Skip to main content
Top
Published in: Current Osteoporosis Reports 3/2017

01-06-2017 | Rare Bone Diseases (C Langman and E Shore, Section Editors)

Hereditary Multiple Exostoses: New Insights into Pathogenesis, Clinical Complications, and Potential Treatments

Author: Maurizio Pacifici

Published in: Current Osteoporosis Reports | Issue 3/2017

Login to get access

Abstract

Purpose of Review

Hereditary multiple exostoses (HME) is a complex musculoskeletal pediatric disorder characterized by osteochondromas that form next to the growth plates of many skeletal elements, including long bones, ribs, and vertebrae. Due to its intricacies and unresolved issues, HME continues to pose major challenges to both clinicians and biomedical researchers. The purpose of this review is to describe and analyze recent advances in this field and point to possible targets and strategies for future biologically based therapeutic intervention.

Recent Findings

Most HME cases are linked to loss-of-function mutations in EXT1 or EXT2 that encode glycosyltransferases responsible for heparan sulfate (HS) synthesis, leading to HS deficiency. Recent genomic inquiries have extended those findings but have yet to provide a definitive genotype-phenotype correlation. Clinical studies emphasize that in addition to the well-known skeletal problems caused by osteochondromas, HME patients can experience, and suffer from, other symptoms and health complications such as chronic pain and nerve impingement. Laboratory work has produced novel insights into alterations in cellular and molecular mechanisms instigated by HS deficiency and subtending onset and growth of osteochondroma and how such changes could be targeted toward therapeutic ends.

