Skip to main content
Top
Published in: Current Treatment Options in Cardiovascular Medicine 5/2014

01-05-2014 | Arrhythmia (D Spragg, Section Editor)

Optimal Strategies on Avoiding CRT Nonresponse

Authors: Pierre Bordachar, MD, PhD, Romain Eschalier, MD, PhD, Joost Lumens, PhD, Sylvain Ploux, MD

Published in: Current Treatment Options in Cardiovascular Medicine | Issue 5/2014

Login to get access

Opinion statement

The high rate of nonresponse to cardiac resynchronization therapy (CRT) has remained nearly unchanged since the treatment was introduced. We believe that this is directly related to the many persisting unknowns regarding the mechanical function of asynchronous hearts and the use of electrical stimulation to counteract the deleterious effects of that asynchrony. As a consequence, the key questions pertaining to the pre-implant, intra-implant, and postimplant phases remain unanswered or only partially answered. QRS duration is an imperfect selection criterion, as it does not discriminate the activation pattern. The inclusion of QRS morphology in the international professional practice guidelines is an important first step toward increasing the yield of this therapy. The invasive and the noninvasive electrical mapping techniques seem highly promising and need to be tested in large trials. The site of stimulation is a key element of the response to CRT; additional research must be pursued in this field.
Literature
1.
go back to reference Abraham WT, Fisher WG, Smith AL, et al. Cardiac resynchronization in chronic heart failure. N Engl J Med. 2002;346:1845–53.PubMedCrossRef Abraham WT, Fisher WG, Smith AL, et al. Cardiac resynchronization in chronic heart failure. N Engl J Med. 2002;346:1845–53.PubMedCrossRef
2.
go back to reference Bristow MR, Saxon LA, Boehmer J, et al. Cardiac resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med. 2004;350:2140–50.PubMedCrossRef Bristow MR, Saxon LA, Boehmer J, et al. Cardiac resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med. 2004;350:2140–50.PubMedCrossRef
3.
go back to reference Cleland JGF, Daubert J-C, Erdmann E, et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med. 2005;352:1539–49.4.PubMedCrossRef Cleland JGF, Daubert J-C, Erdmann E, et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med. 2005;352:1539–49.4.PubMedCrossRef
4.
go back to reference Cazeau S, Ritter P, Bakdach S, et al. Four chamber pacing in dilated cardiomyopathy. Pacing Clin Electrophysiol. 1994;17:1974–9.PubMedCrossRef Cazeau S, Ritter P, Bakdach S, et al. Four chamber pacing in dilated cardiomyopathy. Pacing Clin Electrophysiol. 1994;17:1974–9.PubMedCrossRef
5.
go back to reference Cazeau S, Ritter P, Lazarus A, et al. Multisite pacing for end-stage heart failure: early experience. Pacing Clin Electrophysiol. 1996;19:1748–57.PubMedCrossRef Cazeau S, Ritter P, Lazarus A, et al. Multisite pacing for end-stage heart failure: early experience. Pacing Clin Electrophysiol. 1996;19:1748–57.PubMedCrossRef
6.
go back to reference Kass DA. Cardiac resynchronization therapy. J Cardiovasc Electrophysiol. 2005;16:35–41.CrossRef Kass DA. Cardiac resynchronization therapy. J Cardiovasc Electrophysiol. 2005;16:35–41.CrossRef
8.
go back to reference Strik M, Regoli F, Auricchio A, et al. Electrical and mechanical ventricular activation during left bundle branch block and resynchronization. J Cardiovasc Transl Res. 2012;5:117–26.PubMedCentralPubMedCrossRef Strik M, Regoli F, Auricchio A, et al. Electrical and mechanical ventricular activation during left bundle branch block and resynchronization. J Cardiovasc Transl Res. 2012;5:117–26.PubMedCentralPubMedCrossRef
9.
go back to reference Exner DV, Auricchio A, Singh JP. Contemporary and future trends in cardiac resynchronization therapy to enhance response. Heart Rhythm. 2012;9:27–35.CrossRef Exner DV, Auricchio A, Singh JP. Contemporary and future trends in cardiac resynchronization therapy to enhance response. Heart Rhythm. 2012;9:27–35.CrossRef
10.
