Skip to main content
Top
Published in: Current Neurology and Neuroscience Reports 4/2021

01-04-2021 | Spastic Paraplegia | Genetics (E.M. Valente, Section Editor)

Challenges and Controversies in the Genetic Diagnosis of Hereditary Spastic Paraplegia

Authors: Lydia Saputra, Kishore Raj Kumar

Published in: Current Neurology and Neuroscience Reports | Issue 4/2021

Login to get access

Abstract

Purpose of Review

The hereditary spastic paraplegias (HSPs) are a group of disorders characterised by progressive lower limb weakness and spasticity. We address the challenges and controversies involved in the genetic diagnosis of HSP.

Recent Findings

There is a large and rapidly expanding list of genes implicated in HSP, making it difficult to keep gene testing panels updated. There is also a high degree of phenotypic overlap between HSP and other disorders, leading to problems in choosing the right panel to analyse. We discuss genetic testing strategies for overcoming these diagnostic hurdles, including the use of targeted sequencing gene panels, whole-exome sequencing and whole-genome sequencing. Personalised treatments for HSP are on the horizon, and a genetic diagnosis may hold the key to access these treatments.

Summary

Developing strategies to overcome the challenges and controversies in HSP may hold the key to a rapid and accurate genetic diagnosis.

Literature
    1. Kumar KR, Blair NF, Sue CM. An update on the hereditary spastic paraplegias: new genes and new disease models. Mov Disord Clin Pract. 2015;2(3):213–23. https://​doi.​org/​10.​1002/​mdc3.​12184.View ArticlePubMedPubMed Central
    2. Fink JK, Heiman-Patterson T, Bird T, Cambi F, Dube MP, Figlewicz DA, et al. Hereditary spastic paraplegia: advances in genetic research. Hereditary Spastic Paraplegia Working group. Neurology. 1996;46(6):1507–14. https://​doi.​org/​10.​1212/​wnl.​46.​6.​1507.View ArticlePubMed
    3. Finsterer J, Loscher W, Quasthoff S, Wanschitz J, Auer-Grumbach M, Stevanin G. Hereditary spastic paraplegias with autosomal dominant, recessive, X-linked, or maternal trait of inheritance. J Neurol Sci. 2012;318(1-2):1–18. https://​doi.​org/​10.​1016/​j.​jns.​2012.​03.​025.View ArticlePubMed
    4. Marras C, Lang A, van de Warrenburg BP, Sue CM, Tabrizi SJ, Bertram L, et al. Nomenclature of genetic movement disorders: recommendations of the international Parkinson and movement disorder society task force. Mov Disord. 2016;31(4):436–57. https://​doi.​org/​10.​1002/​mds.​26527.View ArticlePubMed
    5. Ruano L, Melo C, Silva MC, Coutinho P. The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology. 2014;42(3):174–83. https://​doi.​org/​10.​1159/​000358801.View ArticlePubMed
    6. McKusick VA. Mendelian inheritance in man and its online version, OMIM. Am J Hum Genet. 2007;80(4):588–604. https://​doi.​org/​10.​1086/​514346.View ArticlePubMed
    7. Das Bhowmik A, Patil SJ, Deshpande DV, Bhat V, Dalal A. Novel splice-site variant of UCHL1 in an Indian family with autosomal recessive spastic paraplegia-79. J Hum Genet. 2018;63(8):927–33. https://​doi.​org/​10.​1038/​s10038-018-0463-6.View ArticlePubMed
    8. Farazi Fard MA, Rebelo AP, Buglo E, Nemati H, Dastsooz H, Gehweiler I, et al. Truncating mutations in UBAP1 cause hereditary spastic paraplegia. Am J Hum Genet. 2019;104(4):767–73. https://​doi.​org/​10.​1016/​j.​ajhg.​2019.​03.​001\UBAP1 is an important new gene causing autosomal dominant HSP. It has been identified by numerous groups and probably warrants widespread clinical testing.View ArticlePubMedPubMed Central
    9. Gu S, Chen CA, Rosenfeld JA, Cope H, Launay N, Flanigan KM, et al. Truncating variants in UBAP1 associated with childhood-onset nonsyndromic hereditary spastic paraplegia. Hum Mutat. 2019;41:632–40. https://​doi.​org/​10.​1002/​humu.​23950.View ArticlePubMed
    10. Lin X, Su HZ, Dong EL, Lin XH, Zhao M, Yang C, et al. Stop-gain mutations in UBAP1 cause pure autosomal-dominant spastic paraplegia. Brain. 2019;142(8):2238–52. https://​doi.​org/​10.​1093/​brain/​awz158.View ArticlePubMed
    11. Nan H, Ichinose Y, Tanaka M, Koh K, Ishiura H, Mitsui J, et al. UBAP1 mutations cause juvenile-onset hereditary spastic paraplegias (SPG80) and impair UBAP1 targeting to endosomes. J Hum Genet. 2019;64(11):1055–65. https://​doi.​org/​10.​1038/​s10038-019-0670-9.View ArticlePubMed