Summary

HME is a rare and orphan disease and, as such, is being studied only by a handful of clinical and basic investigators. Despite this limitation, significant advances have been made in the last few years, and the future bodes well for deciphering more thoroughly its pathogenesis and, in turn, identifying the most effective treatment for osteochondroma prevention.
Literature
1.
go back to reference Luckert Wicklund CL, Pauli RM, Johnson DR, Hecht JT. Natural history of hereditary multiple exostoses. Am J Med Genet. 1995;55:43–6.CrossRef Luckert Wicklund CL, Pauli RM, Johnson DR, Hecht JT. Natural history of hereditary multiple exostoses. Am J Med Genet. 1995;55:43–6.CrossRef
2.
go back to reference Schmale GA, Conrad EU, Raskind WH. The natural history of hereditary multiple exostoses. J Bone Joint Surg Am. 1994;76:986–92.CrossRefPubMed Schmale GA, Conrad EU, Raskind WH. The natural history of hereditary multiple exostoses. J Bone Joint Surg Am. 1994;76:986–92.CrossRefPubMed
3.
go back to reference Solomon L. Hereditary multiple exostosis. J Bone Joint Surg. 1963;45B:292–304. Solomon L. Hereditary multiple exostosis. J Bone Joint Surg. 1963;45B:292–304.
4.
go back to reference Stieber JR, Dormans JP. Manifestations of hereditary multiple exostoses. J Am Acad Orthop Surg. 2005;13:110–20.CrossRefPubMed Stieber JR, Dormans JP. Manifestations of hereditary multiple exostoses. J Am Acad Orthop Surg. 2005;13:110–20.CrossRefPubMed
5.
go back to reference Uchida K, Kurihara Y, Sekiguchi S, Doi Y, Matsuda K, Miyanaga M, et al. Spontaneous haemothorax caused by costal exostosis. Eur Respir J. 1997;10:735–6.PubMed Uchida K, Kurihara Y, Sekiguchi S, Doi Y, Matsuda K, Miyanaga M, et al. Spontaneous haemothorax caused by costal exostosis. Eur Respir J. 1997;10:735–6.PubMed
6.
go back to reference Dormans JP. Pediatric orthopaedics: core knowledge in orthopaedics. Philadelphia: Elsevier Mosby; 2005. Dormans JP. Pediatric orthopaedics: core knowledge in orthopaedics. Philadelphia: Elsevier Mosby; 2005.
8.
go back to reference Porter DE, Lonie L, Fraser M, Dobson-Stone C, Porter JR, Monaco AP, et al. Severity of disease and risk in malignant change in hereditary multiple exostoses. J Bone Joint Surg Br. 2004;86:1041–6.CrossRefPubMed Porter DE, Lonie L, Fraser M, Dobson-Stone C, Porter JR, Monaco AP, et al. Severity of disease and risk in malignant change in hereditary multiple exostoses. J Bone Joint Surg Br. 2004;86:1041–6.CrossRefPubMed
9.
go back to reference Porter DE, Simpson AHRW. The neoplastic pathogenesis of solitary and multiple osteochondromas. J Pathol. 1999;188:119–25.CrossRefPubMed Porter DE, Simpson AHRW. The neoplastic pathogenesis of solitary and multiple osteochondromas. J Pathol. 1999;188:119–25.CrossRefPubMed
10.
go back to reference Ahn J, Ludecke HJ, Lindow S, Horton WA, Lee B, Wagner MJ, et al. Cloning of the putative tumour suppressor gene for hereditary multiple exostoses (EXT1). Nat Genet. 1995;11:137–43.CrossRefPubMed Ahn J, Ludecke HJ, Lindow S, Horton WA, Lee B, Wagner MJ, et al. Cloning of the putative tumour suppressor gene for hereditary multiple exostoses (EXT1). Nat Genet. 1995;11:137–43.CrossRefPubMed
11.
go back to reference Cheung PK, McCormick C, Crawford BE, Esko JD, Tufaro F, Duncan G. Etiological point mutations in the hereditary multiple exostoses gene EXT1: a functional analysis of heparan sulfate polymerase activity. Am J Hum Genet. 2001;69:55–66.CrossRefPubMedPubMedCentral Cheung PK, McCormick C, Crawford BE, Esko JD, Tufaro F, Duncan G. Etiological point mutations in the hereditary multiple exostoses gene EXT1: a functional analysis of heparan sulfate polymerase activity. Am J Hum Genet. 2001;69:55–66.CrossRefPubMedPubMedCentral
12.
go back to reference Hecht JT, Hogue D, Strong LC, Hansen MF, Blanton SH, Wagner H. Hereditary multiple exostosis and chondrosarcoma: linkage to chromosome 11 and loss of heterozygosity for EXT-linked markers on chromosome 11 and 8. Am J Hum Genet. 1995;56:1125–31.PubMedPubMedCentral Hecht JT, Hogue D, Strong LC, Hansen MF, Blanton SH, Wagner H. Hereditary multiple exostosis and chondrosarcoma: linkage to chromosome 11 and loss of heterozygosity for EXT-linked markers on chromosome 11 and 8. Am J Hum Genet. 1995;56:1125–31.PubMedPubMedCentral
13.
go back to reference Wuyts W, Van Hul W. Molecular basis of multiple exostoses: mutations in the EXT1 and EXT2 genes. Hum Mutat. 2000;15:220–7.CrossRefPubMed Wuyts W, Van Hul W. Molecular basis of multiple exostoses: mutations in the EXT1 and EXT2 genes. Hum Mutat. 2000;15:220–7.CrossRefPubMed
14.
go back to reference Bishop JR, Schuksz M, Esko JD. Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature. 2007;446:1030–7.CrossRefPubMed Bishop JR, Schuksz M, Esko JD. Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature. 2007;446:1030–7.CrossRefPubMed
15.
go back to reference Esko JD, Selleck SB. Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem. 2002;71:435–71.CrossRefPubMed Esko JD, Selleck SB. Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem. 2002;71:435–71.CrossRefPubMed
16.
go back to reference McCormick C, Duncan G, Goutsos KT, Tufaro F. The putative tumor suppressors EXT1 and EXT2 form a stable complex that accumulates in the Golgi complex and catalyzes the synthesis of heparan sulfate. Proc Natl Acad Sci U S A. 2000;97:668–73.CrossRefPubMedPubMedCentral McCormick C, Duncan G, Goutsos KT, Tufaro F. The putative tumor suppressors EXT1 and EXT2 form a stable complex that accumulates in the Golgi complex and catalyzes the synthesis of heparan sulfate. Proc Natl Acad Sci U S A. 2000;97:668–73.CrossRefPubMedPubMedCentral
17.