go back to reference Prinzen FW, Augustijn CH, Arts T, et al. Redistribution of myocardial fiber strain and blood flow by asynchronous activation. Am J Physiol. 1990;259:300–8. Prinzen FW, Augustijn CH, Arts T, et al. Redistribution of myocardial fiber strain and blood flow by asynchronous activation. Am J Physiol. 1990;259:300–8.
11.••
go back to reference Prinzen FW, Hunter WC, Wyman BT, et al. Mapping of regional myocardial strain and work during ventricular pacing: experimental study using magnetic resonance imaging tagging. J Am Coll Cardiol. 1999;33:1735–42. This important article describes the impact of dyssynchronous-induced regional load variations on regional ventricular strain.PubMedCentralPubMedCrossRef Prinzen FW, Hunter WC, Wyman BT, et al. Mapping of regional myocardial strain and work during ventricular pacing: experimental study using magnetic resonance imaging tagging. J Am Coll Cardiol. 1999;33:1735–42. This important article describes the impact of dyssynchronous-induced regional load variations on regional ventricular strain.PubMedCentralPubMedCrossRef
12.
go back to reference Barth AS, Chakir K, Kass DA, et al. Transcriptome, proteome, and metabolome in dyssynchronous heart failure and CRT. J Cardiovasc Transl Res. 2012;5:180–7.PubMedCrossRef Barth AS, Chakir K, Kass DA, et al. Transcriptome, proteome, and metabolome in dyssynchronous heart failure and CRT. J Cardiovasc Transl Res. 2012;5:180–7.PubMedCrossRef
13.•
go back to reference Auricchio A, Fantoni C, Regoli F, et al. Characterization of left ventricular activation in patients with heart failure and left bundle-branch block. Circulation. 2004;109:1133–9. This article describes the typical activation sequence associated with left bundle branch block.PubMedCrossRef Auricchio A, Fantoni C, Regoli F, et al. Characterization of left ventricular activation in patients with heart failure and left bundle-branch block. Circulation. 2004;109:1133–9. This article describes the typical activation sequence associated with left bundle branch block.PubMedCrossRef
14.
go back to reference Kass DA, Chen CH, Curry C, et al. Improved left ventricular mechanics from acute VDD pacing in patients with dilated cardiomyopathy and ventricular conduction delay. Circulation. 1999;99:1567–73.PubMedCrossRef Kass DA, Chen CH, Curry C, et al. Improved left ventricular mechanics from acute VDD pacing in patients with dilated cardiomyopathy and ventricular conduction delay. Circulation. 1999;99:1567–73.PubMedCrossRef
15.
go back to reference Gasparini M, Bocchiardo M, Lunati M, et al. Comparison of 1-year effects of left ventricular and biventricular pacing in patients with heart failure who have ventricular arrhythmias and left bundle-branch block: the Bi vs Left Ventricular Pacing: an International Pilot Evaluation on Heart Failure Patients with Ventricular Arrhythmias (BELIEVE) multicenter prospective randomized pilot study. Am Heart J. 2006;152:155–7.PubMedCrossRef Gasparini M, Bocchiardo M, Lunati M, et al. Comparison of 1-year effects of left ventricular and biventricular pacing in patients with heart failure who have ventricular arrhythmias and left bundle-branch block: the Bi vs Left Ventricular Pacing: an International Pilot Evaluation on Heart Failure Patients with Ventricular Arrhythmias (BELIEVE) multicenter prospective randomized pilot study. Am Heart J. 2006;152:155–7.PubMedCrossRef
16.
go back to reference Thibault B, Ducharme A, Harel F, et al. Left ventricular versus simultaneous biventricular pacing in patients withheart failure and a QRS complex >/=120 milliseconds. Circulation. 2011;124:2874–81.PubMedCrossRef Thibault B, Ducharme A, Harel F, et al. Left ventricular versus simultaneous biventricular pacing in patients withheart failure and a QRS complex >/=120 milliseconds. Circulation. 2011;124:2874–81.PubMedCrossRef
17.
