Skip to main content
Top
Published in: The Cerebellum 1/2019

01-02-2019 | Original Paper

High Degree of Genetic Heterogeneity for Hereditary Cerebellar Ataxias in Australia

Authors: Ce Kang, Christina Liang, Kate E. Ahmad, Yufan Gu, Sue-Faye Siow, James G. Colebatch, Scott Whyte, Karl Ng, Philip D. Cremer, Alastair J. Corbett, Ryan L. Davis, Tony Roscioli, Mark J. Cowley, Jin-Sung Park, Carolyn M. Sue, Kishore R. Kumar

Published in: The Cerebellum | Issue 1/2019

Login to get access

Abstract

Genetic testing strategies such as next-generation sequencing (NGS) panels and whole genome sequencing (WGS) can be applied to the hereditary cerebellar ataxias (HCAs), but their exact role in the diagnostic pathway is unclear. We aim to determine the yield from genetic testing strategies and the genetic and phenotypic spectrum of HCA in Australia by analysing real-world data. We performed a retrospective review on 87 HCA cases referred to the Neurogenetics Clinic at the Royal North Shore Hospital, Sydney, Australia. Probands underwent triplet repeat expansion testing; those that tested negative had NGS-targeted panels and WGS testing when available. In our sample, 58.6% were male (51/87), with an average age at onset of 37.1 years. Individuals with sequencing variants had a prolonged duration of illness compared to those with a triplet repeat expansion. The detection rate in probands for routine repeat expansion panels was 13.8% (11/80). NGS-targeted panels yielded a further 11 individuals (11/32, 34.4%), with WGS yielding 1 more diagnosis (1/3, 33.3%). NGS panels and WGS improved the overall diagnostic rate to 28.8% (23/80) in 14 known HCA loci. The genetic findings included novel variants in ANO10, CACNA1A, PRKCG and SPG7. Our findings highlight the genetic heterogeneity of HCAs and support the use of NGS approaches for individuals who were negative on repeat expansion testing. In comparison to repeat disorders, individuals with sequencing variants may have a prolonged duration of illness, consistent with slower progression of disease.
Appendix
Available only for authorised users
Literature
1.
go back to reference Harding AE. Classification of the hereditary ataxias and paraplegias. Lancet. 1983;1(8334):1151–5.CrossRef Harding AE. Classification of the hereditary ataxias and paraplegias. Lancet. 1983;1(8334):1151–5.CrossRef
2.
go back to reference Harding AE. Clinical features and classification of inherited ataxias. Adv Neurol. 1993;61:1–14.PubMed Harding AE. Clinical features and classification of inherited ataxias. Adv Neurol. 1993;61:1–14.PubMed
3.
go back to reference Bird TD. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, et al., editors. Hereditary Ataxia Overview. Seattle: GeneReviews((R)); 1993. Bird TD. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, et al., editors. Hereditary Ataxia Overview. Seattle: GeneReviews((R)); 1993.
4.
go back to reference Storey E, du Sart D, Shaw JH, Lorentzos P, Kelly L, McKinley Gardner RJ, et al. Frequency of spinocerebellar ataxia types 1, 2, 3, 6, and 7 in Australian patients with spinocerebellar ataxia. Am J Med Genet. 2000;95(4):351–7.CrossRef Storey E, du Sart D, Shaw JH, Lorentzos P, Kelly L, McKinley Gardner RJ, et al. Frequency of spinocerebellar ataxia types 1, 2, 3, 6, and 7 in Australian patients with spinocerebellar ataxia. Am J Med Genet. 2000;95(4):351–7.CrossRef
5.
go back to reference Pandolfo M. Friedreich ataxia: the clinical picture. J Neurol. 2009;256(Suppl 1):3–8.CrossRef Pandolfo M. Friedreich ataxia: the clinical picture. J Neurol. 2009;256(Suppl 1):3–8.CrossRef
6.
go back to reference Ruano L, Melo C, Silva MC, Coutinho P. The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology. 2014;42(3):174–83.CrossRef Ruano L, Melo C, Silva MC, Coutinho P. The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology. 2014;42(3):174–83.CrossRef
7.