go back to reference Anower-E-Khuda MF, Matsumoto K, Habuchi H, Morita H, Yokochi T, Shimizu K, et al. Glycosaminoglycans in the blood of hereditary multiple exostoses patients: half reduction of heparan sulfate to chondroitin sulfate ratio and the possible diagnostic application. Glycobiology. 2013;23:865–76.CrossRefPubMed Anower-E-Khuda MF, Matsumoto K, Habuchi H, Morita H, Yokochi T, Shimizu K, et al. Glycosaminoglycans in the blood of hereditary multiple exostoses patients: half reduction of heparan sulfate to chondroitin sulfate ratio and the possible diagnostic application. Glycobiology. 2013;23:865–76.CrossRefPubMed
18.
go back to reference •• Mooij HL, BernelotMoens SJ, Gordts PL, Stanford KI, Foley EM, van den Boogert MA, et al. Ext1 heterozygosity causes a modest effect on postprandial lipid clearance in humans. J Lipid Res. 2015;56:665–73. This paper shows for the first time that EXT1 heterozygosity itself can affect nonskeletal functions in HME patients. CrossRefPubMedPubMedCentral •• Mooij HL, BernelotMoens SJ, Gordts PL, Stanford KI, Foley EM, van den Boogert MA, et al. Ext1 heterozygosity causes a modest effect on postprandial lipid clearance in humans. J Lipid Res. 2015;56:665–73. This paper shows for the first time that EXT1 heterozygosity itself can affect nonskeletal functions in HME patients. CrossRefPubMedPubMedCentral
19.
go back to reference Huegel J, Sgariglia F, Enomoto-Iwamoto M, Koyama E, Dormans JP, Pacifici M. Heparan sulfate in skeletal development, growth, and pathology: the case of hereditary multiple exostoses. Dev Dyn. 2013;242:1021–32.CrossRefPubMedPubMedCentral Huegel J, Sgariglia F, Enomoto-Iwamoto M, Koyama E, Dormans JP, Pacifici M. Heparan sulfate in skeletal development, growth, and pathology: the case of hereditary multiple exostoses. Dev Dyn. 2013;242:1021–32.CrossRefPubMedPubMedCentral
21.
go back to reference Bovee JV, Cleton-Jansen A-M, Wuyts W, Caethoven G, Taminiau AH, Bakker E, et al. EXT-mutation analysis and loss of heterozygosity in sporadic and hereditary osteochondromas and secondary chondrosarcoma. Am J Hum Genet. 1999;65:689–98.CrossRefPubMedPubMedCentral Bovee JV, Cleton-Jansen A-M, Wuyts W, Caethoven G, Taminiau AH, Bakker E, et al. EXT-mutation analysis and loss of heterozygosity in sporadic and hereditary osteochondromas and secondary chondrosarcoma. Am J Hum Genet. 1999;65:689–98.CrossRefPubMedPubMedCentral
22.
go back to reference Hameetman L, Szuhai K, Yavas A, Knijnenburg J, van Duin M, van Dekken H, et al. The role of EXT1 in nonhereditary osteochondroma: identification of homozygous deletions. J Natl Cancer Inst. 2007;99:396–406.CrossRefPubMed Hameetman L, Szuhai K, Yavas A, Knijnenburg J, van Duin M, van Dekken H, et al. The role of EXT1 in nonhereditary osteochondroma: identification of homozygous deletions. J Natl Cancer Inst. 2007;99:396–406.CrossRefPubMed
23.
go back to reference Reijnders CM, Waaijer CJ, Hamilton A, Buddingh EP, Dijkstra SP, Ham J, et al. No haploinsufficiency but loss of heterozygosity for EXT in multiple osteochondromas. Am J Path. 2010;177:1946–57.CrossRefPubMedPubMedCentral Reijnders CM, Waaijer CJ, Hamilton A, Buddingh EP, Dijkstra SP, Ham J, et al. No haploinsufficiency but loss of heterozygosity for EXT in multiple osteochondromas. Am J Path. 2010;177:1946–57.CrossRefPubMedPubMedCentral
24.
go back to reference Bernard MA, Hall CE, Hogue DA, Cole WG, Scott A, Snuggs MB, et al. Diminished levels of the putative tumor suppressor proteins EXT1 and EXT2 in exostosis chondrocytes. Cell Motil Cytoskeleton. 2001;48:149–62.CrossRefPubMed Bernard MA, Hall CE, Hogue DA, Cole WG, Scott A, Snuggs MB, et al. Diminished levels of the putative tumor suppressor proteins EXT1 and EXT2 in exostosis chondrocytes. Cell Motil Cytoskeleton. 2001;48:149–62.CrossRefPubMed
25.
go back to reference Hall CR, Cole WG, Haynes R, Hecht JT. Reevaluation of a genetic model for the development of exostoses in hereditary multiple exostosis. Am J Med Genet. 2002;112:1–5.CrossRefPubMed Hall CR, Cole WG, Haynes R, Hecht JT. Reevaluation of a genetic model for the development of exostoses in hereditary multiple exostosis. Am J Med Genet. 2002;112:1–5.CrossRefPubMed
26.
go back to reference Jennes I, Pedrini E, Zuntini M, Mordenti M, Balkassmi S, Asteggiano CG, et al. Multiple osteochondromas: mutation update and description of the multiple osteochondromas mutation database (MOdb). Hum Mutat. 2009;30:1620–7.CrossRefPubMed Jennes I, Pedrini E, Zuntini M, Mordenti M, Balkassmi S, Asteggiano CG, et al. Multiple osteochondromas: mutation update and description of the multiple osteochondromas mutation database (MOdb). Hum Mutat. 2009;30:1620–7.CrossRefPubMed
27.
go back to reference Zuntini M, Pedrini E, Parra A, Sgariglia F, Gentile FV, Pandolfi M, et al. Genetic models of osteochondroma onset and neoplastic progression: evidence for mechanisms alternative to EXT genes inactivation. Oncogene. 2010;29:3827–34.CrossRefPubMed Zuntini M, Pedrini E, Parra A, Sgariglia F, Gentile FV, Pandolfi M, et al. Genetic models of osteochondroma onset and neoplastic progression: evidence for mechanisms alternative to EXT genes inactivation. Oncogene. 2010;29:3827–34.CrossRefPubMed
28.
29.
go back to reference •• Zak BM, Schuksz M, Koyama E, Mundy C, Wells DE, Yamaguchi Y, et al. Compound heterozygous loss of Ext1 and Ext2 is sufficient for formation of multiple exostoses in mouse ribs and long bones. Bone. 2011;48:979–87. This paper shows for the first time that compound heterozygous Ext mutations are sufficient to cause an HME-like phenotype in mice. CrossRefPubMedPubMedCentral •• Zak BM, Schuksz M, Koyama E, Mundy C, Wells DE, Yamaguchi Y, et al. Compound heterozygous loss of Ext1 and Ext2 is sufficient for formation of multiple exostoses in mouse ribs and long bones. Bone. 2011;48:979–87. This paper shows for the first time that compound heterozygous Ext mutations are sufficient to cause an HME-like phenotype in mice. CrossRefPubMedPubMedCentral
