Skip to main content
Top
Published in: Current Oncology Reports 8/2021

01-08-2021 | Glioblastoma | Neuro-oncology (KS Nevel, Section Editor)

DNA Repair Mechanisms and Therapeutic Targets in Glioma

Authors: Kevin B. Elmore, Lauren R. Schaff

Published in: Current Oncology Reports | Issue 8/2021

Login to get access

Abstract

Purpose of Review

This review discusses current and investigative strategies for targeting DNA repair in the management of glioma.

Recent Findings

Recent strategies in glioma treatment rely on the production of overwhelming DNA damage and inhibition of repair mechanisms, resulting in lethal cytotoxicity. Many strategies are effective in preclinical glioma models while clinical feasibility remains under investigation. The presence of glioma biomarkers, including IDH mutation and/or MGMT promoter methylation, may confer particular susceptibility to DNA damage and inhibition of repair. These biomarkers have been adopted as eligibility criteria in the design of multiple ongoing clinical trials.

Summary

Targeting DNA repair mechanisms with novel agents or therapeutic combinations is a promising approach to the treatment of glioma. Further investigations are underway to optimize this approach in the clinical setting.
Literature
1.
go back to reference Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016;131(6):803–20.CrossRefPubMed Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016;131(6):803–20.CrossRefPubMed
2.
go back to reference Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature. 2001;411(6835):366–74.PubMedCrossRef Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature. 2001;411(6835):366–74.PubMedCrossRef
3.
go back to reference Maréchal A, Zou L. DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb Perspect Biol. 2013;5(9). Maréchal A, Zou L. DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb Perspect Biol. 2013;5(9).
4.
go back to reference Tribius S, Pidel A, Casper D. ATM protein expression correlates with radioresistance in primary glioblastoma cells in culture. International Journal of Radiation Oncology*Biology*Physics. 2001;50(2):511–23.CrossRefPubMed Tribius S, Pidel A, Casper D. ATM protein expression correlates with radioresistance in primary glioblastoma cells in culture. International Journal of Radiation Oncology*Biology*Physics. 2001;50(2):511–23.CrossRefPubMed
5.
go back to reference Hickson I, Zhao Y, Richardson CJ, Green SJ, Martin NM, Orr AI, et al. Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res. 2004;64(24):9152–9.PubMedCrossRef Hickson I, Zhao Y, Richardson CJ, Green SJ, Martin NM, Orr AI, et al. Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res. 2004;64(24):9152–9.PubMedCrossRef
6•.
go back to reference Durant ST, Zheng L, Wang Y, Chen K, Zhang L, Zhang T, et al. The brain-penetrant clinical ATM inhibitor AZD1390 radiosensitizes and improves survival of preclinical brain tumor models. Sci Adv. 2018;4(6):eaat1719 The oral ATM inhibitor AZD1390 demonstrated radiosensitization in glioma cell lines, CNS penetrance, and increased animal survival in orthotopic glioma models when compared to radiation alone. On this basis, AZD1390 is currently under clinical trial investigation for newly diagnosed and recurrent glioblastoma.PubMedPubMedCentralCrossRef Durant ST, Zheng L, Wang Y, Chen K, Zhang L, Zhang T, et al. The brain-penetrant clinical ATM inhibitor AZD1390 radiosensitizes and improves survival of preclinical brain tumor models. Sci Adv. 2018;4(6):eaat1719 The oral ATM inhibitor AZD1390 demonstrated radiosensitization in glioma cell lines, CNS penetrance, and increased animal survival in orthotopic glioma models when compared to radiation alone. On this basis, AZD1390 is currently under clinical trial investigation for newly diagnosed and recurrent glioblastoma.PubMedPubMedCentralCrossRef
7.
go back to reference Biddlestone-Thorpe L, Sajjad M, Rosenberg E, Beckta JM, Valerie NC, Tokarz M, et al. ATM kinase inhibition preferentially sensitizes p53-mutant glioma to ionizing radiation. Clin Cancer Res. 2013;19(12):3189–200.PubMedPubMedCentralCrossRef Biddlestone-Thorpe L, Sajjad M, Rosenberg E, Beckta JM, Valerie NC, Tokarz M, et al. ATM kinase inhibition preferentially sensitizes p53-mutant glioma to ionizing radiation. Clin Cancer Res. 2013;19(12):3189–200.PubMedPubMedCentralCrossRef
8.
go back to reference Fokas E, Prevo R, Pollard JR, Reaper PM, Charlton PA, Cornelissen B, et al. Targeting ATR in vivo using the novel inhibitor VE-822 results in selective sensitization of pancreatic tumors to radiation. Cell Death Dis. 2012;3(12):e441.PubMedPubMedCentralCrossRef Fokas E, Prevo R, Pollard JR, Reaper PM, Charlton PA, Cornelissen B, et al. Targeting ATR in vivo using the novel inhibitor VE-822 results in selective sensitization of pancreatic tumors to radiation. Cell Death Dis. 2012;3(12):e441.PubMedPubMedCentralCrossRef
9.
go back to reference Fròsina G, Profumo A, Marubbi D, Marcello D, Ravetti JL, Daga A. ATR kinase inhibitors NVP-BEZ235 and AZD6738 effectively penetrate the brain after systemic administration. Radiat Oncol. 2018;13(1):76.PubMedPubMedCentralCrossRef Fròsina G, Profumo A, Marubbi D, Marcello D, Ravetti JL, Daga A. ATR kinase inhibitors NVP-BEZ235 and AZD6738 effectively penetrate the brain after systemic administration. Radiat Oncol. 2018;13(1):76.PubMedPubMedCentralCrossRef
10.
go back to reference Ning J-F, Stanciu M, Humphrey MR, Gorham J, Wakimoto H, Nishihara R, et al. Myc targeted CDK18 promotes ATR and homologous recombination to mediate PARP inhibitor resistance in glioblastoma. Nature Communications. 2019;10(1):2910.PubMedPubMedCentralCrossRef Ning J-F, Stanciu M, Humphrey MR, Gorham J, Wakimoto H, Nishihara R, et al. Myc targeted CDK18 promotes ATR and homologous recombination to mediate PARP inhibitor resistance in glioblastoma. Nature Communications. 2019;10(1):2910.PubMedPubMedCentralCrossRef