    12. Ahmed MY, Al-Khayat A, Al-Murshedi F, Al-Futaisi A, Chioza BA, Pedro Fernandez-Murray J, et al. A mutation of EPT1 (SELENOI) underlies a new disorder of Kennedy pathway phospholipid biosynthesis. Brain. 2017;140(3):547–54. https://​doi.​org/​10.​1093/​brain/​aww318.View ArticlePubMedPubMed Central
    13. Vaz FM, McDermott JH, Alders M, Wortmann SB, Kolker S, Pras-Raves ML, et al. Mutations in PCYT2 disrupt etherlipid biosynthesis and cause a complex hereditary spastic paraplegia. Brain. 2019;142(11):3382–97. https://​doi.​org/​10.​1093/​brain/​awz291.View ArticlePubMedPubMed Central
    14. Wagner M, Osborn DPS, Gehweiler I, Nagel M, Ulmer U, Bakhtiari S, et al. Bi-allelic variants in RNF170 are associated with hereditary spastic paraplegia. Nat Commun. 2019;10(1):4790. https://​doi.​org/​10.​1038/​s41467-019-12620-9RNF170 has now been independly confirmed as a cause of autosomal recessive HSP. Of note, heterozygous mutations in this gene can cause autosomal dominant sensory ataxia 1.View ArticlePubMedPubMed Central
    15. Husain RA, Grimmel M, Wagner M, Hennings JC, Marx C, Feichtinger RG, et al. Bi-allelic HPDL variants cause a neurodegenerative disease ranging from neonatal encephalopathy to adolescent-onset spastic paraplegia. Am J Hum Genet. 2020;107(2):364–73. https://​doi.​org/​10.​1016/​j.​ajhg.​2020.​06.​015.View ArticlePubMedPubMed Central
    16. Ferdinandusse S, McWalter K, Te Brinke H, Lodewijk IJ, Mooijer PM, Ruiter JPN, et al. An autosomal dominant neurological disorder caused by de novo variants in FAR1 resulting in uncontrolled synthesis of ether lipids. Genet Med. 2020. https://​doi.​org/​10.​1038/​s41436-020-01027-3.
    17. Lin P, Li J, Liu Q, Mao F, Li J, Qiu R, et al. A missense mutation in SLC33A1, which encodes the acetyl-CoA transporter, causes autosomal-dominant spastic paraplegia (SPG42). Am J Hum Genet. 2008;83(6):752–9. https://​doi.​org/​10.​1016/​j.​ajhg.​2008.​11.​003.View ArticlePubMedPubMed Central
    18. Schlipf NA, Beetz C, Schule R, Stevanin G, Erichsen AK, Forlani S, et al. A total of 220 patients with autosomal dominant spastic paraplegia do not display mutations in the SLC33A1 gene (SPG42). Eur J Hum Genet. 2010;18(9):1065–7. https://​doi.​org/​10.​1038/​ejhg.​2010.​68.View ArticlePubMedPubMed Central
    19. Synofzik M, Schule R. Overcoming the divide between ataxias and spastic paraplegias: Shared phenotypes, genes, and pathways. Mov Disord. 2017;32(3):332–45. https://​doi.​org/​10.​1002/​mds.​26944.View ArticlePubMedPubMed Central
    20. Kang C, Liang C, Ahmad KE, Gu Y, Siow SF, Colebatch JG, et al. High degree of genetic heterogeneity for hereditary cerebellar ataxias in Australia. Cerebellum. 2019;18(1):137–46. https://​doi.​org/​10.​1007/​s12311-018-0969-7.View ArticlePubMed
    21. Kumar KR, Blair NF, Vandebona H, Liang C, Ng K, Sharpe DM, et al. Targeted next generation sequencing in SPAST-negative hereditary spastic paraplegia. J Neurol. 2013;260(10):2516–22. https://​doi.​org/​10.​1007/​s00415-013-7008-x.View ArticlePubMed
    22. Wali G, Kumar KR, Liyanage E, Davis RL, Mackay-Sim A, Sue CM. Mitochondrial function in hereditary spastic paraplegia: deficits in SPG7 but not SPAST patient-derived stem cells. Front Neurosci. 2020;14:820. https://​doi.​org/​10.​3389/​fnins.​2020.​00820.View ArticlePubMedPubMed Central
    23. Mancini C, Giorgio E, Rubegni A, Pradotto L, Bagnoli S, Rubino E, et al. Prevalence and phenotype of the c.1529C>T SPG7 variant in adult-onset cerebellar ataxia in Italy. Eur J Neurol. 2019;26(1):80–6. https://​doi.​org/​10.​1111/​ene.​13768.View ArticlePubMed
    24. Kim A, Kumar KR, Davis RL, Mallawaarachchi AC, Gayevskiy V, Minoche AE, et al. Increased diagnostic yield of spastic paraplegia with or without cerebellar ataxia through whole-genome sequencing. Cerebellum. 2019. https://​doi.​org/​10.​1007/​s12311-019-01038-0This study suggests it may be helpful to investigate spastic paraplegia and ataxia as a single disease spectrum or common entity, using WGS to interrogate both HSP and ataxia genes.