go back to reference Lumens J, Ploux S, Strik M, et al. Comparative electromechanical and hemodynamic effects of left ventricular and biventricular pacing in dyssynchronous heart failure: electrical resynchronization versus left-right ventricular interaction. J Am Coll Cardiol. 2013;62:2395–403. Lumens J, Ploux S, Strik M, et al. Comparative electromechanical and hemodynamic effects of left ventricular and biventricular pacing in dyssynchronous heart failure: electrical resynchronization versus left-right ventricular interaction. J Am Coll Cardiol. 2013;62:2395–403.
18.
go back to reference Bax JJ, Abraham T, Barold SS, et al. Cardiac resynchronization therapy: part1—issues before device implantation. J Am Coll Cardiol. 2005;46:2153–67.PubMedCrossRef Bax JJ, Abraham T, Barold SS, et al. Cardiac resynchronization therapy: part1—issues before device implantation. J Am Coll Cardiol. 2005;46:2153–67.PubMedCrossRef
19.
go back to reference Gorcsan J III, Yu CM, Sanderson JE. Ventricular resynchronization is the principle mechanism of benefit with cardiac resynchronization therapy. Heart Fail Rev. 2011;17:737–46. Gorcsan J III, Yu CM, Sanderson JE. Ventricular resynchronization is the principle mechanism of benefit with cardiac resynchronization therapy. Heart Fail Rev. 2011;17:737–46.
20.
go back to reference Bleeker GB, Mollema SA, Holman ER, et al. Left ventricular resynchronization is mandatory for response to cardiac resynchronization therapy: analysis in patients with echocardiographic evidence of left ventricular dyssynchrony at baseline. Circulation. 2007;116:1440–8.PubMedCrossRef Bleeker GB, Mollema SA, Holman ER, et al. Left ventricular resynchronization is mandatory for response to cardiac resynchronization therapy: analysis in patients with echocardiographic evidence of left ventricular dyssynchrony at baseline. Circulation. 2007;116:1440–8.PubMedCrossRef
21.
go back to reference Chung ES, Leon AR, Tavazzi L, et al. Results of the Predictors of Response to CRT (PROSPECT) trial. Circulation. 2008;117:2608–16.PubMedCrossRef Chung ES, Leon AR, Tavazzi L, et al. Results of the Predictors of Response to CRT (PROSPECT) trial. Circulation. 2008;117:2608–16.PubMedCrossRef
22.
go back to reference Stevenson WG, Hernandez AF, Carson PE, et al. Indications for cardiac resynchronization therapy: 2011 update from the Heart Failure Society of America guideline committee. J Card Fail. 2012;18:94–106.PubMedCrossRef Stevenson WG, Hernandez AF, Carson PE, et al. Indications for cardiac resynchronization therapy: 2011 update from the Heart Failure Society of America guideline committee. J Card Fail. 2012;18:94–106.PubMedCrossRef
23.
go back to reference Authors/Task Force Members, Brignole M, Auricchio A, Baron-Esquivias G, et al. ESC Guidelines on cardiac pacing and cardiac resynchronization therapy: The Task Force on cardiac pacing and resynchronization therapy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association (EHRA). Eur Heart J. 2013;34:2281–329.PubMedCrossRef Authors/Task Force Members, Brignole M, Auricchio A, Baron-Esquivias G, et al. ESC Guidelines on cardiac pacing and cardiac resynchronization therapy: The Task Force on cardiac pacing and resynchronization therapy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association (EHRA). Eur Heart J. 2013;34:2281–329.PubMedCrossRef
24.
go back to reference Zareba W, Klein H, Cygankiewicz I, et al. Effectiveness of Cardiac Resynchronization Therapy by QRS Morphology in the Multicenter Automatic Defibrillator Implantation Trial-Cardiac Resynchronization Therapy (MADIT-CRT). Circulation. 2011;123:1061–72.PubMedCrossRef Zareba W, Klein H, Cygankiewicz I, et al. Effectiveness of Cardiac Resynchronization Therapy by QRS Morphology in the Multicenter Automatic Defibrillator Implantation Trial-Cardiac Resynchronization Therapy (MADIT-CRT). Circulation. 2011;123:1061–72.PubMedCrossRef
25.
go back to reference Sipahi I, Chou JC, Hyden M, et al. Effect of QRS morphology on clinical event reduction with cardiac resynchronization therapy: meta-analysis of randomized controlled trials. Am Heart J. 2012;163:260–7.PubMedCrossRef Sipahi I, Chou JC, Hyden M, et al. Effect of QRS morphology on clinical event reduction with cardiac resynchronization therapy: meta-analysis of randomized controlled trials. Am Heart J. 2012;163:260–7.PubMedCrossRef