go back to reference Nemeth AH, Kwasniewska AC, Lise S, Parolin Schnekenberg R, Becker EB, Bera KD, et al. Next generation sequencing for molecular diagnosis of neurological disorders using ataxias as a model. Brain. 2013;136(Pt 10):3106–18.CrossRef Nemeth AH, Kwasniewska AC, Lise S, Parolin Schnekenberg R, Becker EB, Bera KD, et al. Next generation sequencing for molecular diagnosis of neurological disorders using ataxias as a model. Brain. 2013;136(Pt 10):3106–18.CrossRef
8.
go back to reference Pyle A, Smertenko T, Bargiela D, Griffin H, Duff J, Appleton M, et al. Exome sequencing in undiagnosed inherited and sporadic ataxias. Brain. 2015;138(Pt 2):276–83.CrossRef Pyle A, Smertenko T, Bargiela D, Griffin H, Duff J, Appleton M, et al. Exome sequencing in undiagnosed inherited and sporadic ataxias. Brain. 2015;138(Pt 2):276–83.CrossRef
9.
go back to reference Coutelier M, Coarelli G, Monin ML, Konop J, Davoine CS, Tesson C, et al. A panel study on patients with dominant cerebellar ataxia highlights the frequency of channelopathies. Brain. 2017;140(6):1579–94.CrossRef Coutelier M, Coarelli G, Monin ML, Konop J, Davoine CS, Tesson C, et al. A panel study on patients with dominant cerebellar ataxia highlights the frequency of channelopathies. Brain. 2017;140(6):1579–94.CrossRef
10.
go back to reference Coutelier M, Hammer MB, Stevanin G, Monin ML, Davoine CS, Mochel F, et al. Efficacy of exome-targeted capture sequencing to detect mutations in known cerebellar ataxia genes. JAMA Neurol. 2018;75(5):591–99.CrossRef Coutelier M, Hammer MB, Stevanin G, Monin ML, Davoine CS, Mochel F, et al. Efficacy of exome-targeted capture sequencing to detect mutations in known cerebellar ataxia genes. JAMA Neurol. 2018;75(5):591–99.CrossRef
11.
go back to reference van de Warrenburg BP, van Gaalen J, Boesch S, Burgunder JM, Durr A, Giunti P, et al. EFNS/ENS Consensus on the diagnosis and management of chronic ataxias in adulthood. Eur J Neurol. 2014;21(4):552–62.CrossRef van de Warrenburg BP, van Gaalen J, Boesch S, Burgunder JM, Durr A, Giunti P, et al. EFNS/ENS Consensus on the diagnosis and management of chronic ataxias in adulthood. Eur J Neurol. 2014;21(4):552–62.CrossRef
12.
go back to reference Ramirez-Zamora A, Zeigler W, Desai N, Biller J. Treatable causes of cerebellar ataxia. Mov Disord. 2015;30(5):614–23.CrossRef Ramirez-Zamora A, Zeigler W, Desai N, Biller J. Treatable causes of cerebellar ataxia. Mov Disord. 2015;30(5):614–23.CrossRef
13.
go back to reference Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24.CrossRef Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24.CrossRef
14.
go back to reference Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013;43:11 0 1–33. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013;43:11 0 1–33.
15.
go back to reference Kumar KR, Wali GM, Kamate M, Wali G, Minoche AE, Puttick C, et al. Defining the genetic basis of early onset hereditary spastic paraplegia using whole genome sequencing. Neurogenetics. 2016;17(4):265–70.CrossRef Kumar KR, Wali GM, Kamate M, Wali G, Minoche AE, Puttick C, et al. Defining the genetic basis of early onset hereditary spastic paraplegia using whole genome sequencing. Neurogenetics. 2016;17(4):265–70.CrossRef
18.
go back to reference Balreira A, Boczonadi V, Barca E, Pyle A, Bansagi B, Appleton M, et al. ANO10 mutations cause ataxia and coenzyme Q(1)(0) deficiency. J Neurol. 2014;261(11):2192–8.CrossRef Balreira A, Boczonadi V, Barca E, Pyle A, Bansagi B, Appleton M, et al. ANO10 mutations cause ataxia and coenzyme Q(1)(0) deficiency. J Neurol. 2014;261(11):2192–8.CrossRef
19.
go back to reference Battistini S, Stenirri S, Piatti M, Gelfi C, Righetti PG, Rocchi R, et al. A new CACNA1A gene mutation in acetazolamide-responsive familial hemiplegic migraine and ataxia. Neurology. 1999;53(1):38–43.CrossRef Battistini S, Stenirri S, Piatti M, Gelfi C, Righetti PG, Rocchi R, et al. A new CACNA1A gene mutation in acetazolamide-responsive familial hemiplegic migraine and ataxia. Neurology. 1999;53(1):38–43.CrossRef
20.