    25. Wang Y, Hersheson J, Lopez D, Hammer M, Liu Y, Lee KH, et al. Defects in the CAPN1 gene result in alterations in cerebellar development and cerebellar ataxia in mice and humans. Cell Rep. 2016;16(1):79–91. https://​doi.​org/​10.​1016/​j.​celrep.​2016.​05.​044.View ArticlePubMedPubMed Central
    26. Shetty A, Gan-Or Z, Ashtiani S, Ruskey JA, van de Warrenburg B, Wassenberg T, et al. CAPN1 mutations: expanding the CAPN1-related phenotype: from hereditary spastic paraparesis to spastic ataxia. Eur J Med Genet. 2018;62:103605. https://​doi.​org/​10.​1016/​j.​ejmg.​2018.​12.​010.View ArticlePubMed
    27. Gan-Or Z, Bouslam N, Birouk N, Lissouba A, Chambers DB, Veriepe J, et al. Mutations in CAPN1 cause autosomal-recessive hereditary spastic paraplegia. Am J Hum Genet. 2016;98(5):1038–46. https://​doi.​org/​10.​1016/​j.​ajhg.​2016.​04.​002.View ArticlePubMedPubMed Central
    28. Nicita F, Ginevrino M, Travaglini L, D’Arrigo S, Zorzi G, Borgatti R, et al. Heterozygous KIF1A variants underlie a wide spectrum of neurodevelopmental and neurodegenerative disorders. J Med Genet. 2020. https://​doi.​org/​10.​1136/​jmedgenet-2020-107007Recent study showing that heterozygous KIF1A variants can cause both HSP and ataxia phenotypes.
    29. Synofzik M, Soehn AS, Gburek-Augustat J, Schicks J, Karle KN, Schule R, et al. Autosomal recessive spastic ataxia of Charlevoix Saguenay (ARSACS): expanding the genetic, clinical and imaging spectrum. Orphanet J Rare Dis. 2013;8:41. https://​doi.​org/​10.​1186/​1750-1172-8-41.View ArticlePubMedPubMed Central
    30. Seong E, Insolera R, Dulovic M, Kamsteeg EJ, Trinh J, Bruggemann N, et al. Mutations in VPS13D lead to a new recessive ataxia with spasticity and mitochondrial defects. Ann Neurol. 2018;83(6):1075–88. https://​doi.​org/​10.​1002/​ana.​25220.View ArticlePubMedPubMed Central
    31. Koh K, Ishiura H, Shimazaki H, Tsutsumiuchi M, Ichinose Y, Nan H, et al. VPS13D-related disorders presenting as a pure and complicated form of hereditary spastic paraplegia. Mol Genet Genomic Med. 2020;8(3):e1108. https://​doi.​org/​10.​1002/​mgg3.​1108.View ArticlePubMed
    32. Bettencourt C, Quintans B, Ros R, Ampuero I, Yanez Z, Pascual SI, et al. Revisiting genotype-phenotype overlap in neurogenetics: triplet-repeat expansions mimicking spastic paraplegias. Hum Mutat. 2012;33(9):1315–23. https://​doi.​org/​10.​1002/​humu.​22148.View ArticlePubMed
    33. Ito D BSCL2-related neurologic disorders/seipinopathy. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K et al., editors. GeneReviews((R)). Seattle (WA)1993.
    34. Musacchio T, Zaum AK, Uceyler N, Sommer C, Pfeifroth N, Reiners K, et al. ALS and MMN mimics in patients with BSCL2 mutations: the expanding clinical spectrum of SPG17 hereditary spastic paraplegia. J Neurol. 2017;264(1):11–20. https://​doi.​org/​10.​1007/​s00415-016-8301-2.View ArticlePubMed
    35. Stevanin G, Santorelli FM, Azzedine H, Coutinho P, Chomilier J, Denora PS, et al. Mutations in SPG11, encoding spatacsin, are a major cause of spastic paraplegia with thin corpus callosum. Nat Genet. 2007;39(3):366–72. https://​doi.​org/​10.​1038/​ng1980.View ArticlePubMed
    36. Montecchiani C, Pedace L, Lo Giudice T, Casella A, Mearini M, Gaudiello F, et al. ALS5/SPG11/KIAA1840 mutations cause autosomal recessive axonal Charcot-Marie-Tooth disease. Brain. 2016;139(Pt 1):73–85. https://​doi.​org/​10.​1093/​brain/​awv320.View ArticlePubMed
    37. Novarino G, Fenstermaker AG, Zaki MS, Hofree M, Silhavy JL, Heiberg AD, et al. Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders. Science. 2014;343(6170):506–11. https://​doi.​org/​10.​1126/​science.​1247363.View ArticlePubMedPubMed Central
    38. Gonzalez M, McLaughlin H, Houlden H, Guo M, Yo-Tsen L, Hadjivassilious M, et al. Exome sequencing identifies a significant variant in methionyl-tRNA synthetase (MARS) in a family with late-onset CMT2. J Neurol Neurosurg Psychiatry. 2013;84(11):1247–9. https://​doi.​org/​10.​1136/​jnnp-2013-305049.View ArticlePubMedPubMed Central
    39. de Sainte Agathe JM, Mercier S, Mahe JY, Pereon Y, Buratti J, Tissier L, et al. RNF170-related hereditary spastic paraplegia: confirmation by a novel mutation. Mov Disord. 2020. https://​doi.​org/​10.​1002/​mds.​28371.