26.
go back to reference Fantoni C, Kawabata M, Massaro R, et al. Right and left ventricular activation sequence in patients with heart failure and right bundle branch block: a detailed analysis using three-dimensional nonfluoroscopic electroanatomic mapping system. J Cardiovasc Electrophysiol. 2005;16:112–9.PubMedCrossRef Fantoni C, Kawabata M, Massaro R, et al. Right and left ventricular activation sequence in patients with heart failure and right bundle branch block: a detailed analysis using three-dimensional nonfluoroscopic electroanatomic mapping system. J Cardiovasc Electrophysiol. 2005;16:112–9.PubMedCrossRef
27.
go back to reference Ploux S, Lumens J, Whinnett Z, et al. Noninvasive electrocardiographic mapping to improve patient selection for cardiac resynchronization therapy: beyond QRS duration and left bundle branch block morphology. J Am Coll Cardiol. 2013;61:2435–43.PubMedCrossRef Ploux S, Lumens J, Whinnett Z, et al. Noninvasive electrocardiographic mapping to improve patient selection for cardiac resynchronization therapy: beyond QRS duration and left bundle branch block morphology. J Am Coll Cardiol. 2013;61:2435–43.PubMedCrossRef
28.
go back to reference Leenders GE, Lumens J, Cramer MJ, et al. Septal deformation patterns delineate mechanical dyssynchrony and regional differences in contractility: analysis of patient data using a computer model. Circ Heart Fail. 2012;5:87–96.PubMedCrossRef Leenders GE, Lumens J, Cramer MJ, et al. Septal deformation patterns delineate mechanical dyssynchrony and regional differences in contractility: analysis of patient data using a computer model. Circ Heart Fail. 2012;5:87–96.PubMedCrossRef
29.
go back to reference Lumens J, Leenders GE, Cramer MJ, et al. Mechanistic evaluation of echocardiographic dyssynchrony indices: patient data combined with multiscale computer simulations. Circ Cardiovasc Imaging. 2012;5:491–9.PubMedCrossRef Lumens J, Leenders GE, Cramer MJ, et al. Mechanistic evaluation of echocardiographic dyssynchrony indices: patient data combined with multiscale computer simulations. Circ Cardiovasc Imaging. 2012;5:491–9.PubMedCrossRef
30.
go back to reference Singh JP, Abraham WT. Enhancing the response to cardiac resynchronization therapy: is it time to individualize the left ventricular pacing site? J Am Coll Cardiol. 2010;55:576–8.PubMedCrossRef Singh JP, Abraham WT. Enhancing the response to cardiac resynchronization therapy: is it time to individualize the left ventricular pacing site? J Am Coll Cardiol. 2010;55:576–8.PubMedCrossRef
31.
go back to reference Singh JP, Klein HU, Huang DT, et al. Left ventricular lead position and clinical outcome in the multicenter automatic defibrillator implantation trial-cardiac resynchronization therapy (MADIT-CRT) trial. Circulation. 2011;123:1159–66.PubMedCrossRef Singh JP, Klein HU, Huang DT, et al. Left ventricular lead position and clinical outcome in the multicenter automatic defibrillator implantation trial-cardiac resynchronization therapy (MADIT-CRT) trial. Circulation. 2011;123:1159–66.PubMedCrossRef
32.
go back to reference Gold MR, Birgersdotter-Green U, Singh JP, et al. The relationship between ventricular electrical delay and left ventricular remodelling with cardiac resynchronization therapy. Eur Heart J. 2011;32:2516–24.PubMedCentralPubMedCrossRef Gold MR, Birgersdotter-Green U, Singh JP, et al. The relationship between ventricular electrical delay and left ventricular remodelling with cardiac resynchronization therapy. Eur Heart J. 2011;32:2516–24.PubMedCentralPubMedCrossRef
33.••
go back to reference Derval N, Steendijk P, Gula LJ, et al. Optimizing hemodynamics in heart failure patients by systematic screening of left ventricular pacing sites: the lateral left ventricular wall and the coronary sinus are rarely the best sites. J Am Coll Cardiol. 2010;55:566–75. This study demonstrates the hemodynamic impact of different pacing sites in patients with primitive cardiomyopathy.PubMedCrossRef Derval N, Steendijk P, Gula LJ, et al. Optimizing hemodynamics in heart failure patients by systematic screening of left ventricular pacing sites: the lateral left ventricular wall and the coronary sinus are rarely the best sites. J Am Coll Cardiol. 2010;55:566–75. This study demonstrates the hemodynamic impact of different pacing sites in patients with primitive cardiomyopathy.PubMedCrossRef