go back to reference Winkelmann J, Lin L, Schormair B, Kornum BR, Faraco J, Plazzi G, et al. Mutations in DNMT1 cause autosomal dominant cerebellar ataxia, deafness and narcolepsy. Hum Mol Genet. 2012;21(10):2205–10.CrossRef Winkelmann J, Lin L, Schormair B, Kornum BR, Faraco J, Plazzi G, et al. Mutations in DNMT1 cause autosomal dominant cerebellar ataxia, deafness and narcolepsy. Hum Mol Genet. 2012;21(10):2205–10.CrossRef
21.
go back to reference Lee YC, Durr A, Majczenko K, Huang YH, Liu YC, Lien CC, et al. Mutations in KCND3 cause spinocerebellar ataxia type 22. Ann Neurol. 2012;72(6):859–69.CrossRef Lee YC, Durr A, Majczenko K, Huang YH, Liu YC, Lien CC, et al. Mutations in KCND3 cause spinocerebellar ataxia type 22. Ann Neurol. 2012;72(6):859–69.CrossRef
22.
go back to reference Millat G, Bailo N, Molinero S, Rodriguez C, Chikh K, Vanier MT. Niemann-Pick C disease: use of denaturing high performance liquid chromatography for the detection of NPC1 and NPC2 genetic variations and impact on management of patients and families. Mol Genet Metab. 2005;86(1–2):220–32.CrossRef Millat G, Bailo N, Molinero S, Rodriguez C, Chikh K, Vanier MT. Niemann-Pick C disease: use of denaturing high performance liquid chromatography for the detection of NPC1 and NPC2 genetic variations and impact on management of patients and families. Mol Genet Metab. 2005;86(1–2):220–32.CrossRef
23.
go back to reference Yamamoto T, Nanba E, Ninomiya H, Higaki K, Taniguchi M, Zhang H, et al. NPC1 gene mutations in Japanese patients with Niemann-Pick disease type C. Hum Genet. 1999;105(1–2):10–6.PubMed Yamamoto T, Nanba E, Ninomiya H, Higaki K, Taniguchi M, Zhang H, et al. NPC1 gene mutations in Japanese patients with Niemann-Pick disease type C. Hum Genet. 1999;105(1–2):10–6.PubMed
24.
go back to reference Roxburgh RH, Marquis-Nicholson R, Ashton F, George AM, Lea RA, Eccles D, et al. The p.Ala510Val mutation in the SPG7 (paraplegin) gene is the most common mutation causing adult onset neurogenetic disease in patients of British ancestry. J Neurol. 2013;260(5):1286–94.CrossRef Roxburgh RH, Marquis-Nicholson R, Ashton F, George AM, Lea RA, Eccles D, et al. The p.Ala510Val mutation in the SPG7 (paraplegin) gene is the most common mutation causing adult onset neurogenetic disease in patients of British ancestry. J Neurol. 2013;260(5):1286–94.CrossRef
25.
go back to reference Ishikawa K, Durr A, Klopstock T, Muller S, De Toffol B, Vidailhet M, et al. Pentanucleotide repeats at the spinocerebellar ataxia type 31 (SCA31) locus in Caucasians. Neurology. 2011;77(20):1853–5.CrossRef Ishikawa K, Durr A, Klopstock T, Muller S, De Toffol B, Vidailhet M, et al. Pentanucleotide repeats at the spinocerebellar ataxia type 31 (SCA31) locus in Caucasians. Neurology. 2011;77(20):1853–5.CrossRef
26.
go back to reference Sato N, Amino T, Kobayashi K, Asakawa S, Ishiguro T, Tsunemi T, et al. Spinocerebellar ataxia type 31 is associated with “inserted” penta-nucleotide repeats containing (TGGAA)n. Am J Hum Genet. 2009;85(5):544–57.CrossRef Sato N, Amino T, Kobayashi K, Asakawa S, Ishiguro T, Tsunemi T, et al. Spinocerebellar ataxia type 31 is associated with “inserted” penta-nucleotide repeats containing (TGGAA)n. Am J Hum Genet. 2009;85(5):544–57.CrossRef
27.
go back to reference Pedersen AG, Nielsen H. Neural network prediction of translation initiation sites in eukaryotes: perspectives for EST and genome analysis. Proc Int Conf Intell Syst Mol Biol. 1997;5:226–33.PubMed Pedersen AG, Nielsen H. Neural network prediction of translation initiation sites in eukaryotes: perspectives for EST and genome analysis. Proc Int Conf Intell Syst Mol Biol. 1997;5:226–33.PubMed
28.
go back to reference Chen DH, Brkanac Z, Verlinde CL, Tan XJ, Bylenok L, Nochlin D, et al. Missense mutations in the regulatory domain of PKC gamma: a new mechanism for dominant nonepisodic cerebellar ataxia. Am J Hum Genet. 2003;72(4):839–49.CrossRef Chen DH, Brkanac Z, Verlinde CL, Tan XJ, Bylenok L, Nochlin D, et al. Missense mutations in the regulatory domain of PKC gamma: a new mechanism for dominant nonepisodic cerebellar ataxia. Am J Hum Genet. 2003;72(4):839–49.CrossRef