30.
go back to reference •• Jones KB, Piombo V, Searby C, Kurriger G, Yang B, Grabellus F, et al. A mouse model of osteochondromagenesis from clonal inactivation of Ext1 in chondrocytes. Proc Natl Acad Sci U S A. 2010;107:2054–9. This paper has provided the most direct evidence to date that stocastic loss of Ext1 alleles in a few cells is sufficient to elicit osteochondormal formation. CrossRefPubMedPubMedCentral •• Jones KB, Piombo V, Searby C, Kurriger G, Yang B, Grabellus F, et al. A mouse model of osteochondromagenesis from clonal inactivation of Ext1 in chondrocytes. Proc Natl Acad Sci U S A. 2010;107:2054–9. This paper has provided the most direct evidence to date that stocastic loss of Ext1 alleles in a few cells is sufficient to elicit osteochondormal formation. CrossRefPubMedPubMedCentral
31.
go back to reference •• Matsumoto K, Irie F, Mackem S, Yamaguchi Y. A mouse model of chondrocyte-specific somatic mutation reveals a role for Ext1 loss of heterozygosity in multiple hereditary exostoses. Proc Natl Acad Sci U S A. 2010;107:10932–7. This concurrent paper has provided the most direct evidence to date that stocastic loss of Ext1 alleles in a few cells is sufficient to elicit osteochondormal formation. CrossRefPubMedPubMedCentral •• Matsumoto K, Irie F, Mackem S, Yamaguchi Y. A mouse model of chondrocyte-specific somatic mutation reveals a role for Ext1 loss of heterozygosity in multiple hereditary exostoses. Proc Natl Acad Sci U S A. 2010;107:10932–7. This concurrent paper has provided the most direct evidence to date that stocastic loss of Ext1 alleles in a few cells is sufficient to elicit osteochondormal formation. CrossRefPubMedPubMedCentral
32.
go back to reference Sgariglia F, Candela ME, Huegel J, Jacenko O, Koyama E, Yamaguchi Y, et al. Epiphyseal abnormalities, trabecular bone loss and articular chondrocyte hypertrophy develop in the long bones of postnatal Ext1-deficient mice. Bone. 2013;57:220–31.CrossRefPubMedPubMedCentral Sgariglia F, Candela ME, Huegel J, Jacenko O, Koyama E, Yamaguchi Y, et al. Epiphyseal abnormalities, trabecular bone loss and articular chondrocyte hypertrophy develop in the long bones of postnatal Ext1-deficient mice. Bone. 2013;57:220–31.CrossRefPubMedPubMedCentral
33.
go back to reference Sarrazin S, Lamanna WC, Esko JD. Heparan sulfate proteoglycans. Cold Spring Harb Prospect Biol. 2011;3:a004952. Sarrazin S, Lamanna WC, Esko JD. Heparan sulfate proteoglycans. Cold Spring Harb Prospect Biol. 2011;3:a004952.
34.
go back to reference Dhoot GK, Gustafsson MK, Ai X, Sun W, Standiford DM, Emerson CP. Regulation of Wnt signaling and embryo patterning by an extracellular sulfatase. Science. 2001;293:1663–6.CrossRefPubMed Dhoot GK, Gustafsson MK, Ai X, Sun W, Standiford DM, Emerson CP. Regulation of Wnt signaling and embryo patterning by an extracellular sulfatase. Science. 2001;293:1663–6.CrossRefPubMed
35.
go back to reference Morimoto-Tomita M, Uchimura K, Werb Z, Hemmerich S, Rosen SD. Cloning and characterization of two extracellular heparin-degrading endosulfatases in mouse and human. J Biol Chem. 2002;277:49175–85.CrossRefPubMedPubMedCentral Morimoto-Tomita M, Uchimura K, Werb Z, Hemmerich S, Rosen SD. Cloning and characterization of two extracellular heparin-degrading endosulfatases in mouse and human. J Biol Chem. 2002;277:49175–85.CrossRefPubMedPubMedCentral
36.
go back to reference Billings PC, Pacifici M. Interactions of signaling proteins, growth factors and other proteins with heparan sulfate: mechanisms and mysteries. Connect Tissue Res. 2015;56:272–80.CrossRefPubMedPubMedCentral Billings PC, Pacifici M. Interactions of signaling proteins, growth factors and other proteins with heparan sulfate: mechanisms and mysteries. Connect Tissue Res. 2015;56:272–80.CrossRefPubMedPubMedCentral
37.
go back to reference Lin X. Functions of heparan sulfate proteoglycans in cell signaling during development. Development. 2004;131:6009–21.CrossRefPubMed Lin X. Functions of heparan sulfate proteoglycans in cell signaling during development. Development. 2004;131:6009–21.CrossRefPubMed
38.
go back to reference Xu D, Esko JD. Demystifying heparan sulfate-protein interactions. Annu Rev Biochem. 2014;83:129–57.CrossRefPubMed Xu D, Esko JD. Demystifying heparan sulfate-protein interactions. Annu Rev Biochem. 2014;83:129–57.CrossRefPubMed
39.
go back to reference Koziel L, Kunath M, Kelly OG, Vortkamp A. Ext1-dependent heparan sulfate regulates the range of Ihh signaling during endochondral ossification. Dev Cell. 2004;6:801–13.CrossRefPubMed Koziel L, Kunath M, Kelly OG, Vortkamp A. Ext1-dependent heparan sulfate regulates the range of Ihh signaling during endochondral ossification. Dev Cell. 2004;6:801–13.CrossRefPubMed
40.
go back to reference Huegel J, Mundy C, Sgariglia F, Nygren P, Billings PC, Yamaguchi Y, et al. Perichondrium phenotype and border function are regulated by Ext1 and heparan sulfate in developing long bones: a mechanism likely deranged in hereditary multiple exostoses. Dev Biol. 2013;377:100–12.CrossRefPubMedPubMedCentral Huegel J, Mundy C, Sgariglia F, Nygren P, Billings PC, Yamaguchi Y, et al. Perichondrium phenotype and border function are regulated by Ext1 and heparan sulfate in developing long bones: a mechanism likely deranged in hereditary multiple exostoses. Dev Biol. 2013;377:100–12.CrossRefPubMedPubMedCentral
41.
go back to reference Clement ND, Duckworth AD, Baker AD, Porter DE. Skeletal growth patterns in hereditary multiple exostoses: a natural history. J Pediatr Orthop. 2012;B21:150–4.CrossRef Clement ND, Duckworth AD, Baker AD, Porter DE. Skeletal growth patterns in hereditary multiple exostoses: a natural history. J Pediatr Orthop. 2012;B21:150–4.CrossRef