34.
go back to reference White JA, Yee R, Yuan X, et al. Delayed enhancement magnetic resonance imaging predicts response to cardiac resynchronization therapy in patients with intraventricular dyssynchrony. J Am Coll Cardiol. 2006;48:1953–60.PubMedCrossRef White JA, Yee R, Yuan X, et al. Delayed enhancement magnetic resonance imaging predicts response to cardiac resynchronization therapy in patients with intraventricular dyssynchrony. J Am Coll Cardiol. 2006;48:1953–60.PubMedCrossRef
35.
go back to reference Bleeker GB, Kaandorp TA, Lamb HJ, et al. Effect of posterolateral scar tissue on clinical and echocardiographic improvement after cardiac resynchronization therapy. Circulation. 2006;113:969–76.PubMedCrossRef Bleeker GB, Kaandorp TA, Lamb HJ, et al. Effect of posterolateral scar tissue on clinical and echocardiographic improvement after cardiac resynchronization therapy. Circulation. 2006;113:969–76.PubMedCrossRef
36.
go back to reference Khan FZ, Virdee MS, Palmer CR, et al. Targeted left ventricular lead placement to guide cardiac resynchronization therapy: the TARGET study: a randomized, controlled trial. J Am Coll Cardiol. 2012;59:1509–18.PubMedCrossRef Khan FZ, Virdee MS, Palmer CR, et al. Targeted left ventricular lead placement to guide cardiac resynchronization therapy: the TARGET study: a randomized, controlled trial. J Am Coll Cardiol. 2012;59:1509–18.PubMedCrossRef
37.
go back to reference Saba S, Marek J, Schwartzman D, et al. Echocardiography-guided left ventricular lead placement for cardiac resynchronization therapy: results of the Speckle Tracking Assisted Resynchronization Therapy for Electrode Region trial. Circ Heart Fail. 2013;6:427–34.PubMedCrossRef Saba S, Marek J, Schwartzman D, et al. Echocardiography-guided left ventricular lead placement for cardiac resynchronization therapy: results of the Speckle Tracking Assisted Resynchronization Therapy for Electrode Region trial. Circ Heart Fail. 2013;6:427–34.PubMedCrossRef
38.
go back to reference Singh JP, Fan D, Heist EK, et al. Left ventricular lead electrical delay predicts response to cardiac resynchronization therapy. Heart Rhythm. 2006;3:1285–92.PubMedCrossRef Singh JP, Fan D, Heist EK, et al. Left ventricular lead electrical delay predicts response to cardiac resynchronization therapy. Heart Rhythm. 2006;3:1285–92.PubMedCrossRef
39.
go back to reference Duckett SG, Ginks M, Shetty AK, et al. Invasive acute hemodynamic response to guide left ventricular lead implantation predicts chronic remodeling in patients undergoing cardiac resynchronization therapy. J Am Coll Cardiol. 2011;58:1128–36.PubMedCrossRef Duckett SG, Ginks M, Shetty AK, et al. Invasive acute hemodynamic response to guide left ventricular lead implantation predicts chronic remodeling in patients undergoing cardiac resynchronization therapy. J Am Coll Cardiol. 2011;58:1128–36.PubMedCrossRef
40.
go back to reference Bogaard M, Houthuizen P, Bracke F, et al. Baseline left ventricular dP/dtmax rather than the acute improvement in dP/dtmax predicts clinical outcome in patients with cardiac resynchronization therapy. Eur J Heart Fail. 2011;13:1126–3.PubMedCrossRef Bogaard M, Houthuizen P, Bracke F, et al. Baseline left ventricular dP/dtmax rather than the acute improvement in dP/dtmax predicts clinical outcome in patients with cardiac resynchronization therapy. Eur J Heart Fail. 2011;13:1126–3.PubMedCrossRef
41.
go back to reference Whinnett ZI, Francis DP, Denis A, et al. Comparison of different invasive hemodynamic methods for AV delay optimization in patients with cardiac resynchronization therapy: implications for clinical trial design and clinical practice. Int J Cardiol. 2013;168:2228–37. Whinnett ZI, Francis DP, Denis A, et al. Comparison of different invasive hemodynamic methods for AV delay optimization in patients with cardiac resynchronization therapy: implications for clinical trial design and clinical practice. Int J Cardiol. 2013;168:2228–37.