    40. Cortese A, Callegari I, Curro R, Vegezzi E, Colnaghi S, Versino M, et al. Mutation in RNF170 causes sensory ataxic neuropathy with vestibular areflexia: a CANVAS mimic. J Neurol Neurosurg Psychiatry. 2020;91(11):1237–8. https://​doi.​org/​10.​1136/​jnnp-2020-323719.View ArticlePubMed
    41. Tunca C, Akcimen F, Coskun C, Gundogdu-Eken A, Kocoglu C, Cevik B, et al. ERLIN1 mutations cause teenage-onset slowly progressive ALS in a large Turkish pedigree. Eur J Hum Genet. 2018;26(5):745–8. https://​doi.​org/​10.​1038/​s41431-018-0107-5.View ArticlePubMedPubMed Central
    42. Amador MD, Muratet F, Teyssou E, Banneau G, Danel-Brunaud V, Allart E, et al. Spastic paraplegia due to recessive or dominant mutations in ERLIN2 can convert to ALS. Neurol Genet. 2019;5(6):e374. https://​doi.​org/​10.​1212/​NXG.​0000000000000374​.View ArticlePubMedPubMed Central
    43. Al-Saif A, Bohlega S, Al-Mohanna F. Loss of ERLIN2 function leads to juvenile primary lateral sclerosis. Ann Neurol. 2012;72(4):510–6. https://​doi.​org/​10.​1002/​ana.​23641.View ArticlePubMed
    44. Pednekar D, Wang Y, Fedotova TV, Wojcikiewicz RJ. Clustered hydrophobic amino acids in amphipathic helices mediate erlin1/2 complex assembly. Biochem Biophys Res Commun. 2011;415(1):135–40. https://​doi.​org/​10.​1016/​j.​bbrc.​2011.​10.​032.View ArticlePubMedPubMed Central
    45. Daoud H, Zhou S, Noreau A, Sabbagh M, Belzil V, Dionne-Laporte A, et al. Exome sequencing reveals SPG11 mutations causing juvenile ALS. Neurobiol Aging. 2012;33(4):839 e5–9. https://​doi.​org/​10.​1016/​j.​neurobiolaging.​2011.​11.​012.View Article
    46. Faber I, Martinez ARM, Martins CR Jr, Maia ML, Souza JP, Lourenco CM, et al. SPG11-related parkinsonism: clinical profile, molecular imaging and l-dopa response. Mov Disord. 2018;33(10):1650–6. https://​doi.​org/​10.​1002/​mds.​27491.View ArticlePubMed
    47. Estrada-Cuzcano A, Martin S, Chamova T, Synofzik M, Timmann D, Holemans T, et al. Loss-of-function mutations in the ATP13A2/PARK9 gene cause complicated hereditary spastic paraplegia (SPG78). Brain. 2017;140(2):287–305. https://​doi.​org/​10.​1093/​brain/​aww307.View ArticlePubMedPubMed Central
    48. Ramirez A, Heimbach A, Grundemann J, Stiller B, Hampshire D, Cid LP, et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet. 2006;38(10):1184–91. https://​doi.​org/​10.​1038/​ng1884.View ArticlePubMed
    49. Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E, et al. The ubiquitin pathway in Parkinson’s disease. Nature. 1998;395(6701):451–2. https://​doi.​org/​10.​1038/​26652.View ArticlePubMed
    50. Bilguvar K, Tyagi NK, Ozkara C, Tuysuz B, Bakircioglu M, Choi M, et al. Recessive loss of function of the neuronal ubiquitin hydrolase UCHL1 leads to early-onset progressive neurodegeneration. Proc Natl Acad Sci U S A. 2013;110(9):3489–94. https://​doi.​org/​10.​1073/​pnas.​1222732110.View ArticlePubMedPubMed Central
    51. Osaka H, Wang YL, Takada K, Takizawa S, Setsuie R, Li H, et al. Ubiquitin carboxy-terminal hydrolase L1 binds to and stabilizes monoubiquitin in neuron. Hum Mol Genet. 2003;12(16):1945–58. https://​doi.​org/​10.​1093/​hmg/​ddg211.View ArticlePubMed
    52. Arif B, Kumar KR, Seibler P, Vulinovic F, Fatima A, Winkler S, et al. A novel OPA3 mutation revealed by exome sequencing: an example of reverse phenotyping. JAMA Neurol. 2013;70(6):783–7. https://​doi.​org/​10.​1001/​jamaneurol.​2013.​1174.View ArticlePubMed
    53. Kumar KR, Wali G, Davis RL, Mallawaarachchi AC, Palmer EE, Gayevskiy V, et al. Expanding the spectrum of PEX16 mutations and novel insights into disease mechanisms. Mol Genet Metab Rep. 2018;16:46–51. https://​doi.​org/​10.​1016/​j.​ymgmr.​2018.​07.​003.View ArticlePubMedPubMed Central
    54. Kumar KR, Wali GM, Kamate M, Wali G, Minoche AE, Puttick C, et al. Defining the genetic basis of early onset hereditary spastic paraplegia using whole genome sequencing. Neurogenetics. 2016;17(4):265–70. https://​doi.​org/​10.​1007/​s10048-016-0495-z.View ArticlePubMedPubMed Central
    55. Lohmann K, Wilcox RA, Winkler S, Ramirez A, Rakovic A, Park JS, et al. Whispering dysphonia (DYT4 dystonia) is caused by a mutation in the TUBB4 gene. Ann Neurol. 2013;73(4):537–45. https://​doi.​org/​10.​1002/​ana.​23829.View ArticlePubMedPubMed Central