42.
go back to reference Clement ND, Porter DE. Hereditary multiple exostoses: anatomical distribution and burden of exostoses is dependent upon genotype and gender. Scottish Med J. 2014;59:34–44.CrossRef Clement ND, Porter DE. Hereditary multiple exostoses: anatomical distribution and burden of exostoses is dependent upon genotype and gender. Scottish Med J. 2014;59:34–44.CrossRef
43.
go back to reference Porter DE, Benson MK, Hosney GA. The hip in hereditary multiple exostoses. J Bone Joint Surg Br. 2001;83:988–95.CrossRefPubMed Porter DE, Benson MK, Hosney GA. The hip in hereditary multiple exostoses. J Bone Joint Surg Br. 2001;83:988–95.CrossRefPubMed
44.
go back to reference Wang YZ, Park K-W, Oh C-S, Ahn Y-S, Kang Q-L, Jung ST, et al. Developmental pattern of the hip in patients with hereditary multiple exostoses. BMC Musculoskelet Disord. 2015;16:54.CrossRefPubMedPubMedCentral Wang YZ, Park K-W, Oh C-S, Ahn Y-S, Kang Q-L, Jung ST, et al. Developmental pattern of the hip in patients with hereditary multiple exostoses. BMC Musculoskelet Disord. 2015;16:54.CrossRefPubMedPubMedCentral
45.
go back to reference Roach JW, Klatt JWB, Faulkner ND. Involvement of the spine in patients with multiple hereditary exostoses. J Bone Joint Surg. 2009;91:1942–8.CrossRefPubMed Roach JW, Klatt JWB, Faulkner ND. Involvement of the spine in patients with multiple hereditary exostoses. J Bone Joint Surg. 2009;91:1942–8.CrossRefPubMed
46.
go back to reference • Matsumoto Y, Matsumoto K, Harimaya K, Okada S, Doi T, Iwamoto Y. Scoliosis in patients with multiple hereditary exostoses. Eur Spine J. 2015;24:1568–73. This paper is the first to suggest that scoliosis may be more pervasive than previously thought in HME patients. CrossRefPubMed • Matsumoto Y, Matsumoto K, Harimaya K, Okada S, Doi T, Iwamoto Y. Scoliosis in patients with multiple hereditary exostoses. Eur Spine J. 2015;24:1568–73. This paper is the first to suggest that scoliosis may be more pervasive than previously thought in HME patients. CrossRefPubMed
47.
go back to reference Felix NA, Mazur JM, Loveless EA. Acetabular dysplasia associated with hereditary multiple exostoses. A case report. J Bone Joint Surg Br. 2000;82:555–7.CrossRefPubMed Felix NA, Mazur JM, Loveless EA. Acetabular dysplasia associated with hereditary multiple exostoses. A case report. J Bone Joint Surg Br. 2000;82:555–7.CrossRefPubMed
48.
go back to reference Hosalkar H, Greenberg J, Gaugler RL, Garg S, Dormans JP. Abnormal scarring with keloid formation after osteochondroma excision in children with multiple hereditary exostoses. J Pediatr Orthop. 2007;27:333–7.CrossRefPubMed Hosalkar H, Greenberg J, Gaugler RL, Garg S, Dormans JP. Abnormal scarring with keloid formation after osteochondroma excision in children with multiple hereditary exostoses. J Pediatr Orthop. 2007;27:333–7.CrossRefPubMed
49.
go back to reference •• Goud AL, de Lange J, Scholtes VA, Bulstra SK, Ham SJ. Pain, physical and social functioning, and quality of life in individuals with multiple hereditary exostoses in The Netherlands: a national cohort study. J Bone Joint Surg Am. 2012;94:1013–20. This paper represents one of the most extensive and attentive analysis of physicial, social and personal difficulties experienced by HME patients. CrossRefPubMed •• Goud AL, de Lange J, Scholtes VA, Bulstra SK, Ham SJ. Pain, physical and social functioning, and quality of life in individuals with multiple hereditary exostoses in The Netherlands: a national cohort study. J Bone Joint Surg Am. 2012;94:1013–20. This paper represents one of the most extensive and attentive analysis of physicial, social and personal difficulties experienced by HME patients. CrossRefPubMed
50.
go back to reference Chhina H, Davis J, Alvarez CM. Health-related quality of life in people with hereditary multiple exostoses. J Pediatr Orthopaedics. 2012;32:210–4.CrossRef Chhina H, Davis J, Alvarez CM. Health-related quality of life in people with hereditary multiple exostoses. J Pediatr Orthopaedics. 2012;32:210–4.CrossRef
51.
go back to reference Arkader A. Multiple hereditary exostoses: its burden on childhood and beyond. J Bone Joint Surg. 2012;94:e81.CrossRefPubMed Arkader A. Multiple hereditary exostoses: its burden on childhood and beyond. J Bone Joint Surg. 2012;94:e81.CrossRefPubMed
52.
go back to reference Hays RD, Morales LS. The RAND-36 measure of health-related quality of life. Annu Med. 2001;33:350–7.CrossRef Hays RD, Morales LS. The RAND-36 measure of health-related quality of life. Annu Med. 2001;33:350–7.CrossRef
53.
go back to reference Ashraf A, Larson AN, Ferski G, Mielke CH, Wetjen NM, Guidera KJ. Spinal stenosis frequent in children with multiple hereditary exostoses. J Child Orthop. 2013;7:183–94.CrossRefPubMedPubMedCentral Ashraf A, Larson AN, Ferski G, Mielke CH, Wetjen NM, Guidera KJ. Spinal stenosis frequent in children with multiple hereditary exostoses. J Child Orthop. 2013;7:183–94.CrossRefPubMedPubMedCentral
54.
go back to reference Oestreich AT, Huslig EL. Hereditary multiple exostosis: another etiology of short leg and scoliosis. J Manip Physiol Ther. 1985;8:267–9. Oestreich AT, Huslig EL. Hereditary multiple exostosis: another etiology of short leg and scoliosis. J Manip Physiol Ther. 1985;8:267–9.
55.
go back to reference King HA, Moe JH, Bradford DS, Winter RB. The selection of fusion levels in thoracic idiopathic scoliosis. J Bone Joint Surg Am. 1983;65:1302–12.CrossRefPubMed King HA, Moe JH, Bradford DS, Winter RB. The selection of fusion levels in thoracic idiopathic scoliosis. J Bone Joint Surg Am. 1983;65:1302–12.CrossRefPubMed
56.