42.
43.
go back to reference van Deursen C, van Geldorp IE, Rademakers LM, et al. Left ventricular endocardial pacing improves resynchronization therapy in canine left bundle-branch hearts. Circ Arrhythm Electrophysiol. 2009;2:580–7.PubMedCrossRef van Deursen C, van Geldorp IE, Rademakers LM, et al. Left ventricular endocardial pacing improves resynchronization therapy in canine left bundle-branch hearts. Circ Arrhythm Electrophysiol. 2009;2:580–7.PubMedCrossRef
44.••
go back to reference Spragg DD, Dong J, Fetics BJ, et al. Optimal left ventricular endocardial pacing sites for cardiac resynchronization therapy in patients with ischemic cardiomyopathy. J Am Coll Cardiol. 2010;56:774–81. This study demonstrates the hemodynamic impact of different pacing sites in patients with ischemic cardiomyopathy.PubMedCrossRef Spragg DD, Dong J, Fetics BJ, et al. Optimal left ventricular endocardial pacing sites for cardiac resynchronization therapy in patients with ischemic cardiomyopathy. J Am Coll Cardiol. 2010;56:774–81. This study demonstrates the hemodynamic impact of different pacing sites in patients with ischemic cardiomyopathy.PubMedCrossRef
45.
go back to reference Bordachar P, Derval N, Ploux S, et al. Left ventricular endocardial stimulation for severe heart failure. J Am Coll Cardiol. 2010;56:747–53.PubMedCrossRef Bordachar P, Derval N, Ploux S, et al. Left ventricular endocardial stimulation for severe heart failure. J Am Coll Cardiol. 2010;56:747–53.PubMedCrossRef
46.
go back to reference Bordachar P, Grenz N, Jais P, et al. Left ventricular endocardial or triventricular pacing to optimize cardiac resynchronization therapy in a chronic canine model of ischemic heart failure. Am J Physiol Heart Circ Physiol. 2012;303:207–15.CrossRef Bordachar P, Grenz N, Jais P, et al. Left ventricular endocardial or triventricular pacing to optimize cardiac resynchronization therapy in a chronic canine model of ischemic heart failure. Am J Physiol Heart Circ Physiol. 2012;303:207–15.CrossRef
47.
go back to reference Leclercq C, Gadler F, Kranig W, et al. A randomized comparison of triple-site versus dual-site ventricular stimulation in patients with congestive heart failure. J Am Coll Cardiol. 2008;51:1455–62.PubMedCrossRef Leclercq C, Gadler F, Kranig W, et al. A randomized comparison of triple-site versus dual-site ventricular stimulation in patients with congestive heart failure. J Am Coll Cardiol. 2008;51:1455–62.PubMedCrossRef
48.
go back to reference Bordachar P, Alonso C, Anselme F, et al. Addition of a second LV pacing site in CRT nonresponders rationale and design of the multicenter randomized V(3) trial. J Card Fail. 2010;16:709–13.PubMedCrossRef Bordachar P, Alonso C, Anselme F, et al. Addition of a second LV pacing site in CRT nonresponders rationale and design of the multicenter randomized V(3) trial. J Card Fail. 2010;16:709–13.PubMedCrossRef
49.
go back to reference Auricchio A, Stellbrink C, Block M, et al. Effect of pacing chamber and atrioventricular delay on acute systolic function of paced patients with congestive heart failure. The Pacing Therapies for Congestive Heart Failure Study Group. The Guidant Congestive Heart Failure Research Group. Circulation. 1999;99:2993–3001.PubMedCrossRef Auricchio A, Stellbrink C, Block M, et al. Effect of pacing chamber and atrioventricular delay on acute systolic function of paced patients with congestive heart failure. The Pacing Therapies for Congestive Heart Failure Study Group. The Guidant Congestive Heart Failure Research Group. Circulation. 1999;99:2993–3001.PubMedCrossRef
50.