11.
go back to reference Ahmed SU, Carruthers R, Gilmour L, Yildirim S, Watts C, Chalmers AJ. Selective inhibition of parallel DNA damage response pathways optimizes radiosensitization of glioblastoma stem-like cells. Cancer Research. 2015;75(20):4416–28.PubMedCrossRef Ahmed SU, Carruthers R, Gilmour L, Yildirim S, Watts C, Chalmers AJ. Selective inhibition of parallel DNA damage response pathways optimizes radiosensitization of glioblastoma stem-like cells. Cancer Research. 2015;75(20):4416–28.PubMedCrossRef
12.
go back to reference Jackson CB, Noorbakhsh SI, Sundaram RK, Kalathil AN, Ganesa S, Jia L, et al. Temozolomide sensitizes MGMT-deficient tumor cells to ATR inhibitors. Cancer research. 2019;79(17):4331–8.PubMedPubMedCentralCrossRef Jackson CB, Noorbakhsh SI, Sundaram RK, Kalathil AN, Ganesa S, Jia L, et al. Temozolomide sensitizes MGMT-deficient tumor cells to ATR inhibitors. Cancer research. 2019;79(17):4331–8.PubMedPubMedCentralCrossRef
13.
go back to reference Zenke FT, Zimmermann A, Sirrenberg C, Dahmen H, Kirkin V, Pehl U, et al. Pharmacologic inhibitor of DNA-PK, M3814, potentiates radiotherapy and regresses human tumors in mouse models. Mol Cancer Ther. 2020;19(5):1091–101.PubMedCrossRef Zenke FT, Zimmermann A, Sirrenberg C, Dahmen H, Kirkin V, Pehl U, et al. Pharmacologic inhibitor of DNA-PK, M3814, potentiates radiotherapy and regresses human tumors in mouse models. Mol Cancer Ther. 2020;19(5):1091–101.PubMedCrossRef
14.
go back to reference Timme CR, Rath BH, O'Neill JW, Camphausen K, Tofilon PJ. The DNA-PK inhibitor VX-984 enhances the radiosensitivity of glioblastoma cells grown in vitro and as orthotopic xenografts. Molecular cancer therapeutics. 2018;17(6):1207–16.PubMedPubMedCentralCrossRef Timme CR, Rath BH, O'Neill JW, Camphausen K, Tofilon PJ. The DNA-PK inhibitor VX-984 enhances the radiosensitivity of glioblastoma cells grown in vitro and as orthotopic xenografts. Molecular cancer therapeutics. 2018;17(6):1207–16.PubMedPubMedCentralCrossRef
15.
go back to reference Bergman K, Irtenkauf SM, Hasselbach LA, Mueller C, Petricoin E, Raymon H, et al. Abstract 1755: TORK/DNA-PK inhibitor CC-115 is effective as a single agent in a subset of glioblastoma patient-derived cancer stem cells and xenografts and potentiates temozolomide therapy. Cancer Research. 2015;75(15 Supplement):1755. Bergman K, Irtenkauf SM, Hasselbach LA, Mueller C, Petricoin E, Raymon H, et al. Abstract 1755: TORK/DNA-PK inhibitor CC-115 is effective as a single agent in a subset of glioblastoma patient-derived cancer stem cells and xenografts and potentiates temozolomide therapy. Cancer Research. 2015;75(15 Supplement):1755.
16.
go back to reference Munster P, Mita M, Mahipal A, Nemunaitis J, Massard C, Mikkelsen T, et al. First-in-human phase I study of a dual mTOR kinase and DNA-PK inhibitor (CC-115) in advanced malignancy. Cancer Manag Res. 2019;11:10463–76.PubMedPubMedCentralCrossRef Munster P, Mita M, Mahipal A, Nemunaitis J, Massard C, Mikkelsen T, et al. First-in-human phase I study of a dual mTOR kinase and DNA-PK inhibitor (CC-115) in advanced malignancy. Cancer Manag Res. 2019;11:10463–76.PubMedPubMedCentralCrossRef
17.
go back to reference Margison GP, Santibáñez-Koref MF. O6-alkylguanine-DNA alkyltransferase: role in carcinogenesis and chemotherapy. Bioessays. 2002;24(3):255–66.PubMedCrossRef Margison GP, Santibáñez-Koref MF. O6-alkylguanine-DNA alkyltransferase: role in carcinogenesis and chemotherapy. Bioessays. 2002;24(3):255–66.PubMedCrossRef
18.
go back to reference Ochs K, Kaina B. Apoptosis induced by DNA damage <em>O</em> -methylguanine is Bcl-2 and caspase-9/3 regulated and Fas/caspase-8 independent. Cancer Research. 2000;60(20):5815–24.PubMed Ochs K, Kaina B. Apoptosis induced by DNA damage <em>O</em> -methylguanine is Bcl-2 and caspase-9/3 regulated and Fas/caspase-8 independent. Cancer Research. 2000;60(20):5815–24.PubMed
19.
go back to reference Pegg AE. Repair of O6-alkylguanine by alkyltransferases. Mutation Research/Reviews in Mutation Research. 2000;462(2):83–100.CrossRef Pegg AE. Repair of O6-alkylguanine by alkyltransferases. Mutation Research/Reviews in Mutation Research. 2000;462(2):83–100.CrossRef
20.
go back to reference Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.PubMedCrossRef Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.PubMedCrossRef
21.
go back to reference Perry JR, Bélanger K, Mason WP, Fulton D, Kavan P, Easaw J, et al. Phase II trial of continuous dose-intense temozolomide in recurrent malignant glioma: RESCUE study. J Clin Oncol. 2010;28(12):2051–7.PubMedCrossRef Perry JR, Bélanger K, Mason WP, Fulton D, Kavan P, Easaw J, et al. Phase II trial of continuous dose-intense temozolomide in recurrent malignant glioma: RESCUE study. J Clin Oncol. 2010;28(12):2051–7.PubMedCrossRef
22.
go back to reference Brandes AA, Tosoni A, Amistà P, Nicolardi L, Grosso D, Berti F, et al. How effective is BCNU in recurrent glioblastoma in the modern era? A phase II trial. Neurology. 2004;63(7):1281–4.PubMedCrossRef Brandes AA, Tosoni A, Amistà P, Nicolardi L, Grosso D, Berti F, et al. How effective is BCNU in recurrent glioblastoma in the modern era? A phase II trial. Neurology. 2004;63(7):1281–4.PubMedCrossRef
23.
go back to reference Schmidt F, Fischer J, Herrlinger U, Dietz K, Dichgans J, Weller M. PCV chemotherapy for recurrent glioblastoma. Neurology. 2006;66(4):587–9.PubMedCrossRef Schmidt F, Fischer J, Herrlinger U, Dietz K, Dichgans J, Weller M. PCV chemotherapy for recurrent glioblastoma. Neurology. 2006;66(4):587–9.PubMedCrossRef
24.