go back to reference Lind T, Tufaro F, McCormick C, Lindahl U, Lidholt K. The putative tumor suppressors EXT1 and EXT2 are glycosyltransferases required for the biosynthesis of heparan sulfate. J Biol Chem. 1998;273:26265–8.CrossRefPubMed Lind T, Tufaro F, McCormick C, Lindahl U, Lidholt K. The putative tumor suppressors EXT1 and EXT2 are glycosyltransferases required for the biosynthesis of heparan sulfate. J Biol Chem. 1998;273:26265–8.CrossRefPubMed
57.
go back to reference McCormick C, Leduc Y, Martindale D, Mattison K, Esford L, Dyer A, et al. The putative tumor suppressor EXT1 alters the expression of cell-surface heparan sulfate. Nat Genet. 1998;19:158–61.CrossRefPubMed McCormick C, Leduc Y, Martindale D, Mattison K, Esford L, Dyer A, et al. The putative tumor suppressor EXT1 alters the expression of cell-surface heparan sulfate. Nat Genet. 1998;19:158–61.CrossRefPubMed
58.
go back to reference Busse-Wicher M, Wicher KB, Kusche-Gullberg M. The exostosin family: proteins with many functions. Matrix Biol. 2014;35:25–33.CrossRefPubMed Busse-Wicher M, Wicher KB, Kusche-Gullberg M. The exostosin family: proteins with many functions. Matrix Biol. 2014;35:25–33.CrossRefPubMed
59.
go back to reference Alvarez C, De Vera MA, Heslip TR, Casey B. Evaluation of the anatomical burden of patients with hereditary multiple exostoses. Clin Orth Relat Res. 2007;462:73–9.CrossRef Alvarez C, De Vera MA, Heslip TR, Casey B. Evaluation of the anatomical burden of patients with hereditary multiple exostoses. Clin Orth Relat Res. 2007;462:73–9.CrossRef
60.
go back to reference Alvarez C, Tredwell S, De Vera M, Hayden M. The genotype-phenotype correlation of hereditary multiple exostoses. Clin Genet. 2006;70:122–30.CrossRefPubMed Alvarez C, Tredwell S, De Vera M, Hayden M. The genotype-phenotype correlation of hereditary multiple exostoses. Clin Genet. 2006;70:122–30.CrossRefPubMed
61.
go back to reference Pedrini E, Jennes I, Tremosini M, Milanesi A, Mordenti M, Parra A, et al. Genotype-phenotype correlation study in 529 patients with hereditary multiple exostoses: identification of “protective” and “risk” factors. J Bone Joint Surg. 2011;93:2294–302.CrossRefPubMed Pedrini E, Jennes I, Tremosini M, Milanesi A, Mordenti M, Parra A, et al. Genotype-phenotype correlation study in 529 patients with hereditary multiple exostoses: identification of “protective” and “risk” factors. J Bone Joint Surg. 2011;93:2294–302.CrossRefPubMed
62.
go back to reference Ishimaru D, Gotch M, Takayama S, Kosaki R, Matsumoto Y, Narimatsu H, et al. Large-scale mutational analysis in the EXT1 and EXT2 genes for Japanese patients with multiple osteochondromas. BMC Genet. 2016;17:52.CrossRefPubMedPubMedCentral Ishimaru D, Gotch M, Takayama S, Kosaki R, Matsumoto Y, Narimatsu H, et al. Large-scale mutational analysis in the EXT1 and EXT2 genes for Japanese patients with multiple osteochondromas. BMC Genet. 2016;17:52.CrossRefPubMedPubMedCentral
63.
go back to reference Sarrion P, Sangorrin A, Urreizti R, Delgado A, Artuch R, Mantorell L, et al. Mutations in the EXT1 and EXT2 genes in Spanish patients with multiple osteochondromas. Sci Rep. 2013;3:1346.CrossRefPubMedPubMedCentral Sarrion P, Sangorrin A, Urreizti R, Delgado A, Artuch R, Mantorell L, et al. Mutations in the EXT1 and EXT2 genes in Spanish patients with multiple osteochondromas. Sci Rep. 2013;3:1346.CrossRefPubMedPubMedCentral
64.
go back to reference Jamsheer M, Socha M, Sowinska-Seidler A, Telega K, Trzeciak T, Latos-Bielenska A. Mutational screening of EXT1 and EXT2 genes in Polish patients with hereditary multiple exostoses. J Appl Genet. 2014;55:183–8.CrossRefPubMedPubMedCentral Jamsheer M, Socha M, Sowinska-Seidler A, Telega K, Trzeciak T, Latos-Bielenska A. Mutational screening of EXT1 and EXT2 genes in Polish patients with hereditary multiple exostoses. J Appl Genet. 2014;55:183–8.CrossRefPubMedPubMedCentral
65.
go back to reference Ciavarella M, Coco M, Baorda F, Stanziale P, Chetta M, Bisceglia L, et al. 20 novel point mutations and one large deletion in EXT1 and EXT2 genes: report of diagnostic screening in a large Italian cohort of patients affected by hereditary multiple exostosis. Gene. 2013;515:339–48.CrossRefPubMed Ciavarella M, Coco M, Baorda F, Stanziale P, Chetta M, Bisceglia L, et al. 20 novel point mutations and one large deletion in EXT1 and EXT2 genes: report of diagnostic screening in a large Italian cohort of patients affected by hereditary multiple exostosis. Gene. 2013;515:339–48.CrossRefPubMed
66.
67.
go back to reference Joseph CG, Darrah E, Shah AA, Skora AD, Casciola-Rosen LA, Wigley FW, et al. Association of the autoimmune disease scherederma with an immunologic response to cancer. Science. 2014;343:152–7.CrossRefPubMed Joseph CG, Darrah E, Shah AA, Skora AD, Casciola-Rosen LA, Wigley FW, et al. Association of the autoimmune disease scherederma with an immunologic response to cancer. Science. 2014;343:152–7.CrossRefPubMed
68.
go back to reference •• Irie F, Badie-Mahdavi H, Yamaguchi Y. Autism-like socio-communicative deficits and stereotypies in mice lacking heparan sulfate. Proc Natl Acad Sci U S A. 2012;109:5052–6. This paper is the first to show that conditional ablation of Ext1 in brain cells can cause symptoms of autism in mice. CrossRefPubMedPubMedCentral •• Irie F, Badie-Mahdavi H, Yamaguchi Y. Autism-like socio-communicative deficits and stereotypies in mice lacking heparan sulfate. Proc Natl Acad Sci U S A. 2012;109:5052–6. This paper is the first to show that conditional ablation of Ext1 in brain cells can cause symptoms of autism in mice. CrossRefPubMedPubMedCentral
69.