go back to reference Whinnett ZI, Davies JE, Willson K, et al. Haemodynamic effects of changes in atrioventricular and interventricular delay in cardiac resynchronisation therapy show a consistent pattern: analysis of shape, magnitude and relative importance of atrioventricular and interventricular delay. Heart. 2006;92:1628–34.PubMedCentralPubMedCrossRef Whinnett ZI, Davies JE, Willson K, et al. Haemodynamic effects of changes in atrioventricular and interventricular delay in cardiac resynchronisation therapy show a consistent pattern: analysis of shape, magnitude and relative importance of atrioventricular and interventricular delay. Heart. 2006;92:1628–34.PubMedCentralPubMedCrossRef
51.
go back to reference van Gelder BM, Bracke FA, Meijer, et al. Effect of optimizing the VV interval on left ventricular contractility in cardiac resynchronization therapy. Am J Cardiol. 2004;93:1500–3.PubMedCrossRef van Gelder BM, Bracke FA, Meijer, et al. Effect of optimizing the VV interval on left ventricular contractility in cardiac resynchronization therapy. Am J Cardiol. 2004;93:1500–3.PubMedCrossRef
52.
go back to reference Van Geldorp I, Delhaas T, Hermans B, et al. Comparison of a noninvasive arterial pulse contour technique and echo Doppler aorta velocity time-integral on stroke volume changes in optimization of CRT. Europace. 2011;13:87–95.PubMedCrossRef Van Geldorp I, Delhaas T, Hermans B, et al. Comparison of a noninvasive arterial pulse contour technique and echo Doppler aorta velocity time-integral on stroke volume changes in optimization of CRT. Europace. 2011;13:87–95.PubMedCrossRef
53.
go back to reference Sawhney NS, Waggoner AD, Garhwal S, et al. Randomized prospective trial of atrioventricular delay programming for cardiac resynchronization therapy. Heart Rhythm. 2004;1:562–7.PubMedCrossRef Sawhney NS, Waggoner AD, Garhwal S, et al. Randomized prospective trial of atrioventricular delay programming for cardiac resynchronization therapy. Heart Rhythm. 2004;1:562–7.PubMedCrossRef
54.
go back to reference Ellenbogen KA, Gold MR, Meyer TE, et al. Primary results from the SmartDelay determined AV optimization: a comparison to other AV delay methods used in cardiac resynchronization therapy (SMART-AV) trial: a randomized trial comparing empirical, echocardiography-guided, and algorithmic atrioventricular delay programming in cardiac resynchronization therapy. Circulation. 2010;122:2660–8.PubMedCrossRef Ellenbogen KA, Gold MR, Meyer TE, et al. Primary results from the SmartDelay determined AV optimization: a comparison to other AV delay methods used in cardiac resynchronization therapy (SMART-AV) trial: a randomized trial comparing empirical, echocardiography-guided, and algorithmic atrioventricular delay programming in cardiac resynchronization therapy. Circulation. 2010;122:2660–8.PubMedCrossRef
55.
go back to reference Martin DO, Lemke B, Birnie D, Adaptive CRT Study Investigators, et al. Investigation of a novel algorithm for synchronized left-ventricular pacing and ambulatory optimization of cardiac resynchronization therapy: results of the adaptive CRT trial. Heart Rhythm. 2012;9:1807–14.PubMedCrossRef Martin DO, Lemke B, Birnie D, Adaptive CRT Study Investigators, et al. Investigation of a novel algorithm for synchronized left-ventricular pacing and ambulatory optimization of cardiac resynchronization therapy: results of the adaptive CRT trial. Heart Rhythm. 2012;9:1807–14.PubMedCrossRef
Metadata
Title
Optimal Strategies on Avoiding CRT Nonresponse
Authors
Pierre Bordachar, MD, PhD
Romain Eschalier, MD, PhD
Joost Lumens, PhD
Sylvain Ploux, MD
Publication date
01-05-2014
Publisher
Springer US
Published in
Current Treatment Options in Cardiovascular Medicine / Issue 5/2014
Print ISSN: 1092-8464
Electronic ISSN: 1534-3189
DOI
https://doi.org/10.1007/s11936-014-0299-0

Other articles of this Issue 5/2014

Current Treatment Options in Cardiovascular Medicine 5/2014 Go to the issue

Coronary Artery Disease (D Feldman, Section Editor)

Intra-Coronary Imaging Modalities

Coronary Artery Disease (D Feldman, Section Editor)

Bleeding Complications After PCI and the Role of Transradial Access

Coronary Artery Disease (D Feldman, Section Editor)

Saphenous Vein Graft Interventions