    56. Kancheva D, Chamova T, Guergueltcheva V, Mitev V, Azmanov DN, Kalaydjieva L, et al. Mosaic dominant TUBB4A mutation in an inbred family with complicated hereditary spastic paraplegia. Mov Disord. 2015;30(6):854–8. https://​doi.​org/​10.​1002/​mds.​26196.View ArticlePubMed
    57. Shribman S, Reid E, Crosby AH, Houlden H, Warner TT. Hereditary spastic paraplegia: from diagnosis to emerging therapeutic approaches. Lancet Neurol. 2019;18(12):1136–46. https://​doi.​org/​10.​1016/​S1474-4422(19)30235-2.View ArticlePubMed
    58. Fan Z, Greenwood R, Felix AC, Shiloh-Malawsky Y, Tennison M, Roche M, et al. GCH1 heterozygous mutation identified by whole-exome sequencing as a treatable condition in a patient presenting with progressive spastic paraplegia. J Neurol. 2014;261(3):622–4. https://​doi.​org/​10.​1007/​s00415-014-7265-3.View ArticlePubMedPubMed Central
    59. Wei Y, Zhou Y, Yuan J, Ni J, Qian M, Cui L, et al. Treatable cause of hereditary spastic paraplegia: eight cases of combined homocysteinaemia with methylmalonic aciduria. J Neurol. 2019;266(10):2434–9. https://​doi.​org/​10.​1007/​s00415-019-09432-8.View ArticlePubMed
    60. Lossos A, Teltsh O, Milman T, Meiner V, Rozen R, Leclerc D, et al. Severe methylenetetrahydrofolate reductase deficiency: clinical clues to a potentially treatable cause of adult-onset hereditary spastic paraplegia. JAMA Neurol. 2014;71(7):901–4. https://​doi.​org/​10.​1001/​jamaneurol.​2014.​116.View ArticlePubMed
    61. Nicholls Z, Hobson E, Martindale J, Shaw PJ. Diagnosis of spinal xanthomatosis by next-generation sequencing: identifying a rare, treatable mimic of hereditary spastic paraparesis. Pract Neurol. 2015;15(4):280–3. https://​doi.​org/​10.​1136/​practneurol-2015-001117.View ArticlePubMed
    62. Raymond GV, Moser AB, Fatemi A. X-linked adrenoleukodystrophy. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K et al., editors. GeneReviews((R)). Seattle (WA)1993.
    63. Tsang JP, Poon WL, Luk HM, Fung CW, Ching CK, Mak CM, et al. Arginase deficiency with new phenotype and a novel mutation: contemporary summary. Pediatr Neurol. 2012;47(4):263–9. https://​doi.​org/​10.​1016/​j.​pediatrneurol.​2012.​06.​012.View ArticlePubMed
    64. Wolf B. Biotinidase deficiency should be considered in individuals exhibiting myelopathy with or without and vision loss. Mol Genet Metab. 2015;116(3):113–8. https://​doi.​org/​10.​1016/​j.​ymgme.​2015.​08.​012.View ArticlePubMed
    65. Wolf B. Biotinidase deficiency. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K et al., editors. GeneReviews((R)). Seattle (WA)1993.
    66. Wang Y, Smith C, Parboosingh JS, Khan A, Innes M, Hekimi S. Pathogenicity of two COQ7 mutations and responses to 2,4-dihydroxybenzoate bypass treatment. J Cell Mol Med. 2017;21(10):2329–43. https://​doi.​org/​10.​1111/​jcmm.​13154.View ArticlePubMedPubMed Central
    67. Salviati L, Trevisson E, Doimo M, Navas P. Primary coenzyme Q10 deficiency. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K et al., editors. GeneReviews((R)). Seattle (WA)1993.
    68. Verrips A, Hoefsloot LH, Steenbergen GC, Theelen JP, Wevers RA, Gabreels FJ, et al. Clinical and molecular genetic characteristics of patients with cerebrotendinous xanthomatosis. Brain. 2000;123(Pt 5):908–19. https://​doi.​org/​10.​1093/​brain/​123.​5.​908.View ArticlePubMed
    69. Kasim S, Moo LR, Zschocke J, Jinnah HA. Phenylketonuria presenting in adulthood as progressive spastic paraparesis with dementia. J Neurol Neurosurg Psychiatry. 2001;71(6):795–7. https://​doi.​org/​10.​1136/​jnnp.​71.​6.​795.View ArticlePubMedPubMed Central
    70. Verrotti A, Di Francesco L, Striano P. GLUT1 deficiency and pediatric-onset hereditary spastic paraplegia: a new association. Eur J Paediatr Neurol. 2019;23(2):233–4. https://​doi.​org/​10.​1016/​j.​ejpn.​2019.​02.​010.View ArticlePubMed
    71. Vazquez-Costa JF, Bataller L, Vilchez JJ. Primary lateral sclerosis and hereditary spastic paraplegia in sporadic patients. An important distinction in descriptive studies. Ann Neurol. 2016;80(1):169–70. https://​doi.​org/​10.​1002/​ana.​24671.View ArticlePubMed