go back to reference •• Cousminer DL, Arkader A, Voight BF, Pacifici M, Grant SFA. Assessing the general population frequency of rare coding variants in the EXT1 and EXT2 genes previously implicated in hereditary multiple exostoses. Bone. 2016;92:196–200. This paper is the first to suggest that some EXT missense mutations previously linked to HME may actually be variants with little if any pathogenic relevance. CrossRefPubMed •• Cousminer DL, Arkader A, Voight BF, Pacifici M, Grant SFA. Assessing the general population frequency of rare coding variants in the EXT1 and EXT2 genes previously implicated in hereditary multiple exostoses. Bone. 2016;92:196–200. This paper is the first to suggest that some EXT missense mutations previously linked to HME may actually be variants with little if any pathogenic relevance. CrossRefPubMed
70.
go back to reference Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–91.CrossRefPubMedPubMedCentral Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–91.CrossRefPubMedPubMedCentral
71.
go back to reference Hecht JT, Hayes E, Haynes R, Cole GC, Long RJ, Farach-Carson MC, et al. Differentiation-induced loss of heparan sulfate in human exostosis derived chondrocytes. Differentiation. 2005;73:212–21.CrossRefPubMed Hecht JT, Hayes E, Haynes R, Cole GC, Long RJ, Farach-Carson MC, et al. Differentiation-induced loss of heparan sulfate in human exostosis derived chondrocytes. Differentiation. 2005;73:212–21.CrossRefPubMed
72.
go back to reference Colnot C, Lu C, Hu D, Helms JA. Distinguishing the contributions of the perichondrium, cartilage, and vascular endothelium to skeletal development. Dev Biol. 2004;269:55–69.CrossRefPubMed Colnot C, Lu C, Hu D, Helms JA. Distinguishing the contributions of the perichondrium, cartilage, and vascular endothelium to skeletal development. Dev Biol. 2004;269:55–69.CrossRefPubMed
73.
go back to reference Lam KP, Rajewsky K. Rapid elimination of mature autoreactive B cells demonstrated by Cre-induced change in B cell antigen receptor specificity in vivo. Proc Natl Acad Sci U S A. 1998;95:13171–5.CrossRefPubMedPubMedCentral Lam KP, Rajewsky K. Rapid elimination of mature autoreactive B cells demonstrated by Cre-induced change in B cell antigen receptor specificity in vivo. Proc Natl Acad Sci U S A. 1998;95:13171–5.CrossRefPubMedPubMedCentral
74.
go back to reference Ono N, Ono W, Nagasawa T, Kronenberg HM. A subset of chondrogenic cells provides early mesenchymal progenitors in growing bones. Nat Cell Biol. 2014;16:1157–67.CrossRefPubMedPubMedCentral Ono N, Ono W, Nagasawa T, Kronenberg HM. A subset of chondrogenic cells provides early mesenchymal progenitors in growing bones. Nat Cell Biol. 2014;16:1157–67.CrossRefPubMedPubMedCentral
75.
go back to reference Maes C, Kobayashi A, Kronenberg HM. A novel transgenic mous emodel to stuudy the osteoblast lineage in vivo. Ann N Y Acad Sci. 2007;1116:1490164.CrossRef Maes C, Kobayashi A, Kronenberg HM. A novel transgenic mous emodel to stuudy the osteoblast lineage in vivo. Ann N Y Acad Sci. 2007;1116:1490164.CrossRef
76.
go back to reference Nakamura E, Nguyen M-T, Mackem S. Kinetics of tamoxifen-regulated Cre activity in mice using a cartilage-specific CreERT to assay temporal activity windows along the proximodistal limb skeleton. Dev Dyn. 2006;235:2603–12.CrossRefPubMed Nakamura E, Nguyen M-T, Mackem S. Kinetics of tamoxifen-regulated Cre activity in mice using a cartilage-specific CreERT to assay temporal activity windows along the proximodistal limb skeleton. Dev Dyn. 2006;235:2603–12.CrossRefPubMed
77.
go back to reference Schuksz M, Fuster MM, Brown JR, Crawford BE, Ditto DP, Lawrence R, et al. Surfen, a small molecule antagonist of heparan sulfate. Proc Natl Acad Sci U S A. 2008;105:13075–80.CrossRefPubMedPubMedCentral Schuksz M, Fuster MM, Brown JR, Crawford BE, Ditto DP, Lawrence R, et al. Surfen, a small molecule antagonist of heparan sulfate. Proc Natl Acad Sci U S A. 2008;105:13075–80.CrossRefPubMedPubMedCentral
78.
go back to reference Salazar VS, Gamer LW, Rosen V. BMP signaling in skeletal development, disease and repair. Nat Rev Endocrinol. 2016;12:203–21.CrossRefPubMed Salazar VS, Gamer LW, Rosen V. BMP signaling in skeletal development, disease and repair. Nat Rev Endocrinol. 2016;12:203–21.CrossRefPubMed
79.
go back to reference Buckland RA, Collinson JM, Graham E, Davidson DR, Hill RE. Antagonistic effects of FGF4 on BMP induction of apoptosis and chondrogenesis in the chick limb bud. Mech Dev. 1998;71:143–50.CrossRefPubMed Buckland RA, Collinson JM, Graham E, Davidson DR, Hill RE. Antagonistic effects of FGF4 on BMP induction of apoptosis and chondrogenesis in the chick limb bud. Mech Dev. 1998;71:143–50.CrossRefPubMed
81.
go back to reference Yoon BS, Pogue R, Ovchinnikov DA, Yoshii I, Mishina Y, Behringer RR, et al. BMPs regulate multiple aspects of growth plate chondrogenesis through opposing actions of FGF pathways. Development. 2006;133:4667–78.CrossRefPubMed Yoon BS, Pogue R, Ovchinnikov DA, Yoshii I, Mishina Y, Behringer RR, et al. BMPs regulate multiple aspects of growth plate chondrogenesis through opposing actions of FGF pathways. Development. 2006;133:4667–78.CrossRefPubMed
82.
go back to reference Hulett MD, Freeman C, Hamdorf BJ, Baker RT, Harris MJ, Parish CR. Cloning of mammalian heparanase: an important enzyme in tumor invasion and metastasis. Nat Med. 1999;5:183–7.CrossRef Hulett MD, Freeman C, Hamdorf BJ, Baker RT, Harris MJ, Parish CR. Cloning of mammalian heparanase: an important enzyme in tumor invasion and metastasis. Nat Med. 1999;5:183–7.CrossRef
83.
go back to reference Zetser A, Bashenko Y, Miao HQ, Vlodavsky I, Ilan N. Heparanase affects adhesive and tumorigenic potential of human glioma cells. Cancer Res. 2003;63:7733–41.PubMed Zetser A, Bashenko Y, Miao HQ, Vlodavsky I, Ilan N. Heparanase affects adhesive and tumorigenic potential of human glioma cells. Cancer Res. 2003;63:7733–41.PubMed