29.
go back to reference Fahey MC, Knight MA, Shaw JH, Gardner RJ, du Sart D, Lockhart PJ, et al. Spinocerebellar ataxia type 14: study of a family with an exon 5 mutation in the PRKCG gene. J Neurol Neurosurg Psychiatry. 2005;76(12):1720–2.CrossRef Fahey MC, Knight MA, Shaw JH, Gardner RJ, du Sart D, Lockhart PJ, et al. Spinocerebellar ataxia type 14: study of a family with an exon 5 mutation in the PRKCG gene. J Neurol Neurosurg Psychiatry. 2005;76(12):1720–2.CrossRef
30.
go back to reference Vandebona H, Kerr NP, Liang C, Sue CM. SPAST mutations in Australian patients with hereditary spastic paraplegia. Intern Med J. 2012;42(12):1342–7.CrossRef Vandebona H, Kerr NP, Liang C, Sue CM. SPAST mutations in Australian patients with hereditary spastic paraplegia. Intern Med J. 2012;42(12):1342–7.CrossRef
31.
go back to reference Kumar KR, Blair NF, Vandebona H, Liang C, Ng K, Sharpe DM, et al. Targeted next generation sequencing in SPAST-negative hereditary spastic paraplegia. J Neurol. 2013;260(10):2516–22.CrossRef Kumar KR, Blair NF, Vandebona H, Liang C, Ng K, Sharpe DM, et al. Targeted next generation sequencing in SPAST-negative hereditary spastic paraplegia. J Neurol. 2013;260(10):2516–22.CrossRef
32.
go back to reference Garden G. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, LJH B, Stephens K, et al., editors. Spinocerebellar Ataxia Type 7. Seattle: GeneReviews((R)); 1993. Garden G. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, LJH B, Stephens K, et al., editors. Spinocerebellar Ataxia Type 7. Seattle: GeneReviews((R)); 1993.
33.
go back to reference Patterson M. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, et al., editors. Niemann-Pick Disease Type C. Seattle: GeneReviews((R)); 1993. Patterson M. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, et al., editors. Niemann-Pick Disease Type C. Seattle: GeneReviews((R)); 1993.
34.
go back to reference Jacobi H, du Montcel ST, Bauer P, Giunti P, Cook A, Labrum R, et al. Long-term disease progression in spinocerebellar ataxia types 1, 2, 3, and 6: a longitudinal cohort study. Lancet Neurol. 2015;14(11):1101–8.CrossRef Jacobi H, du Montcel ST, Bauer P, Giunti P, Cook A, Labrum R, et al. Long-term disease progression in spinocerebellar ataxia types 1, 2, 3, and 6: a longitudinal cohort study. Lancet Neurol. 2015;14(11):1101–8.CrossRef
35.
go back to reference Kuo PH, Gan SR, Wang J, Lo RY, Figueroa KP, Tomishon D, et al. Dystonia and ataxia progression in spinocerebellar ataxias. Parkinsonism Relat Disord. 2017;45:75–80.CrossRef Kuo PH, Gan SR, Wang J, Lo RY, Figueroa KP, Tomishon D, et al. Dystonia and ataxia progression in spinocerebellar ataxias. Parkinsonism Relat Disord. 2017;45:75–80.CrossRef
36.
go back to reference Galatolo D, Tessa A, Filla A, Santorelli FM. Clinical application of next generation sequencing in hereditary spinocerebellar ataxia: increasing the diagnostic yield and broadening the ataxia-spasticity spectrum. A retrospective analysis. Neurogenetics. 2018;19(1):1–8.CrossRef Galatolo D, Tessa A, Filla A, Santorelli FM. Clinical application of next generation sequencing in hereditary spinocerebellar ataxia: increasing the diagnostic yield and broadening the ataxia-spasticity spectrum. A retrospective analysis. Neurogenetics. 2018;19(1):1–8.CrossRef
Metadata
Title
High Degree of Genetic Heterogeneity for Hereditary Cerebellar Ataxias in Australia
Authors
Ce Kang
Christina Liang
Kate E. Ahmad
Yufan Gu
Sue-Faye Siow
James G. Colebatch
Scott Whyte
Karl Ng
Philip D. Cremer
Alastair J. Corbett
Ryan L. Davis
Tony Roscioli
Mark J. Cowley
Jin-Sung Park
Carolyn M. Sue
Kishore R. Kumar
Publication date
01-02-2019
Publisher
Springer US
Published in
The Cerebellum / Issue 1/2019
Print ISSN: 1473-4222
Electronic ISSN: 1473-4230
DOI
https://doi.org/10.1007/s12311-018-0969-7

Other articles of this Issue 1/2019

The Cerebellum 1/2019 Go to the issue