    72. Geevasinga N, Menon P, Sue CM, Kumar KR, Ng K, Yiannikas C, et al. Cortical excitability changes distinguish the motor neuron disease phenotypes from hereditary spastic paraplegia. Eur J Neurol. 2015;22(5):826–31, e57-8. https://​doi.​org/​10.​1111/​ene.​12669.View ArticlePubMed
    73. Brugman F, Veldink JH, Franssen H, de Visser M, de Jong JM, Faber CG, et al. Differentiation of hereditary spastic paraparesis from primary lateral sclerosis in sporadic adult-onset upper motor neuron syndromes. Arch Neurol. 2009;66(4):509–14. https://​doi.​org/​10.​1001/​archneurol.​2009.​19.View ArticlePubMed
    74. Pearson TS, Pons R, Ghaoui R, Sue CM. Genetic mimics of cerebral palsy. Mov Disord. 2019;34(5):625–36. https://​doi.​org/​10.​1002/​mds.​27655.View ArticlePubMed
    75. Rainier S, Sher C, Reish O, Thomas D, Fink JK. De novo occurrence of novel SPG3A/atlastin mutation presenting as cerebral palsy. Arch Neurol. 2006;63(3):445–7. https://​doi.​org/​10.​1001/​archneur.​63.​3.​445.View ArticlePubMed
    76. Rubegni A, Battisti C, Tessa A, Cerase A, Doccini S, Malandrini A, et al. SPG2 mimicking multiple sclerosis in a family identified using next generation sequencing. J Neurol Sci. 2017;375:198–202. https://​doi.​org/​10.​1016/​j.​jns.​2017.​01.​069.View ArticlePubMed
    77. Jia X, Madireddy L, Caillier S, Santaniello A, Esposito F, Comi G, et al. Genome sequencing uncovers phenocopies in primary progressive multiple sclerosis. Ann Neurol. 2018;84(1):51–63. https://​doi.​org/​10.​1002/​ana.​25263.View ArticlePubMedPubMed Central
    78. Fink JK. Hereditary spastic paraplegia: clinico-pathologic features and emerging molecular mechanisms. Acta Neuropathol. 2013;126(3):307–28. https://​doi.​org/​10.​1007/​s00401-013-1115-8.View ArticlePubMedPubMed Central
    79. Bras J, Verloes A, Schneider SA, Mole SE, Guerreiro RJ. Mutation of the parkinsonism gene ATP13A2 causes neuronal ceroid-lipofuscinosis. Hum Mol Genet. 2012;21(12):2646–50. https://​doi.​org/​10.​1093/​hmg/​dds089.View ArticlePubMedPubMed Central
    80. Schneider SA, Paisan-Ruiz C, Quinn NP, Lees AJ, Houlden H, Hardy J, et al. ATP13A2 mutations (PARK9) cause neurodegeneration with brain iron accumulation. Mov Disord. 2010;25(8):979–84. https://​doi.​org/​10.​1002/​mds.​22947.View ArticlePubMed
    81. de Bot S, Kamsteeg EJ, Van De Warrenburg BPC. Complicated hereditary spastic paraplegia due to ATP13A2 mutations: what’s in a name? Brain. 2017;140(12):e73. https://​doi.​org/​10.​1093/​brain/​awx280.View ArticlePubMed
    82. Minnerop M, Kurzwelly D, Wagner H, Soehn AS, Reichbauer J, Tao F, et al. Hypomorphic mutations in POLR3A are a frequent cause of sporadic and recessive spastic ataxia. Brain. 2017;140(6):1561–78. https://​doi.​org/​10.​1093/​brain/​awx095.View ArticlePubMedPubMed Central
    83. Gauquelin L, Tetreault M, Thiffault I, Farrow E, Miller N, Yoo B, et al. POLR3A variants in hereditary spastic paraplegia and ataxia. Brain. 2018;141(1):e1. https://​doi.​org/​10.​1093/​brain/​awx290.View ArticlePubMed
    84. Klebe S, Lossos A, Azzedine H, Mundwiller E, Sheffer R, Gaussen M, et al. KIF1A missense mutations in SPG30, an autosomal recessive spastic paraplegia: distinct phenotypes according to the nature of the mutations. Eur J Hum Genet. 2012;20(6):645–9. https://​doi.​org/​10.​1038/​ejhg.​2011.​261.View ArticlePubMedPubMed Central
    85. Cheon CK, Lim SH, Kim YM, Kim D, Lee NY, Yoon TS, et al. Autosomal dominant transmission of complicated hereditary spastic paraplegia due to a dominant negative mutation of KIF1A, SPG30 gene. Sci Rep. 2017;7(1):12527. https://​doi.​org/​10.​1038/​s41598-017-12999-9.View ArticlePubMedPubMed Central
    86. Citterio A, Arnoldi A, Panzeri E, Merlini L, D’Angelo MG, Musumeci O, et al. Variants in KIF1A gene in dominant and sporadic forms of hereditary spastic paraparesis. J Neurol. 2015;262(12):2684–90. https://​doi.​org/​10.​1007/​s00415-015-7899-9.View ArticlePubMed
    87. Ylikallio E, Kim D, Isohanni P, Auranen M, Kim E, Lonnqvist T, et al. Dominant transmission of de novo KIF1A motor domain variant underlying pure spastic paraplegia. Eur J Hum Genet. 2015;23(10):1427–30. https://​doi.​org/​10.​1038/​ejhg.​2014.​297.View ArticlePubMedPubMed Central
