuous hypertonic saline infusion and hypernatremia on mortality in patients with severe traumatic brain injury: a retrospective cohort study. Can J Anaesth. 2016;63:664–73.CrossRefPubMed Tan SKR, Kolmodin L, Sekhon MS, Qiao L, Zou J, Henderson WR, et al. The effect of continuous hypertonic saline infusion and hypernatremia on mortality in patients with severe traumatic brain injury: a retrospective cohort study. Can J Anaesth. 2016;63:664–73.CrossRefPubMed
38.
go back to reference Roquilly A, Lasocki S, Moyer JD, Huet O, Perrigault P-F, Dahyot-Fizelier C, et al. COBI (Continuous hyperosmolar therapy for traumatic brain-injured patients) trial protocol: a multicentre randomised open-label trial with blinded adjudication of primary outcome. BMJ Open. 2017;7, e018035.CrossRefPubMedPubMedCentral Roquilly A, Lasocki S, Moyer JD, Huet O, Perrigault P-F, Dahyot-Fizelier C, et al. COBI (Continuous hyperosmolar therapy for traumatic brain-injured patients) trial protocol: a multicentre randomised open-label trial with blinded adjudication of primary outcome. BMJ Open. 2017;7, e018035.CrossRefPubMedPubMedCentral
Metadata
Title
Association between continuous hyperosmolar therapy and survival in patients with traumatic brain injury – a multicentre prospective cohort study and systematic review
Authors
Karim Asehnoune
Sigismond Lasocki
Philippe Seguin
Thomas Geeraerts
Pierre François Perrigault
Claire Dahyot-Fizelier
Catherine Paugam Burtz
Fabrice Cook
Dominique Demeure dit latte
Raphael Cinotti
Pierre Joachim Mahe
Camille Fortuit
Romain Pirracchio
Fanny Feuillet
Véronique Sébille
Antoine Roquilly
For the ATLANREA group
For the COBI group
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2017
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-017-1918-4

Other articles of this Issue 1/2017

Critical Care 1/2017 Go to the issue