go back to reference Baumert BG, Hegi ME, van den Bent MJ, von Deimling A, Gorlia T, Hoang-Xuan K, et al. Temozolomide chemotherapy versus radiotherapy in high-risk low-grade glioma (EORTC 22033-26033): a randomised, open-label, phase 3 intergroup study. Lancet Oncol. 2016;17(11):1521–32.PubMedPubMedCentralCrossRef Baumert BG, Hegi ME, van den Bent MJ, von Deimling A, Gorlia T, Hoang-Xuan K, et al. Temozolomide chemotherapy versus radiotherapy in high-risk low-grade glioma (EORTC 22033-26033): a randomised, open-label, phase 3 intergroup study. Lancet Oncol. 2016;17(11):1521–32.PubMedPubMedCentralCrossRef
25.
go back to reference Buckner JC, Shaw EG, Pugh SL, Chakravarti A, Gilbert MR, Barger GR, et al. Radiation plus procarbazine, CCNU, and vincristine in low-grade glioma. New England Journal of Medicine. 2016;374(14):1344–55.CrossRefPubMed Buckner JC, Shaw EG, Pugh SL, Chakravarti A, Gilbert MR, Barger GR, et al. Radiation plus procarbazine, CCNU, and vincristine in low-grade glioma. New England Journal of Medicine. 2016;374(14):1344–55.CrossRefPubMed
26.
go back to reference Nakagawachi T, Soejima H, Urano T, Zhao W, Higashimoto K, Satoh Y, et al. Silencing effect of CpG island hypermethylation and histone modifications on O6-methylguanine-DNA methyltransferase (MGMT) gene expression in human cancer. Oncogene. 2003;22(55):8835–44.PubMedCrossRef Nakagawachi T, Soejima H, Urano T, Zhao W, Higashimoto K, Satoh Y, et al. Silencing effect of CpG island hypermethylation and histone modifications on O6-methylguanine-DNA methyltransferase (MGMT) gene expression in human cancer. Oncogene. 2003;22(55):8835–44.PubMedCrossRef
27.
go back to reference Mellai M, Monzeglio O, Piazzi A, Caldera V, Annovazzi L, Cassoni P, et al. MGMT promoter hypermethylation and its associations with genetic alterations in a series of 350 brain tumors. J Neurooncol. 2012;107(3):617–31.PubMedCrossRef Mellai M, Monzeglio O, Piazzi A, Caldera V, Annovazzi L, Cassoni P, et al. MGMT promoter hypermethylation and its associations with genetic alterations in a series of 350 brain tumors. J Neurooncol. 2012;107(3):617–31.PubMedCrossRef
28.
go back to reference Esteller M, Garcia-Foncillas J, Andion E, Goodman SN, Hidalgo OF, Vanaclocha V, et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. New England J Med. 2000;343(19):1350–4.CrossRef Esteller M, Garcia-Foncillas J, Andion E, Goodman SN, Hidalgo OF, Vanaclocha V, et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. New England J Med. 2000;343(19):1350–4.CrossRef
29.
go back to reference Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352(10):997–1003.PubMedCrossRef Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352(10):997–1003.PubMedCrossRef
30.
go back to reference Dolan ME, Mitchell RB, Mummert C, Moschel RC, Pegg AE. Effect of O6-benzylguanine analogues on sensitivity of human tumor cells to the cytotoxic effects of alkylating agents. Cancer Res. 1991;51(13):3367–72.PubMed Dolan ME, Mitchell RB, Mummert C, Moschel RC, Pegg AE. Effect of O6-benzylguanine analogues on sensitivity of human tumor cells to the cytotoxic effects of alkylating agents. Cancer Res. 1991;51(13):3367–72.PubMed
31.
go back to reference Bobola MS, Tseng SH, Blank A, Berger MS, Silber JR. Role of O6-methylguanine-DNA methyltransferase in resistance of human brain tumor cell lines to the clinically relevant methylating agents temozolomide and streptozotocin. Clin Cancer Res. 1996;2(4):735–41.PubMed Bobola MS, Tseng SH, Blank A, Berger MS, Silber JR. Role of O6-methylguanine-DNA methyltransferase in resistance of human brain tumor cell lines to the clinically relevant methylating agents temozolomide and streptozotocin. Clin Cancer Res. 1996;2(4):735–41.PubMed
32.
go back to reference Taspinar M, Ilgaz S, Ozdemir M, Ozkan T, Oztuna D, Canpinar H, et al. Effect of lomeguatrib-temozolomide combination on MGMT promoter methylation and expression in primary glioblastoma tumor cells. Tumour Biol. 2013;34(3):1935–47.PubMedCrossRef Taspinar M, Ilgaz S, Ozdemir M, Ozkan T, Oztuna D, Canpinar H, et al. Effect of lomeguatrib-temozolomide combination on MGMT promoter methylation and expression in primary glioblastoma tumor cells. Tumour Biol. 2013;34(3):1935–47.PubMedCrossRef
33.
go back to reference Quinn JA, Jiang SX, Reardon DA, Desjardins A, Vredenburgh JJ, Rich JN, et al. Phase II trial of temozolomide plus o6-benzylguanine in adults with recurrent, temozolomide-resistant malignant glioma. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2009;27(8):1262–7.CrossRef Quinn JA, Jiang SX, Reardon DA, Desjardins A, Vredenburgh JJ, Rich JN, et al. Phase II trial of temozolomide plus o6-benzylguanine in adults with recurrent, temozolomide-resistant malignant glioma. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2009;27(8):1262–7.CrossRef
34.
go back to reference Quinn JA, Pluda J, Dolan ME, Delaney S, Kaplan R, Rich JN, et al. Phase II trial of carmustine plus O(6)-benzylguanine for patients with nitrosourea-resistant recurrent or progressive malignant glioma. J Clin Oncol. 2002;20(9):2277–83.PubMedCrossRef Quinn JA, Pluda J, Dolan ME, Delaney S, Kaplan R, Rich JN, et al. Phase II trial of carmustine plus O(6)-benzylguanine for patients with nitrosourea-resistant recurrent or progressive malignant glioma. J Clin Oncol. 2002;20(9):2277–83.PubMedCrossRef
35.
go back to reference Ranson M, Hersey P, Thompson D, Beith J, McArthur GA, Haydon A, et al. Randomized trial of the combination of lomeguatrib and temozolomide compared with temozolomide alone in chemotherapy naive patients with metastatic cutaneous melanoma. Journal of Clinical Oncology. 2007;25(18):2540–5.PubMedCrossRef Ranson M, Hersey P, Thompson D, Beith J, McArthur GA, Haydon A, et al. Randomized trial of the combination of lomeguatrib and temozolomide compared with temozolomide alone in chemotherapy naive patients with metastatic cutaneous melanoma. Journal of Clinical Oncology. 2007;25(18):2540–5.PubMedCrossRef