    88. Ohba C, Haginoya K, Osaka H, Kubota K, Ishiyama A, Hiraide T, et al. De novo KIF1A mutations cause intellectual deficit, cerebellar atrophy, lower limb spasticity and visual disturbance. J Hum Genet. 2015;60(12):739–42. https://​doi.​org/​10.​1038/​jhg.​2015.​108.View ArticlePubMed
    89. Esteves T, Durr A, Mundwiller E, Loureiro JL, Boutry M, Gonzalez MA, et al. Loss of association of REEP2 with membranes leads to hereditary spastic paraplegia. Am J Hum Genet. 2014;94(2):268–77. https://​doi.​org/​10.​1016/​j.​ajhg.​2013.​12.​005.View ArticlePubMedPubMed Central
    90. Khan TN, Klar J, Tariq M, Anjum Baig S, Malik NA, Yousaf R, et al. Evidence for autosomal recessive inheritance in SPG3A caused by homozygosity for a novel ATL1 missense mutation. Eur J Hum Genet. 2014;22(10):1180–4. https://​doi.​org/​10.​1038/​ejhg.​2014.​5.View ArticlePubMedPubMed Central
    91. Willkomm L, Heredia R, Hoffmann K, Wang H, Voit T, Hoffman EP, et al. Homozygous mutation in Atlastin GTPase 1 causes recessive hereditary spastic paraplegia. J Hum Genet. 2016;61(6):571–3. https://​doi.​org/​10.​1038/​jhg.​2016.​6.View ArticlePubMed
    92. Aguilera-Albesa S, de la Hoz AB, Ibarluzea N, Ordonez-Castillo AR, Busto-Crespo O, Villate O, et al. Hereditary spastic paraplegia and intellectual disability: clinicogenetic lessons from a family suggesting a dual genetics diagnosis. Front Neurol. 2020;11:–41. https://​doi.​org/​10.​3389/​fneur.​2020.​00041A recent study showing concurrent genetic diagnoses in a family with HSP.
    93. Posey JE, Harel T, Liu P, Rosenfeld JA, James RA, Coban Akdemir ZH, et al. Resolution of disease phenotypes resulting from multilocus genomic variation. N Engl J Med. 2017;376(1):21–31. https://​doi.​org/​10.​1056/​NEJMoa1516767.View ArticlePubMed
    94. Verdura E, Schluter A, Fernandez-Eulate G, Ramos-Martin R, Zulaica M, Planas-Serra L, et al. A deep intronic splice variant advises reexamination of presumably dominant SPG7 Cases. Ann Clin Transl Neurol. 2020;7(1):105–11. https://​doi.​org/​10.​1002/​acn3.​50967This report highlights the utility of WGS in detecting deep intronic variants in the SPG7 gene.View ArticlePubMed
    95. Sanchez-Ferrero E, Coto E, Beetz C, Gamez J, Corao AI, Diaz M, et al. SPG7 mutational screening in spastic paraplegia patients supports a dominant effect for some mutations and a pathogenic role for p.A510V. Clin Genet. 2013;83(3):257–62. https://​doi.​org/​10.​1111/​j.​1399-0004.​2012.​01896.​x.View ArticlePubMed
    96. Kumar KR, Cowley MJ, Davis RL. Next-generation sequencing and emerging technologies. Semin Thromb Hemost. 2019;45:661–73. https://​doi.​org/​10.​1055/​s-0039-1688446.View ArticlePubMed
    97. Meienberg J, Bruggmann R, Oexle K, Matyas G. Clinical sequencing: is WGS the better WES? Hum Genet. 2016;135(3):359–62. https://​doi.​org/​10.​1007/​s00439-015-1631-9.View ArticlePubMedPubMed Central
    98. Gross AM, Ajay SS, Rajan V, Brown C, Bluske K, Burns NJ, et al. Copy-number variants in clinical genome sequencing: deployment and interpretation for rare and undiagnosed disease. Genet Med. 2019;21(5):1121–30. https://​doi.​org/​10.​1038/​s41436-018-0295-y.View ArticlePubMed
    99. Kirk EP, Barlow-Stewart K, Selvanathan A, Josephi-Taylor S, Worgan L, Rajagopalan S, et al. Beyond the panel: preconception screening in consanguineous couples using the TruSight One “clinical exome”. Genet Med. 2018;21:608–12. https://​doi.​org/​10.​1038/​s41436-018-0082-9.View ArticlePubMed
    100. Beetz C, Nygren AO, Schickel J, Auer-Grumbach M, Burk K, Heide G, et al. High frequency of partial SPAST deletions in autosomal dominant hereditary spastic paraplegia. Neurology. 2006;67(11):1926–30. https://​doi.​org/​10.​1212/​01.​wnl.​0000244413.​49258.​f5.View ArticlePubMed
    101. Dolzhenko E, van Vugt J, Shaw RJ, Bekritsky MA, van Blitterswijk M, Narzisi G, et al. Detection of long repeat expansions from PCR-free whole-genome sequence data. Genome Res. 2017;27(11):1895–903. https://​doi.​org/​10.​1101/​gr.​225672.​117.View ArticlePubMedPubMed Central
    102. Wagner M, Berutti R, Lorenz-Depiereux B, Graf E, Eckstein G, Mayr JA, et al. Mitochondrial DNA mutation analysis from exome sequencing-a more holistic approach in diagnostics of suspected mitochondrial disease. J Inherit Metab Dis. 2019;42(5):909–17. https://​doi.​org/​10.​1002/​jimd.​12109.View ArticlePubMed