84.
go back to reference Quiros RM, Rao G, Plate J, Harris JE, Brunn GJ, Platt JL, et al. Elevated serum heparanase-1 levels in patients with pancreatic carcinoma are associated with poor survival. Cancer. 2006;106:532–40.CrossRefPubMed Quiros RM, Rao G, Plate J, Harris JE, Brunn GJ, Platt JL, et al. Elevated serum heparanase-1 levels in patients with pancreatic carcinoma are associated with poor survival. Cancer. 2006;106:532–40.CrossRefPubMed
85.
go back to reference •• Trebicz-Geffen M, Robinson D, Evron Z, Glaser T, Fridkin M, Kollander Y, et al. The molecular and cellular basis of exostosis formation in hereditary multiple exostoses. Int J Exp Path. 2008;89:321–31. This paper is the first to show that heparanase is up-regulated in osteochondromas from HME patients. CrossRef •• Trebicz-Geffen M, Robinson D, Evron Z, Glaser T, Fridkin M, Kollander Y, et al. The molecular and cellular basis of exostosis formation in hereditary multiple exostoses. Int J Exp Path. 2008;89:321–31. This paper is the first to show that heparanase is up-regulated in osteochondromas from HME patients. CrossRef
86.
go back to reference •• Huegel J, Enomoto-Iwamoto M, Sgariglia F, Koyama E, Pacifici M. Heparanase stimulates chondrogenesis and is up-regulated in human ectopic cartilage. A mechanism possibly involved in hereditary multiple exostoses. Am J Path. 2015;185:1676–85. This paper verifies that heparanase is up-regulated in osteochondromas from HME patients and is the first to show that human heparanase stimulates chondrogenesis while a heparanase inhibitor inhibits it, indicating that this enzyme could be a therapeutic target. CrossRefPubMedPubMedCentral •• Huegel J, Enomoto-Iwamoto M, Sgariglia F, Koyama E, Pacifici M. Heparanase stimulates chondrogenesis and is up-regulated in human ectopic cartilage. A mechanism possibly involved in hereditary multiple exostoses. Am J Path. 2015;185:1676–85. This paper verifies that heparanase is up-regulated in osteochondromas from HME patients and is the first to show that human heparanase stimulates chondrogenesis while a heparanase inhibitor inhibits it, indicating that this enzyme could be a therapeutic target. CrossRefPubMedPubMedCentral
87.
go back to reference Ritchie JP, Ramani VC, Ren Y, Naggi A, Torri G, Casu B, et al. SST0001, a chemically modified heparin, inhibits myeloma growth and angiogenesis via disruption of the heparanase/syndecan-1 shedding: a novel mechanism for stimulation of tumor growth and metastasis. Clin Cancer Res. 2011;17:1382–93.CrossRefPubMedPubMedCentral Ritchie JP, Ramani VC, Ren Y, Naggi A, Torri G, Casu B, et al. SST0001, a chemically modified heparin, inhibits myeloma growth and angiogenesis via disruption of the heparanase/syndecan-1 shedding: a novel mechanism for stimulation of tumor growth and metastasis. Clin Cancer Res. 2011;17:1382–93.CrossRefPubMedPubMedCentral
88.
go back to reference Matsumoto Y, Matsumoto K, Irie F, Fukushi J-I, Stallcup WB, Yamaguchi Y. Conditional ablation of the heparan sulfate-synthesizing enzyme Ext1 leads to dysregulation of bone morphogenetic protein signaling and severe skeletal defects. J Biol Chem. 2010;285:19227–34.CrossRefPubMedPubMedCentral Matsumoto Y, Matsumoto K, Irie F, Fukushi J-I, Stallcup WB, Yamaguchi Y. Conditional ablation of the heparan sulfate-synthesizing enzyme Ext1 leads to dysregulation of bone morphogenetic protein signaling and severe skeletal defects. J Biol Chem. 2010;285:19227–34.CrossRefPubMedPubMedCentral
89.
go back to reference Koyama E, Young B, Nagayama M, Shibukawa Y, Enomoto-Iwamoto M, Iwamoto M, et al. Conditional Kif3a ablation causes abnormal hedgehog signaling topography, growth plate dysfunction, and excessive bone and cartilage formation during mouse skeletogenesis. Development. 2007;134:2159–69.CrossRefPubMedPubMedCentral Koyama E, Young B, Nagayama M, Shibukawa Y, Enomoto-Iwamoto M, Iwamoto M, et al. Conditional Kif3a ablation causes abnormal hedgehog signaling topography, growth plate dysfunction, and excessive bone and cartilage formation during mouse skeletogenesis. Development. 2007;134:2159–69.CrossRefPubMedPubMedCentral
90.
go back to reference Mundy C, Bello A, Sgariglia F, Koyama E, Pacifici M. HhAntag, a hedgehog signaling antagonist, suppresses chondrogenesis and modulates canonical and non-canonical BMP signaling. J Cell Physiol. 2016;231:1033–44.CrossRefPubMed Mundy C, Bello A, Sgariglia F, Koyama E, Pacifici M. HhAntag, a hedgehog signaling antagonist, suppresses chondrogenesis and modulates canonical and non-canonical BMP signaling. J Cell Physiol. 2016;231:1033–44.CrossRefPubMed
Metadata
Title
Hereditary Multiple Exostoses: New Insights into Pathogenesis, Clinical Complications, and Potential Treatments
Author
Maurizio Pacifici
Publication date
01-06-2017
Publisher
Springer US
Published in
Current Osteoporosis Reports / Issue 3/2017
Print ISSN: 1544-1873
Electronic ISSN: 1544-2241
DOI
https://doi.org/10.1007/s11914-017-0355-2

Other articles of this Issue 3/2017

Current Osteoporosis Reports 3/2017 Go to the issue

Kidney and Bone (S Moe and I Salusky, Section Editors)

Treatment of Pediatric Chronic Kidney Disease-Mineral and Bone Disorder

Kidney and Bone (S Moe and I Salusky, Section Editors)

Renal Osteodystrophy—Time for Common Nomenclature

Therapeutics and Medical Management (S Jan de Beur and B Clarke, Section editors)

Exploiting the WNT Signaling Pathway for Clinical Purposes

Cancer-induced Musculoskeletal Diseases (M Reagan and E Keller, Section Editors)

MicroRNA Transfer Between Bone Marrow Adipose and Multiple Myeloma Cells

Kidney and Bone (S Moe and I Salusky, Section Editors)

Bone Quality in Chronic Kidney Disease: Definitions and Diagnostics