36.
go back to reference Kaina B, Margison GP, Christmann M. Targeting O6-methylguanine-DNA methyltransferase with specific inhibitors as a strategy in cancer therapy. Cell Mol Life Sci. 2010;67(21):3663–81.PubMedCrossRef Kaina B, Margison GP, Christmann M. Targeting O6-methylguanine-DNA methyltransferase with specific inhibitors as a strategy in cancer therapy. Cell Mol Life Sci. 2010;67(21):3663–81.PubMedCrossRef
37.
go back to reference Sharpe MA, Raghavan S, Baskin DS. PAM-OBG: a monoamine oxidase B specific prodrug that inhibits MGMT and generates DNA interstrand crosslinks, potentiating temozolomide and chemoradiation therapy in intracranial glioblastoma. Oncotarget. 2018;9(35):23923–43.PubMedPubMedCentralCrossRef Sharpe MA, Raghavan S, Baskin DS. PAM-OBG: a monoamine oxidase B specific prodrug that inhibits MGMT and generates DNA interstrand crosslinks, potentiating temozolomide and chemoradiation therapy in intracranial glioblastoma. Oncotarget. 2018;9(35):23923–43.PubMedPubMedCentralCrossRef
38.
go back to reference Parker NR, Hudson AL, Khong P, Parkinson JF, Dwight T, Ikin RJ, et al. Intratumoral heterogeneity identified at the epigenetic, genetic and transcriptional level in glioblastoma. Scientific Reports. 2016;6(1):22477.PubMedPubMedCentralCrossRef Parker NR, Hudson AL, Khong P, Parkinson JF, Dwight T, Ikin RJ, et al. Intratumoral heterogeneity identified at the epigenetic, genetic and transcriptional level in glioblastoma. Scientific Reports. 2016;6(1):22477.PubMedPubMedCentralCrossRef
39.
go back to reference Lassman A, Dimino C, Mansukhani M, Murty V, Ansell PJ, Bain E, et al. ACTR-68. Concordance of EGFR and MGMT analyses between local and central laboratories: implications for clinical trial design and precision medicine for depatuxizumab-mafodotin (ABT-414) in glioblastoma (GBM). Neuro Oncol. 2017;19(Suppl 6):vi15-vi.CrossRef Lassman A, Dimino C, Mansukhani M, Murty V, Ansell PJ, Bain E, et al. ACTR-68. Concordance of EGFR and MGMT analyses between local and central laboratories: implications for clinical trial design and precision medicine for depatuxizumab-mafodotin (ABT-414) in glioblastoma (GBM). Neuro Oncol. 2017;19(Suppl 6):vi15-vi.CrossRef
40.
go back to reference Schaff LR, Yan D, Thyparambil S, Tian Y, Cecchi F, Rosenblum M, et al. Characterization of MGMT and EGFR protein expression in glioblastoma and association with survival. Journal of Neuro-Oncology. 2020;146(1):163–70.PubMedCrossRef Schaff LR, Yan D, Thyparambil S, Tian Y, Cecchi F, Rosenblum M, et al. Characterization of MGMT and EGFR protein expression in glioblastoma and association with survival. Journal of Neuro-Oncology. 2020;146(1):163–70.PubMedCrossRef
41.
go back to reference Bady P, Sciuscio D, Diserens AC, Bloch J, van den Bent MJ, Marosi C, et al. MGMT methylation analysis of glioblastoma on the Infinium methylation BeadChip identifies two distinct CpG regions associated with gene silencing and outcome, yielding a prediction model for comparisons across datasets, tumor grades, and CIMP-status. Acta Neuropathol. 2012;124(4):547–60.PubMedPubMedCentralCrossRef Bady P, Sciuscio D, Diserens AC, Bloch J, van den Bent MJ, Marosi C, et al. MGMT methylation analysis of glioblastoma on the Infinium methylation BeadChip identifies two distinct CpG regions associated with gene silencing and outcome, yielding a prediction model for comparisons across datasets, tumor grades, and CIMP-status. Acta Neuropathol. 2012;124(4):547–60.PubMedPubMedCentralCrossRef
42.
go back to reference van den Bent MJ, Gravendeel LA, Gorlia T, Kros JM, Lapre L, Wesseling P, et al. A hypermethylated phenotype is a better predictor of survival than MGMT methylation in anaplastic oligodendroglial brain tumors: a report from EORTC study 26951. Clin Cancer Res. 2011;17(22):7148–55.PubMedCrossRef van den Bent MJ, Gravendeel LA, Gorlia T, Kros JM, Lapre L, Wesseling P, et al. A hypermethylated phenotype is a better predictor of survival than MGMT methylation in anaplastic oligodendroglial brain tumors: a report from EORTC study 26951. Clin Cancer Res. 2011;17(22):7148–55.PubMedCrossRef
43.
go back to reference Nikolova T, Roos WP, Krämer OH, Strik HM, Kaina B. Chloroethylating nitrosoureas in cancer therapy: DNA damage, repair and cell death signaling. Biochim Biophys Acta Rev Cancer. 2017;1868(1):29–39.PubMedCrossRef Nikolova T, Roos WP, Krämer OH, Strik HM, Kaina B. Chloroethylating nitrosoureas in cancer therapy: DNA damage, repair and cell death signaling. Biochim Biophys Acta Rev Cancer. 2017;1868(1):29–39.PubMedCrossRef
44••.
go back to reference Herrlinger U, Tzaridis T, Mack F, Steinbach JP, Schlegel U, Sabel M, et al. Lomustine-temozolomide combination therapy versus standard temozolomide therapy in patients with newly diagnosed glioblastoma with methylated MGMT promoter (CeTeG/NOA-09): a randomised, open-label, phase 3 trial. Lancet. 2019;393(10172):678–88 A phase III trial (CeTeG/NOA-09) in newly-diagnosed MGMT-methylated glioblastoma demonstrated a survival benefit using combination therapy with lomustine and temozolomide when compared to temozolomide alone.PubMedCrossRef Herrlinger U, Tzaridis T, Mack F, Steinbach JP, Schlegel U, Sabel M, et al. Lomustine-temozolomide combination therapy versus standard temozolomide therapy in patients with newly diagnosed glioblastoma with methylated MGMT promoter (CeTeG/NOA-09): a randomised, open-label, phase 3 trial. Lancet. 2019;393(10172):678–88 A phase III trial (CeTeG/NOA-09) in newly-diagnosed MGMT-methylated glioblastoma demonstrated a survival benefit using combination therapy with lomustine and temozolomide when compared to temozolomide alone.PubMedCrossRef