    103. Puttick C, Kumar KR, Davis RL, Pinese M, Thomas DM, Dinger ME et al. <em>mity</em>: a highly sensitive mitochondrial variant analysis pipeline for whole genome sequencing data. bioRxiv. 2019:852210. 10.1101/852210.
    104. Orso G, Martinuzzi A, Rossetto MG, Sartori E, Feany M, Daga A. Disease-related phenotypes in a Drosophila model of hereditary spastic paraplegia are ameliorated by treatment with vinblastine. J Clin Invest. 2005;115(11):3026–34. https://​doi.​org/​10.​1172/​JCI24694.View ArticlePubMedPubMed Central
    105. Fassier C, Tarrade A, Peris L, Courageot S, Mailly P, Dalard C, et al. Microtubule-targeting drugs rescue axonal swellings in cortical neurons from spastin knockout mice. Dis Model Mech. 2013;6(1):72–83. https://​doi.​org/​10.​1242/​dmm.​008946.View ArticlePubMed
    106. Fan Y, Wali G, Sutharsan R, Bellette B, Crane DI, Sue CM, et al. Low dose tubulin-binding drugs rescue peroxisome trafficking deficit in patient-derived stem cells in hereditary spastic paraplegia. Biol Open. 2014;3(6):494–502. https://​doi.​org/​10.​1242/​bio.​20147641.View ArticlePubMedPubMed Central
    107. Wali G, Sue CM, Mackay-Sim A. Patient-derived stem cell models in SPAST HSP: disease modelling and drug discovery. Brain Sci. 2018;8(8):142. https://​doi.​org/​10.​3390/​brainsci8080142.View ArticlePubMed Central
    108. Rickman OJ, Baple EL, Crosby AH. Lipid metabolic pathways converge in motor neuron degenerative diseases. Brain. 2020;143(4):1073–87. https://​doi.​org/​10.​1093/​brain/​awz382.View ArticlePubMed
    109. Schols L, Rattay TW, Martus P, Meisner C, Baets J, Fischer I, et al. Hereditary spastic paraplegia type 5: natural history, biomarkers and a randomized controlled trial. Brain. 2017;140(12):3112–27. https://​doi.​org/​10.​1093/​brain/​awx273One of two clinical trials investigating the use of cholesterol-lowering drugs to treat SPG5. SPG5 may prove to be the most treatable form of HSP and so in the future, it may be particularly important to identify individuals with CYP7B1 mutations.View ArticlePubMedPubMed Central
    110. Schule R, Siddique T, Deng HX, Yang Y, Donkervoort S, Hansson M, et al. Marked accumulation of 27-hydroxycholesterol in SPG5 patients with hereditary spastic paresis. J Lipid Res. 2010;51(4):819–23. https://​doi.​org/​10.​1194/​jlr.​M002543.View ArticlePubMedPubMed Central
    111. Marelli C, Lamari F, Rainteau D, Lafourcade A, Banneau G, Humbert L, et al. Plasma oxysterols: biomarkers for diagnosis and treatment in spastic paraplegia type 5. Brain. 2018;141(1):72–84. https://​doi.​org/​10.​1093/​brain/​awx297The other clinical trial investigating the use of cholesterol-lowering drugs to treat SPG5.View ArticlePubMed
    112. Hauser S, Poenisch M, Schelling Y, Hoflinger P, Schuster S, Teegler A, et al. mRNA as a novel treatment strategy for hereditary spastic paraplegia type 5. Mol Ther Methods Clin Dev. 2019;15:359–70. https://​doi.​org/​10.​1016/​j.​omtm.​2019.​10.​011.View ArticlePubMedPubMed Central
    113. Kara E, Tucci A, Manzoni C, Lynch DS, Elpidorou M, Bettencourt C, et al. Genetic and phenotypic characterization of complex hereditary spastic paraplegia. Brain. 2016;139(Pt 7):1904–18. https://​doi.​org/​10.​1093/​brain/​aww111.View ArticlePubMedPubMed Central
    114. Schule R, Wiethoff S, Martus P, Karle KN, Otto S, Klebe S, et al. Hereditary spastic paraplegia: clinicogenetic lessons from 608 patients. Ann Neurol. 2016;79(4):646–58. https://​doi.​org/​10.​1002/​ana.​24611.View ArticlePubMed
Metadata
Title
Challenges and Controversies in the Genetic Diagnosis of Hereditary Spastic Paraplegia
Authors
Lydia Saputra
Kishore Raj Kumar
Publication date
01-04-2021
Publisher
Springer US
Published in
Current Neurology and Neuroscience Reports / Issue 4/2021
Print ISSN: 1528-4042
Electronic ISSN: 1534-6293
DOI
https://doi.org/10.1007/s11910-021-01099-x

Other articles of this Issue 4/2021

Current Neurology and Neuroscience Reports 4/2021 Go to the issue

Movement Disorders (T. Simuni, Section Editor)

The Role of Genetic Testing for Parkinson’s Disease

Demyelinating Disorders (J. Bernard and M. Cameron, Section Editors)

Telehealth in Multiple Sclerosis Clinical Care and Research