45.
46.
go back to reference Scully R, Panday A, Elango R, Willis NA. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol. 2019;20(11):698–714.PubMedPubMedCentralCrossRef Scully R, Panday A, Elango R, Willis NA. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol. 2019;20(11):698–714.PubMedPubMedCentralCrossRef
47.
48.
go back to reference Li X, Heyer W-D. Homologous recombination in DNA repair and DNA damage tolerance. Cell Research. 2008;18(1):99–113.PubMedCrossRef Li X, Heyer W-D. Homologous recombination in DNA repair and DNA damage tolerance. Cell Research. 2008;18(1):99–113.PubMedCrossRef
49.
go back to reference Murai J, Huang SY, Das BB, Renaud A, Zhang Y, Doroshow JH, et al. Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res. 2012;72(21):5588–99.PubMedPubMedCentralCrossRef Murai J, Huang SY, Das BB, Renaud A, Zhang Y, Doroshow JH, et al. Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res. 2012;72(21):5588–99.PubMedPubMedCentralCrossRef
50.
go back to reference Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA. DNA repair pathways as targets for cancer therapy. Nat Rev Cancer. 2008;8(3):193–204.PubMedCrossRef Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA. DNA repair pathways as targets for cancer therapy. Nat Rev Cancer. 2008;8(3):193–204.PubMedCrossRef
51.
go back to reference Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 2005;434(7035):913–7.PubMedCrossRef Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 2005;434(7035):913–7.PubMedCrossRef
52.
go back to reference Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434(7035):917–21.PubMedCrossRef Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434(7035):917–21.PubMedCrossRef
53.
go back to reference Lesueur P, Chevalier F, Austry J-B, Waissi W, Burckel H, Noël G, et al. Poly-(ADP-ribose)-polymerase inhibitors as radiosensitizers: a systematic review of pre-clinical and clinical human studies. Oncotarget. 2017;8(40):69105–24.PubMedPubMedCentralCrossRef Lesueur P, Chevalier F, Austry J-B, Waissi W, Burckel H, Noël G, et al. Poly-(ADP-ribose)-polymerase inhibitors as radiosensitizers: a systematic review of pre-clinical and clinical human studies. Oncotarget. 2017;8(40):69105–24.PubMedPubMedCentralCrossRef
54.
go back to reference Gupta SK, Smith EJ, Mladek AC, Tian S, Decker PA, Kizilbash SH, et al. PARP Inhibitors for sensitization of alkylation chemotherapy in glioblastoma: impact of blood-brain barrier and molecular heterogeneity. Front Oncol. 2019;8:670.PubMedPubMedCentralCrossRef Gupta SK, Smith EJ, Mladek AC, Tian S, Decker PA, Kizilbash SH, et al. PARP Inhibitors for sensitization of alkylation chemotherapy in glioblastoma: impact of blood-brain barrier and molecular heterogeneity. Front Oncol. 2019;8:670.PubMedPubMedCentralCrossRef
55.
go back to reference Dungey FA, Löser DA, Chalmers AJ. Replication-dependent radiosensitization of human glioma cells by inhibition of poly(ADP-Ribose) polymerase: mechanisms and therapeutic potential. Int J Radiat Oncol Biol Phys. 2008;72(4):1188–97.PubMedCrossRef Dungey FA, Löser DA, Chalmers AJ. Replication-dependent radiosensitization of human glioma cells by inhibition of poly(ADP-Ribose) polymerase: mechanisms and therapeutic potential. Int J Radiat Oncol Biol Phys. 2008;72(4):1188–97.PubMedCrossRef
56.
go back to reference Kleinberg L, Supko JG, Mikkelsen T, Blakeley JON, Stevens G, Ye X, et al. Phase I adult brain tumor consortium (ABTC) trial of ABT-888 (veliparib), temozolomide (TMZ), and radiotherapy (RT) for newly diagnosed glioblastoma multiforme (GBM) including pharmacokinetic (PK) data. J Clin Oncol. 2013;31(15_suppl):2065.CrossRef Kleinberg L, Supko JG, Mikkelsen T, Blakeley JON, Stevens G, Ye X, et al. Phase I adult brain tumor consortium (ABTC) trial of ABT-888 (veliparib), temozolomide (TMZ), and radiotherapy (RT) for newly diagnosed glioblastoma multiforme (GBM) including pharmacokinetic (PK) data. J Clin Oncol. 2013;31(15_suppl):2065.CrossRef
57.
go back to reference Piotrowski A, Puduvalli V, Wen P, Campian J, Colman H, Pearlman M, et al. ACTR-39. Pamiparib in combination with radiation therapy (RT) and/or temozolomide (TMZ) in patients with newly diagnosed or recurrent/refractory (R/R) glioblastoma (GBM); phase 1B/2 study update. Neuro Oncol. 2019;21(Supplement_6):vi21–vi2.PubMedCentralCrossRef Piotrowski A, Puduvalli V, Wen P, Campian J, Colman H, Pearlman M, et al. ACTR-39. Pamiparib in combination with radiation therapy (RT) and/or temozolomide (TMZ) in patients with newly diagnosed or recurrent/refractory (R/R) glioblastoma (GBM); phase 1B/2 study update. Neuro Oncol. 2019;21(Supplement_6):vi21–vi2.PubMedCentralCrossRef
58.
go back to reference Fulton B, Short SC, James A, Nowicki S, McBain C, Jefferies S, et al. PARADIGM-2: Two parallel phase I studies of olaparib and radiotherapy or olaparib and radiotherapy plus temozolomide in patients with newly diagnosed glioblastoma, with treatment stratified by MGMT status. Clin Transl Radiat Oncol. 2017;8:12–6.PubMedPubMedCentralCrossRef Fulton B, Short SC, James A, Nowicki S, McBain C, Jefferies S, et al. PARADIGM-2: Two parallel phase I studies of olaparib and radiotherapy or olaparib and radiotherapy plus temozolomide in patients with newly diagnosed glioblastoma, with treatment stratified by MGMT status. Clin Transl Radiat Oncol. 2017;8:12–6.PubMedPubMedCentralCrossRef
59.
go back to reference Robins HI, Zhang P, Gilbert MR, Chakravarti A, de Groot JF, Grimm SA, et al. A randomized phase I/II study of ABT-888 in combination with temozolomide in recurrent temozolomide resistant glioblastoma: an NRG oncology RTOG group study. Journal of neuro-oncology. 2016;126(2):309–16.PubMedCrossRef Robins HI, Zhang P, Gilbert MR, Chakravarti A, de Groot JF, Grimm SA, et al. A randomized phase I/II study of ABT-888 in combination with temozolomide in recurrent temozolomide resistant glioblastoma: an NRG oncology RTOG group study. Journal of neuro-oncology. 2016;126(2):309–16.PubMedCrossRef
60.
go back to reference Gupta SK, Kizilbash SH, Carlson BL, Mladek AC, Boakye-Agyeman F, Bakken KK, et al. Delineation of MGMT hypermethylation as a biomarker for veliparib-mediated temozolomide-sensitizing therapy of glioblastoma. J Natl Cancer Inst. 2016;108(5). Gupta SK, Kizilbash SH, Carlson BL, Mladek AC, Boakye-Agyeman F, Bakken KK, et al. Delineation of MGMT hypermethylation as a biomarker for veliparib-mediated temozolomide-sensitizing therapy of glioblastoma. J Natl Cancer Inst. 2016;108(5).
61.
go back to reference Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. New England Journal of Medicine. 2009;361(2):123–34.CrossRefPubMed Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. New England Journal of Medicine. 2009;361(2):123–34.CrossRefPubMed
62•.
go back to reference Hanna C, Kurian KM, Williams K, Watts C, Jackson A, Carruthers R, et al. Pharmacokinetics, safety and tolerability of olaparib and temozolomide for recurrent glioblastoma: results of the phase I OPARATIC trial. Neuro Oncol. 2020; Established a maximum tolerated dose for olaparib in combination with temozolomide in glioblastoma patients. Demonstrated olaparib penetration to tumor core and margins suggesting CNS penetrance. Hanna C, Kurian KM, Williams K, Watts C, Jackson A, Carruthers R, et al. Pharmacokinetics, safety and tolerability of olaparib and temozolomide for recurrent glioblastoma: results of the phase I OPARATIC trial. Neuro Oncol. 2020; Established a maximum tolerated dose for olaparib in combination with temozolomide in glioblastoma patients. Demonstrated olaparib penetration to tumor core and margins suggesting CNS penetrance.
63.
go back to reference Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, et al. IDH1 and IDH2 mutations in gliomas. New England Journal of Medicine. 2009;360(8):765–73.CrossRefPubMed Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, et al. IDH1 and IDH2 mutations in gliomas. New England Journal of Medicine. 2009;360(8):765–73.CrossRefPubMed
64.
go back to reference Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462(7274):739–44.PubMedPubMedCentralCrossRef Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462(7274):739–44.PubMedPubMedCentralCrossRef
65.
go back to reference Turcan S, Makarov V, Taranda J, Wang Y, Fabius AWM, Wu W, et al. Mutant-IDH1-dependent chromatin state reprogramming, reversibility, and persistence. Nat Genet. 2018;50(1):62–72.PubMedCrossRef Turcan S, Makarov V, Taranda J, Wang Y, Fabius AWM, Wu W, et al. Mutant-IDH1-dependent chromatin state reprogramming, reversibility, and persistence. Nat Genet. 2018;50(1):62–72.PubMedCrossRef
66.
go back to reference Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP, et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell. 2010;17(5):510–22.PubMedPubMedCentralCrossRef Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP, et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell. 2010;17(5):510–22.PubMedPubMedCentralCrossRef
67••.
go back to reference Sulkowski PL, Corso CD, Robinson ND, Scanlon SE, Purshouse KR, Bai H, et al. 2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity. Sci Transl Med. 2017;9(375) IDH mutations in glioma cell lines result in defects in HR and a “BRCA” phenotype that has marked sensitivity to PARP inhibition compared to wild-type cell lines. Sulkowski PL, Corso CD, Robinson ND, Scanlon SE, Purshouse KR, Bai H, et al. 2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity. Sci Transl Med. 2017;9(375) IDH mutations in glioma cell lines result in defects in HR and a “BRCA” phenotype that has marked sensitivity to PARP inhibition compared to wild-type cell lines.
68.
go back to reference Wang P, Wu J, Ma S, Zhang L, Yao J, Hoadley KA, et al. Oncometabolite D-2-hydroxyglutarate inhibits ALKBH DNA repair enzymes and sensitizes IDH mutant cells to alkylating agents. Cell Rep. 2015;13(11):2353–61.PubMedPubMedCentralCrossRef Wang P, Wu J, Ma S, Zhang L, Yao J, Hoadley KA, et al. Oncometabolite D-2-hydroxyglutarate inhibits ALKBH DNA repair enzymes and sensitizes IDH mutant cells to alkylating agents. Cell Rep. 2015;13(11):2353–61.PubMedPubMedCentralCrossRef
69•.
go back to reference Lu Y, Kwintkiewicz J, Liu Y, Tech K, Frady LN, Su YT, et al. Chemosensitivity of IDH1-mutated gliomas due to an impairment in PARP1-mediated DNA repair. Cancer Res. 2017;77(7):1709–18 IDH-mutant glioma cell lines have impaired PARP-dependent repair mechanisms, and the effects of PARP inhibition combined with temozolomide demonstrated greater chemosensitivity in IDH-mutant cells.PubMedPubMedCentralCrossRef Lu Y, Kwintkiewicz J, Liu Y, Tech K, Frady LN, Su YT, et al. Chemosensitivity of IDH1-mutated gliomas due to an impairment in PARP1-mediated DNA repair. Cancer Res. 2017;77(7):1709–18 IDH-mutant glioma cell lines have impaired PARP-dependent repair mechanisms, and the effects of PARP inhibition combined with temozolomide demonstrated greater chemosensitivity in IDH-mutant cells.PubMedPubMedCentralCrossRef
70.
go back to reference Wang Y, Wild AT, Turcan S, Wu WH, Sigel C, Klimstra DS, et al. Targeting therapeutic vulnerabilities with PARP inhibition and radiation in IDH-mutant gliomas and cholangiocarcinomas. Sci Adv. 2020;6(17):eaaz3221.PubMedPubMedCentralCrossRef Wang Y, Wild AT, Turcan S, Wu WH, Sigel C, Klimstra DS, et al. Targeting therapeutic vulnerabilities with PARP inhibition and radiation in IDH-mutant gliomas and cholangiocarcinomas. Sci Adv. 2020;6(17):eaaz3221.PubMedPubMedCentralCrossRef
71.
go back to reference King HO, Brend T, Payne HL, Wright A, Ward TA, Patel K, et al. RAD51 Is a selective DNA repair target to radiosensitize glioma stem cells. Stem Cell Reports. 2017;8(1):125–39.PubMedPubMedCentralCrossRef King HO, Brend T, Payne HL, Wright A, Ward TA, Patel K, et al. RAD51 Is a selective DNA repair target to radiosensitize glioma stem cells. Stem Cell Reports. 2017;8(1):125–39.PubMedPubMedCentralCrossRef
72.
go back to reference Berte N, Piée-Staffa A, Piecha N, Wang M, Borgmann K, Kaina B, et al. Targeting homologous recombination by pharmacological inhibitors enhances the killing response of glioblastoma cells treated with alkylating drugs. Molecular Cancer Therapeutics. 2016;15(11):2665–78.PubMedCrossRef Berte N, Piée-Staffa A, Piecha N, Wang M, Borgmann K, Kaina B, et al. Targeting homologous recombination by pharmacological inhibitors enhances the killing response of glioblastoma cells treated with alkylating drugs. Molecular Cancer Therapeutics. 2016;15(11):2665–78.PubMedCrossRef
73.
go back to reference Liu X, Yao W, Newton RC, Scherle PA. Targeting the c-MET signaling pathway for cancer therapy. Expert Opin Investig Drugs. 2008;17(7):997–1011.PubMedCrossRef Liu X, Yao W, Newton RC, Scherle PA. Targeting the c-MET signaling pathway for cancer therapy. Expert Opin Investig Drugs. 2008;17(7):997–1011.PubMedCrossRef
74.
go back to reference Tolcher A, Berk G, Fine G, Choy G, Bearss D, Redkar S, et al. MP470, a potent oral Rad51 suppressor is safe and tolerable in first-in-human study. Cancer Research. 2008;68(9 Supplement):4083. Tolcher A, Berk G, Fine G, Choy G, Bearss D, Redkar S, et al. MP470, a potent oral Rad51 suppressor is safe and tolerable in first-in-human study. Cancer Research. 2008;68(9 Supplement):4083.
75.
go back to reference Welsh JW, Mahadevan D, Ellsworth R, Cooke L, Bearss D, Stea B. The c-Met receptor tyrosine kinase inhibitor MP470 radiosensitizes glioblastoma cells. Radiation Oncology. 2009;4(1):69.PubMedPubMedCentralCrossRef Welsh JW, Mahadevan D, Ellsworth R, Cooke L, Bearss D, Stea B. The c-Met receptor tyrosine kinase inhibitor MP470 radiosensitizes glioblastoma cells. Radiation Oncology. 2009;4(1):69.PubMedPubMedCentralCrossRef
76.
go back to reference Byers LA, Horn L, Ghandi J, Kloecker G, Owonikoko T, Waqar SN, et al. A phase 2, open-label, multi-center study of amuvatinib in combination with platinum etoposide chemotherapy in platinum-refractory small cell lung cancer patients. Oncotarget. 2017;8(46):81441–54.PubMedPubMedCentralCrossRef Byers LA, Horn L, Ghandi J, Kloecker G, Owonikoko T, Waqar SN, et al. A phase 2, open-label, multi-center study of amuvatinib in combination with platinum etoposide chemotherapy in platinum-refractory small cell lung cancer patients. Oncotarget. 2017;8(46):81441–54.PubMedPubMedCentralCrossRef
77.
go back to reference Krokan HE, Bjørås M. Base excision repair. Cold Spring Harbor perspectives in biology. 2013;5(4):a012583-a.CrossRef Krokan HE, Bjørås M. Base excision repair. Cold Spring Harbor perspectives in biology. 2013;5(4):a012583-a.CrossRef
78.
go back to reference Schärer OD. Nucleotide excision repair in eukaryotes. Cold Spring Harbor perspectives in biology. 2013;5(10):a012609-a.CrossRef Schärer OD. Nucleotide excision repair in eukaryotes. Cold Spring Harbor perspectives in biology. 2013;5(10):a012609-a.CrossRef
80.
go back to reference Hanawalt PC, Spivak G. Transcription-coupled DNA repair: two decades of progress and surprises. Nature Reviews Molecular Cell Biology. 2008;9(12):958–70.PubMedCrossRef Hanawalt PC, Spivak G. Transcription-coupled DNA repair: two decades of progress and surprises. Nature Reviews Molecular Cell Biology. 2008;9(12):958–70.PubMedCrossRef
81.
go back to reference Santamaría Nuñez G, Robles CMG, Giraudon C, Martínez-Leal JF, Compe E, Coin F, et al. Lurbinectedin specifically triggers the degradation of phosphorylated RNA polymerase II and the formation of DNA breaks in cancer cells. Molecular Cancer Therapeutics. 2016;15(10):2399–412.PubMedCrossRef Santamaría Nuñez G, Robles CMG, Giraudon C, Martínez-Leal JF, Compe E, Coin F, et al. Lurbinectedin specifically triggers the degradation of phosphorylated RNA polymerase II and the formation of DNA breaks in cancer cells. Molecular Cancer Therapeutics. 2016;15(10):2399–412.PubMedCrossRef
82.
go back to reference Ponce Aix S, Cote GM, Falcon Gonzalez A, Sepulveda JM, Jimenez Aguilar E, Sanchez-Simon I, et al. Lurbinectedin (LUR) in combination with Irinotecan (IRI) in patients (pts) with advanced solid tumors: updated results from a phase Ib-II trial. Journal of Clinical Oncology. 2020;38(15_suppl):3514.CrossRef Ponce Aix S, Cote GM, Falcon Gonzalez A, Sepulveda JM, Jimenez Aguilar E, Sanchez-Simon I, et al. Lurbinectedin (LUR) in combination with Irinotecan (IRI) in patients (pts) with advanced solid tumors: updated results from a phase Ib-II trial. Journal of Clinical Oncology. 2020;38(15_suppl):3514.CrossRef
84.
go back to reference Zhai B, Steinø A, Bacha J, Brown D, Daugaard M. Dianhydrogalactitol induces replication-dependent DNA damage in tumor cells preferentially resolved by homologous recombination. Cell death & disease. 2018;9(10):1016.CrossRef Zhai B, Steinø A, Bacha J, Brown D, Daugaard M. Dianhydrogalactitol induces replication-dependent DNA damage in tumor cells preferentially resolved by homologous recombination. Cell death & disease. 2018;9(10):1016.CrossRef
85.
go back to reference Peng C, Qi XM, Miao LL, Ren J. 1,2:5,6-Dianhydrogalactitol inhibits human glioma cell growth in vivo and in vitro by arresting the cell cycle at G(2)/M phase. Acta Pharmacol Sin. 2017;38(4):561–70.PubMedPubMedCentralCrossRef Peng C, Qi XM, Miao LL, Ren J. 1,2:5,6-Dianhydrogalactitol inhibits human glioma cell growth in vivo and in vitro by arresting the cell cycle at G(2)/M phase. Acta Pharmacol Sin. 2017;38(4):561–70.PubMedPubMedCentralCrossRef
86.
go back to reference Guo C, Yang Q, Li J, Wu S, Deng M, Du X, et al. Phase 2 clinical trial of VAL-083 as first-line treatment in newly-diagnosed MGMT-unmethylated glioblastoma multiforme (GBM): halfway report. Glioma. 2019;2:167.CrossRef Guo C, Yang Q, Li J, Wu S, Deng M, Du X, et al. Phase 2 clinical trial of VAL-083 as first-line treatment in newly-diagnosed MGMT-unmethylated glioblastoma multiforme (GBM): halfway report. Glioma. 2019;2:167.CrossRef
87.
go back to reference Shih KC, Patel MR, Butowski NA, Falchook GS, Kizilbash SH, Jones SF, et al. Dianhydrogalactitol in bevacizumab-refractory GBM: further analysis of a phase 1-2 trial. Journal of Clinical Oncology. 2018;36(15_suppl):2061.CrossRef Shih KC, Patel MR, Butowski NA, Falchook GS, Kizilbash SH, Jones SF, et al. Dianhydrogalactitol in bevacizumab-refractory GBM: further analysis of a phase 1-2 trial. Journal of Clinical Oncology. 2018;36(15_suppl):2061.CrossRef
88.
go back to reference O’Brien B, de Groot J, Kamiya-Matsuoka C, Weathers S-P, Bacha J, Brown D, et al. ACTR-27. Phase 2 study of dianhydrogalactitol (VAL-083) in patients with MGMT-unmethylated, bevacizumab-naïve recurrent glioblastoma. Neuro Oncol. 2018;20(Suppl 6):vi17-vi.CrossRef O’Brien B, de Groot J, Kamiya-Matsuoka C, Weathers S-P, Bacha J, Brown D, et al. ACTR-27. Phase 2 study of dianhydrogalactitol (VAL-083) in patients with MGMT-unmethylated, bevacizumab-naïve recurrent glioblastoma. Neuro Oncol. 2018;20(Suppl 6):vi17-vi.CrossRef
89.
90.
go back to reference Stark AM, Doukas A, Hugo HH, Mehdorn HM. The expression of mismatch repair proteins MLH1, MSH2 and MSH6 correlates with the Ki67 proliferation index and survival in patients with recurrent glioblastoma. Neurol Res. 2010;32(8):816–20.PubMedCrossRef Stark AM, Doukas A, Hugo HH, Mehdorn HM. The expression of mismatch repair proteins MLH1, MSH2 and MSH6 correlates with the Ki67 proliferation index and survival in patients with recurrent glioblastoma. Neurol Res. 2010;32(8):816–20.PubMedCrossRef
91.
go back to reference Felsberg J, Thon N, Eigenbrod S, Hentschel B, Sabel MC, Westphal M, et al. Promoter methylation and expression of MGMT and the DNA mismatch repair genes MLH1, MSH2, MSH6 and PMS2 in paired primary and recurrent glioblastomas. Int J Cancer. 2011;129(3):659–70.PubMedCrossRef Felsberg J, Thon N, Eigenbrod S, Hentschel B, Sabel MC, Westphal M, et al. Promoter methylation and expression of MGMT and the DNA mismatch repair genes MLH1, MSH2, MSH6 and PMS2 in paired primary and recurrent glioblastomas. Int J Cancer. 2011;129(3):659–70.PubMedCrossRef
92.
go back to reference Yip S, Miao J, Cahill DP, Iafrate AJ, Aldape K, Nutt CL, et al. MSH6 mutations arise in glioblastomas during temozolomide therapy and mediate temozolomide resistance. Clinical cancer research : an official journal of the American Association for Cancer Research. 2009;15(14):4622–9.CrossRef Yip S, Miao J, Cahill DP, Iafrate AJ, Aldape K, Nutt CL, et al. MSH6 mutations arise in glioblastomas during temozolomide therapy and mediate temozolomide resistance. Clinical cancer research : an official journal of the American Association for Cancer Research. 2009;15(14):4622–9.CrossRef
93.
go back to reference Cahill DP, Levine KK, Betensky RA, Codd PJ, Romany CA, Reavie LB, et al. Loss of the mismatch repair protein MSH6 in human glioblastomas is associated with tumor progression during temozolomide treatment. Clinical cancer research : an official journal of the American Association for Cancer Research. 2007;13(7):2038–45.CrossRef Cahill DP, Levine KK, Betensky RA, Codd PJ, Romany CA, Reavie LB, et al. Loss of the mismatch repair protein MSH6 in human glioblastomas is associated with tumor progression during temozolomide treatment. Clinical cancer research : an official journal of the American Association for Cancer Research. 2007;13(7):2038–45.CrossRef
94.
go back to reference Cancer Genome Atlas Research N. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061–8.CrossRef Cancer Genome Atlas Research N. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061–8.CrossRef
95.
go back to reference Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20.PubMedPubMedCentralCrossRef Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20.PubMedPubMedCentralCrossRef
96.
go back to reference Bouffet E, Larouche V, Campbell BB, Merico D, de Borja R, Aronson M, et al. Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. J Clin Oncol. 2016;34(19):2206–11.PubMedCrossRef Bouffet E, Larouche V, Campbell BB, Merico D, de Borja R, Aronson M, et al. Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. J Clin Oncol. 2016;34(19):2206–11.PubMedCrossRef
Metadata
Title
DNA Repair Mechanisms and Therapeutic Targets in Glioma
Authors
Kevin B. Elmore
Lauren R. Schaff
Publication date
01-08-2021
Publisher
Springer US
Published in
Current Oncology Reports / Issue 8/2021
Print ISSN: 1523-3790
Electronic ISSN: 1534-6269
DOI
https://doi.org/10.1007/s11912-021-01077-z

Other articles of this Issue 8/2021

Current Oncology Reports 8/2021 Go to the issue

Gynecologic Cancers (J Brown and RW Naumann, Section Editors)

The Microbiome and Gynecologic Cancer: Current Evidence and Future Opportunities

Gynecologic Cancers (J Brown and RW Naumann, Section Editors)

Progress in Gynecologic Cancers with Antibody Drug Conjugates

Gynecologic Cancers (J Brown and RW Naumann, Section Editors)

Frontline Maintenance Treatment for Ovarian Cancer

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine