Skip to main content
Top
Published in: Current Neurology and Neuroscience Reports 4/2021

01-04-2021 | Tremor | Movement Disorders (T. Simuni, Section Editor)

Digital Technology in Movement Disorders: Updates, Applications, and Challenges

Authors: Jamie L. Adams, Karlo J. Lizarraga, Emma M. Waddell, Taylor L. Myers, Stella Jensen-Roberts, Joseph S. Modica, Ruth B. Schneider

Published in: Current Neurology and Neuroscience Reports | Issue 4/2021

Login to get access

Abstract

Purpose of Review

Digital technology affords the opportunity to provide objective, frequent, and sensitive assessment of disease outside of the clinic environment. This article reviews recent literature on the application of digital technology in movement disorders, with a focus on Parkinson’s disease (PD) and Huntington’s disease.

Recent Findings

Recent research has demonstrated the ability for digital technology to discriminate between individuals with and without PD, identify those at high risk for PD, quantify specific motor features, predict clinical events in PD, inform clinical management, and generate novel insights.

Summary

Digital technology has enormous potential to transform clinical research and care in movement disorders. However, more work is needed to better validate existing digital measures, including in new populations, and to develop new more holistic digital measures that move beyond motor features.
Literature
2.
go back to reference Grossman SN, Han SC, Balcer LJ, Kurzweil A, Weinberg H, Galetta SL, et al. Rapid implementation of virtual neurology in response to the COVID-19 pandemic. Neurology. 2020;94:1077–87.PubMedCrossRef Grossman SN, Han SC, Balcer LJ, Kurzweil A, Weinberg H, Galetta SL, et al. Rapid implementation of virtual neurology in response to the COVID-19 pandemic. Neurology. 2020;94:1077–87.PubMedCrossRef
3.
go back to reference Padala PR, Jendro AM, Gauss CH, Orr LC, Dean KT, Wilson KB, et al. Participant and caregiver perspectives on clinical research during Covid-19 pandemic. J Am Geriatr Soc. 2020;68:E14–8.PubMedCrossRef Padala PR, Jendro AM, Gauss CH, Orr LC, Dean KT, Wilson KB, et al. Participant and caregiver perspectives on clinical research during Covid-19 pandemic. J Am Geriatr Soc. 2020;68:E14–8.PubMedCrossRef
4.
go back to reference Papa SM, Brundin P, Fung VSC, Kang UJ, Burn DJ, Colosimo C, et al. Impact of the COVID-19 pandemic on Parkinson’s disease and movement disorders. Mov Disord. 2020;35:711–5.PubMedCrossRefPubMedCentral Papa SM, Brundin P, Fung VSC, Kang UJ, Burn DJ, Colosimo C, et al. Impact of the COVID-19 pandemic on Parkinson’s disease and movement disorders. Mov Disord. 2020;35:711–5.PubMedCrossRefPubMedCentral
6.
go back to reference Botros A, Schütz N, Camenzind M, Urwyler P, Bolliger D, Vanbellingen T, et al. Long-term home-monitoring sensor technology in patients with Parkinson’s disease-acceptance and adherence. Sensors (Basel, Switzerland). 2019;19:5169.CrossRef Botros A, Schütz N, Camenzind M, Urwyler P, Bolliger D, Vanbellingen T, et al. Long-term home-monitoring sensor technology in patients with Parkinson’s disease-acceptance and adherence. Sensors (Basel, Switzerland). 2019;19:5169.CrossRef
7.
go back to reference Silva de Lima AL, Hahn T, Evers LJW, de Vries NM, Cohen E, Afek M, et al. Feasibility of large-scale deployment of multiple wearable sensors in Parkinson’s disease. PLoS One. 2017;12:e0189161.PubMedPubMedCentralCrossRef Silva de Lima AL, Hahn T, Evers LJW, de Vries NM, Cohen E, Afek M, et al. Feasibility of large-scale deployment of multiple wearable sensors in Parkinson’s disease. PLoS One. 2017;12:e0189161.PubMedPubMedCentralCrossRef
8.
go back to reference Lee W, Evans A, Williams DR. Validation of a smartphone application measuring motor function in Parkinson’s disease. J Parkinsons Dis. 2016;6:371–82.PubMedCrossRef Lee W, Evans A, Williams DR. Validation of a smartphone application measuring motor function in Parkinson’s disease. J Parkinsons Dis. 2016;6:371–82.PubMedCrossRef
9.
go back to reference Bot BM, Suver C, Neto EC, Kellen M, Klein A, Bare C, et al. The mPower study, Parkinson disease mobile data collected using ResearchKit. Sci Data. 2016;3:160011.PubMedPubMedCentralCrossRef Bot BM, Suver C, Neto EC, Kellen M, Klein A, Bare C, et al. The mPower study, Parkinson disease mobile data collected using ResearchKit. Sci Data. 2016;3:160011.PubMedPubMedCentralCrossRef
10.
go back to reference Espay AJ, Hausdorff JM, Sanchez-Ferro A, Klucken J, Merola A, Bonato P, et al. A roadmap for implementation of patient-centered digital outcome measures in Parkinson’s disease obtained using mobile health technologies. Mov Disord. 2019;34:657–63.PubMedPubMedCentralCrossRef Espay AJ, Hausdorff JM, Sanchez-Ferro A, Klucken J, Merola A, Bonato P, et al. A roadmap for implementation of patient-centered digital outcome measures in Parkinson’s disease obtained using mobile health technologies. Mov Disord. 2019;34:657–63.PubMedPubMedCentralCrossRef
11.
go back to reference Badawy R, Hameed F, Bataille L, Little MA, Claes K, Saria S, et al. Metadata concepts for advancing the use of digital health technologies in clinical research. Digit Biomark. 2019;3:116–32.PubMedPubMedCentralCrossRef Badawy R, Hameed F, Bataille L, Little MA, Claes K, Saria S, et al. Metadata concepts for advancing the use of digital health technologies in clinical research. Digit Biomark. 2019;3:116–32.PubMedPubMedCentralCrossRef
12.
go back to reference Lamont RM, Daniel HL, Payne CL, Brauer SG. Accuracy of wearable physical activity trackers in people with Parkinson’s disease. Gait Posture. 2018;63:104–8.PubMedCrossRef Lamont RM, Daniel HL, Payne CL, Brauer SG. Accuracy of wearable physical activity trackers in people with Parkinson’s disease. Gait Posture. 2018;63:104–8.PubMedCrossRef
13.
go back to reference Pradhan S, Kelly VE. Quantifying physical activity in early Parkinson disease using a commercial activity monitor. Parkinsonism Relat Disord. 2019;66:171–5.PubMedPubMedCentralCrossRef Pradhan S, Kelly VE. Quantifying physical activity in early Parkinson disease using a commercial activity monitor. Parkinsonism Relat Disord. 2019;66:171–5.PubMedPubMedCentralCrossRef
14.
go back to reference Kabelac Z, Tarolli CG, Snyder C, Feldman B, Glidden A, Hsu CY, et al. Passive monitoring at home: a pilot study in Parkinson disease. Digit Biomark. 2019;3:22–30.PubMedPubMedCentralCrossRef Kabelac Z, Tarolli CG, Snyder C, Feldman B, Glidden A, Hsu CY, et al. Passive monitoring at home: a pilot study in Parkinson disease. Digit Biomark. 2019;3:22–30.PubMedPubMedCentralCrossRef
15.
go back to reference Mehrang S, Jauhiainen M, Pietil J, Puustinen J, Ruokolainen J, Nieminen H. Identification of Parkinson’s disease utilizing a single self-recorded 20-step walking test acquired by smartphone’s inertial measurement unit. Conf Proc IEEE Eng Med Biol Soc. 2018;2018:2913–6. Mehrang S, Jauhiainen M, Pietil J, Puustinen J, Ruokolainen J, Nieminen H. Identification of Parkinson’s disease utilizing a single self-recorded 20-step walking test acquired by smartphone’s inertial measurement unit. Conf Proc IEEE Eng Med Biol Soc. 2018;2018:2913–6.
16.
go back to reference Prince J, de Vos M. A deep learning framework for the remote detection of Parkinson’s disease using smart-phone sensor data. Conf Proc IEEE Eng Med Biol Soc. 2018;2018:3144–7. Prince J, de Vos M. A deep learning framework for the remote detection of Parkinson’s disease using smart-phone sensor data. Conf Proc IEEE Eng Med Biol Soc. 2018;2018:3144–7.
17.
go back to reference •• Lipsmeier F, Taylor KI, Kilchenmann T, Wolf D, Scotland A, Schjodt-Eriksen J, et al. Evaluation of smartphone-based testing to generate exploratory outcome measures in a phase 1 Parkinson’s disease clinical trial. Mov Disord. 2018;33:1287–97 The authors describes the deployment of a smartphone application in a PD clinical trial and demonstrate the test-retest reliability and sensitivity of smartphone assessments, their ability to discriminate between PD and healthy controls, and the potential to generate novel insights.PubMedPubMedCentralCrossRef •• Lipsmeier F, Taylor KI, Kilchenmann T, Wolf D, Scotland A, Schjodt-Eriksen J, et al. Evaluation of smartphone-based testing to generate exploratory outcome measures in a phase 1 Parkinson’s disease clinical trial. Mov Disord. 2018;33:1287–97 The authors describes the deployment of a smartphone application in a PD clinical trial and demonstrate the test-retest reliability and sensitivity of smartphone assessments, their ability to discriminate between PD and healthy controls, and the potential to generate novel insights.PubMedPubMedCentralCrossRef
18.
go back to reference Di Lazzaro G, Ricci M, Al-Wardat M, Schirinzi T, Scalise S, Giannini F, et al. Technology-based objective measures detect subclinical axial signs in untreated, de novo Parkinson’s disease. J Parkinsons Dis. 2020;10:113–22.PubMedCrossRef Di Lazzaro G, Ricci M, Al-Wardat M, Schirinzi T, Scalise S, Giannini F, et al. Technology-based objective measures detect subclinical axial signs in untreated, de novo Parkinson’s disease. J Parkinsons Dis. 2020;10:113–22.PubMedCrossRef
19.
go back to reference Mc Ardle R, Del Din S, Galna B, Thomas A, Rochester L. Differentiating dementia disease subtypes with gait analysis: feasibility of wearable sensors? Gait Posture. 2020;76:372–6.PubMedCrossRef Mc Ardle R, Del Din S, Galna B, Thomas A, Rochester L. Differentiating dementia disease subtypes with gait analysis: feasibility of wearable sensors? Gait Posture. 2020;76:372–6.PubMedCrossRef
20.
go back to reference De Vos M, Prince J, Buchanan T, FitzGerald JJ, Antoniades CA. Discriminating progressive supranuclear palsy from Parkinson’s disease using wearable technology and machine learning. Gait Posture. 2020;77:257–63.PubMedCrossRef De Vos M, Prince J, Buchanan T, FitzGerald JJ, Antoniades CA. Discriminating progressive supranuclear palsy from Parkinson’s disease using wearable technology and machine learning. Gait Posture. 2020;77:257–63.PubMedCrossRef
21.
go back to reference Barrantes S, Sanchez Egea AJ, Gonzalez Rojas HA, Marti MJ, Compta Y, Valldeoriola F, et al. Differential diagnosis between Parkinson’s disease and essential tremor using the smartphone’s accelerometer. PLoS One. 2017;12:e0183843.PubMedPubMedCentralCrossRef Barrantes S, Sanchez Egea AJ, Gonzalez Rojas HA, Marti MJ, Compta Y, Valldeoriola F, et al. Differential diagnosis between Parkinson’s disease and essential tremor using the smartphone’s accelerometer. PLoS One. 2017;12:e0183843.PubMedPubMedCentralCrossRef
22.
go back to reference di Biase L, Brittain J-S, Shah SA, Pedrosa DJ, Cagnan H, Mathy A, Chen CC, Martín-Rodríguez JF, Mir P, Timmerman L, Schwingenschuh P, Bhatia K, Di Lazzaro V, Brown P (2017) Tremor stability index: a new tool for differential diagnosis in tremor syndromes. Brain: a journal of neurology 140, 1977-1986. di Biase L, Brittain J-S, Shah SA, Pedrosa DJ, Cagnan H, Mathy A, Chen CC, Martín-Rodríguez JF, Mir P, Timmerman L, Schwingenschuh P, Bhatia K, Di Lazzaro V, Brown P (2017) Tremor stability index: a new tool for differential diagnosis in tremor syndromes. Brain: a journal of neurology 140, 1977-1986.
23.
go back to reference Fereshtehnejad SM, Yao C, Pelletier A, Montplaisir JY, Gagnon JF, Postuma RB. Evolution of prodromal Parkinson’s disease and dementia with Lewy bodies: a prospective study. Brain. 2019;142:2051–67.PubMedCrossRef Fereshtehnejad SM, Yao C, Pelletier A, Montplaisir JY, Gagnon JF, Postuma RB. Evolution of prodromal Parkinson’s disease and dementia with Lewy bodies: a prospective study. Brain. 2019;142:2051–67.PubMedCrossRef
24.
go back to reference • Arora S, Baig F, Lo C, Barber TR, Lawton MA, Zhan A, et al. Smartphone motor testing to distinguish idiopathic REM sleep behavior disorder, controls, and PD. Neurology. 2018;91:e1528–38 The authors demonstrate the ability for smartphone tests to discriminat between PD, healthy controls, and idiopathic REM sleep behavior disorder with a high degree of accuracy.PubMedPubMedCentralCrossRef • Arora S, Baig F, Lo C, Barber TR, Lawton MA, Zhan A, et al. Smartphone motor testing to distinguish idiopathic REM sleep behavior disorder, controls, and PD. Neurology. 2018;91:e1528–38 The authors demonstrate the ability for smartphone tests to discriminat between PD, healthy controls, and idiopathic REM sleep behavior disorder with a high degree of accuracy.PubMedPubMedCentralCrossRef
25.
go back to reference Singh S, Xu W. Robust detection of Parkinson’s disease using harvested smartphone voice data: a telemedicine approach. Telemed J E Health. 2020;26:327–34.PubMedPubMedCentralCrossRef Singh S, Xu W. Robust detection of Parkinson’s disease using harvested smartphone voice data: a telemedicine approach. Telemed J E Health. 2020;26:327–34.PubMedPubMedCentralCrossRef
26.
go back to reference Zhang YN. Can a smartphone diagnose Parkinson disease? A deep neural network method and telediagnosis system implementation. Parkinsons Dis. 2017;2017:6209703.PubMedPubMedCentral Zhang YN. Can a smartphone diagnose Parkinson disease? A deep neural network method and telediagnosis system implementation. Parkinsons Dis. 2017;2017:6209703.PubMedPubMedCentral
27.
go back to reference Rusz J, Hlavnicka J, Tykalova T, Novotny M, Dusek P, Sonka K, et al. Smartphone allows capture of speech abnormalities associated with high risk of developing Parkinson's disease. IEEE Trans Neural Syst Rehabil Eng. 2018;26:1495–507.PubMedCrossRef Rusz J, Hlavnicka J, Tykalova T, Novotny M, Dusek P, Sonka K, et al. Smartphone allows capture of speech abnormalities associated with high risk of developing Parkinson's disease. IEEE Trans Neural Syst Rehabil Eng. 2018;26:1495–507.PubMedCrossRef
28.
go back to reference • Del Din S, Elshehabi M, Galna B, Hobert MA, Warmerdam E, Suenkel U, et al. Gait analysis with wearables predicts conversion to Parkinson disease. Ann Neurol. 2019;86:357–67 In a large cohort of older adults, the authors identified wearable sensor-derived gait features that predicted PD diagnosis.PubMedPubMedCentralCrossRef • Del Din S, Elshehabi M, Galna B, Hobert MA, Warmerdam E, Suenkel U, et al. Gait analysis with wearables predicts conversion to Parkinson disease. Ann Neurol. 2019;86:357–67 In a large cohort of older adults, the authors identified wearable sensor-derived gait features that predicted PD diagnosis.PubMedPubMedCentralCrossRef
29.
go back to reference von Coelln R, Dawe RJ, Leurgans SE, Curran TA, Truty T, Yu L, et al. Quantitative mobility metrics from a wearable sensor predict incident parkinsonism in older adults. Parkinsonism Relat Disord. 2019;65:190–6.CrossRef von Coelln R, Dawe RJ, Leurgans SE, Curran TA, Truty T, Yu L, et al. Quantitative mobility metrics from a wearable sensor predict incident parkinsonism in older adults. Parkinsonism Relat Disord. 2019;65:190–6.CrossRef
30.
go back to reference Lalvay L, Lara M, Mora A, Alarcon F, Fraga M, Pancorbo J, et al. Quantitative measurement of akinesia in Parkinson’s disease. Mov Disord Clin Pract. 2017;4:316–22.PubMedCrossRef Lalvay L, Lara M, Mora A, Alarcon F, Fraga M, Pancorbo J, et al. Quantitative measurement of akinesia in Parkinson’s disease. Mov Disord Clin Pract. 2017;4:316–22.PubMedCrossRef
31.
go back to reference Ellis RJ, Ng YS, Zhu S, Tan DM, Anderson B, Schlaug G, et al. A validated smartphone-based assessment of gait and gait variability in Parkinson’s disease. PLoS One. 2015;10:e0141694.PubMedPubMedCentralCrossRef Ellis RJ, Ng YS, Zhu S, Tan DM, Anderson B, Schlaug G, et al. A validated smartphone-based assessment of gait and gait variability in Parkinson’s disease. PLoS One. 2015;10:e0141694.PubMedPubMedCentralCrossRef
32.
go back to reference Fiems CL, Miller SA, Buchanan N, Knowles E, Larson E, Snow R, et al. Does a sway-based mobile application predict future falls in people with Parkinson disease? Arch Phys Med Rehabil. 2020;101:472–8.PubMedCrossRef Fiems CL, Miller SA, Buchanan N, Knowles E, Larson E, Snow R, et al. Does a sway-based mobile application predict future falls in people with Parkinson disease? Arch Phys Med Rehabil. 2020;101:472–8.PubMedCrossRef
33.
go back to reference Kim HB, Lee HJ, Lee WW, Kim SK, Jeon HS, Park HY, et al. Validation of freezing-of-gait monitoring using smartphone. Telemed J E Health. 2018;24:899–907.PubMedCrossRef Kim HB, Lee HJ, Lee WW, Kim SK, Jeon HS, Park HY, et al. Validation of freezing-of-gait monitoring using smartphone. Telemed J E Health. 2018;24:899–907.PubMedCrossRef
34.
go back to reference Yahalom G, Yekutieli Z, Israeli-Korn S, Elincx-Benizri S, Livneh V, Fay-Karmon T, et al. Smartphone based timed up and go test can identify postural instability in Parkinson’s disease. Isr Med Assoc J. 2020;22:37–42.PubMed Yahalom G, Yekutieli Z, Israeli-Korn S, Elincx-Benizri S, Livneh V, Fay-Karmon T, et al. Smartphone based timed up and go test can identify postural instability in Parkinson’s disease. Isr Med Assoc J. 2020;22:37–42.PubMed
35.
go back to reference Hobert MA, Nussbaum S, Heger T, Berg D, Maetzler W, Heinzel S. Progressive gait deficits in Parkinson’s disease: a wearable-based biannual 5-year prospective study. Front Aging Neurosci. 2019;11:22.PubMedPubMedCentralCrossRef Hobert MA, Nussbaum S, Heger T, Berg D, Maetzler W, Heinzel S. Progressive gait deficits in Parkinson’s disease: a wearable-based biannual 5-year prospective study. Front Aging Neurosci. 2019;11:22.PubMedPubMedCentralCrossRef
36.
go back to reference Suppa A, Kita A, Leodori G, Zampogna A, Nicolini E, Lorenzi P, et al. l-DOPA and freezing of gait in Parkinson’s disease: objective assessment through a wearable wireless system. Front Neurol. 2017;8:406.PubMedPubMedCentralCrossRef Suppa A, Kita A, Leodori G, Zampogna A, Nicolini E, Lorenzi P, et al. l-DOPA and freezing of gait in Parkinson’s disease: objective assessment through a wearable wireless system. Front Neurol. 2017;8:406.PubMedPubMedCentralCrossRef
37.
go back to reference Haji Ghassemi N, Hannink J, Roth N, Gaßner H, Marxreiter F, Klucken J, Eskofier BM (2019) Turning analysis during standardized test using on-shoe wearable sensors in Parkinson’s disease. Sensors (Basel, Switzerland) 19, 3103. Haji Ghassemi N, Hannink J, Roth N, Gaßner H, Marxreiter F, Klucken J, Eskofier BM (2019) Turning analysis during standardized test using on-shoe wearable sensors in Parkinson’s disease. Sensors (Basel, Switzerland) 19, 3103.
38.
go back to reference Silva de Lima AL, Smits T, Darweesh SKL, Valenti G, Milosevic M, Pijl M, et al. Home-based monitoring of falls using wearable sensors in Parkinson’s disease. Mov Disord. 2020;35:109–15.PubMedCrossRef Silva de Lima AL, Smits T, Darweesh SKL, Valenti G, Milosevic M, Pijl M, et al. Home-based monitoring of falls using wearable sensors in Parkinson’s disease. Mov Disord. 2020;35:109–15.PubMedCrossRef
39.
go back to reference Pickering RM, Grimbergen YA, Rigney U, Ashburn A, Mazibrada G, Wood B, et al. A meta-analysis of six prospective studies of falling in Parkinson’s disease. Mov Disord. 2007;22:1892–900.PubMedCrossRef Pickering RM, Grimbergen YA, Rigney U, Ashburn A, Mazibrada G, Wood B, et al. A meta-analysis of six prospective studies of falling in Parkinson’s disease. Mov Disord. 2007;22:1892–900.PubMedCrossRef
40.
go back to reference • Lo C, Arora S, Baig F, Lawton MA, El Mouden C, Barber TR, et al. Predicting motor, cognitive & functional impairment in Parkinson’s. Ann Clin Transl Neurol. 2019;6:1498–509 The authors demonstrate that performance on smartphone tests can predict key clinical milestones at 18 months.PubMedPubMedCentral • Lo C, Arora S, Baig F, Lawton MA, El Mouden C, Barber TR, et al. Predicting motor, cognitive & functional impairment in Parkinson’s. Ann Clin Transl Neurol. 2019;6:1498–509 The authors demonstrate that performance on smartphone tests can predict key clinical milestones at 18 months.PubMedPubMedCentral
41.
go back to reference Jeon H, Lee W, Park H, Lee HJ, Kim SK, Kim HB, et al. High-accuracy automatic classification of Parkinsonian tremor severity using machine learning method. Physiol Meas. 2017;38:1980–99.PubMedCrossRef Jeon H, Lee W, Park H, Lee HJ, Kim SK, Kim HB, et al. High-accuracy automatic classification of Parkinsonian tremor severity using machine learning method. Physiol Meas. 2017;38:1980–99.PubMedCrossRef
42.
go back to reference López-Blanco R, Velasco MA, Méndez-Guerrero A, Romero JP, Del Castillo MD, Serrano JI, et al. Smartwatch for the analysis of rest tremor in patients with Parkinson’s disease. J Neurol Sci. 2019;401:37–42.PubMedCrossRef López-Blanco R, Velasco MA, Méndez-Guerrero A, Romero JP, Del Castillo MD, Serrano JI, et al. Smartwatch for the analysis of rest tremor in patients with Parkinson’s disease. J Neurol Sci. 2019;401:37–42.PubMedCrossRef
43.
go back to reference Gatsios D, Antonini A, Gentile G, Marcante A, Pellicano C, Macchiusi L, et al. Feasibility and utility of mHealth for the remote monitoring of parkinson disease: randomized controlled trial. JMIR Mhealth Uhealth. 2020. Gatsios D, Antonini A, Gentile G, Marcante A, Pellicano C, Macchiusi L, et al. Feasibility and utility of mHealth for the remote monitoring of parkinson disease: randomized controlled trial. JMIR Mhealth Uhealth. 2020.
44.
go back to reference Lee CY, Kang SJ, Hong SK, Ma HI, Lee U, Kim YJ. A validation study of a smartphone-based finger tapping application for quantitative assessment of bradykinesia in Parkinson’s disease. PLoS One. 2016;11:e0158852.PubMedPubMedCentralCrossRef Lee CY, Kang SJ, Hong SK, Ma HI, Lee U, Kim YJ. A validation study of a smartphone-based finger tapping application for quantitative assessment of bradykinesia in Parkinson’s disease. PLoS One. 2016;11:e0158852.PubMedPubMedCentralCrossRef
45.
go back to reference Printy BP, Renken LM, Herrmann JP, Lee I, Johnson B, Knight E, et al. Smartphone application for classification of motor impairment severity in Parkinson’s disease. Conf Proc IEEE Eng Med Biol Soc. 2014;2014:2686–9. Printy BP, Renken LM, Herrmann JP, Lee I, Johnson B, Knight E, et al. Smartphone application for classification of motor impairment severity in Parkinson’s disease. Conf Proc IEEE Eng Med Biol Soc. 2014;2014:2686–9.
46.
go back to reference Artusi CA, Mishra M, Latimer P, Vizcarra JA, Lopiano L, Maetzler W, et al. Integration of technology-based outcome measures in clinical trials of Parkinson and other neurodegenerative diseases. Parkinsonism Relat Disord. 2018;46(Suppl 1):S53–6.PubMedCrossRef Artusi CA, Mishra M, Latimer P, Vizcarra JA, Lopiano L, Maetzler W, et al. Integration of technology-based outcome measures in clinical trials of Parkinson and other neurodegenerative diseases. Parkinsonism Relat Disord. 2018;46(Suppl 1):S53–6.PubMedCrossRef
47.
go back to reference Zhan A, Mohan S, Tarolli C, Schneider RB, Adams JL, Sharma S, et al. Using smartphones and machine learning to quantify Parkinson disease severity: the mobile Parkinson disease score. JAMA Neurol. 2018;75:876–80.PubMedPubMedCentralCrossRef Zhan A, Mohan S, Tarolli C, Schneider RB, Adams JL, Sharma S, et al. Using smartphones and machine learning to quantify Parkinson disease severity: the mobile Parkinson disease score. JAMA Neurol. 2018;75:876–80.PubMedPubMedCentralCrossRef
48.
go back to reference Mantri S, Wood S, Duda JE, Morley JF. Comparing self-reported and objective monitoring of physical activity in Parkinson disease. Parkinsonism Relat Disord. 2019;67:56–9.PubMedCrossRef Mantri S, Wood S, Duda JE, Morley JF. Comparing self-reported and objective monitoring of physical activity in Parkinson disease. Parkinsonism Relat Disord. 2019;67:56–9.PubMedCrossRef
49.
go back to reference Galperin I, Hillel I, Del Din S, Bekkers EMJ, Nieuwboer A, Abbruzzese G, et al. Associations between daily-living physical activity and laboratory-based assessments of motor severity in patients with falls and Parkinson’s disease. Parkinsonism Relat Disord. 2019;62:85–90.PubMedCrossRef Galperin I, Hillel I, Del Din S, Bekkers EMJ, Nieuwboer A, Abbruzzese G, et al. Associations between daily-living physical activity and laboratory-based assessments of motor severity in patients with falls and Parkinson’s disease. Parkinsonism Relat Disord. 2019;62:85–90.PubMedCrossRef
50.
go back to reference • Mirelman A, Hillel I, Rochester L, Del Din S, Bloem BR, Avanzino L, et al. Tossing and turning in bed: nocturnal movements in Parkinson’s disease. Mov Disord. 2020; The authors demonstrated that wearable devices can quanitfy nocturnal movements in PD and detect differences based on disease stage. • Mirelman A, Hillel I, Rochester L, Del Din S, Bloem BR, Avanzino L, et al. Tossing and turning in bed: nocturnal movements in Parkinson’s disease. Mov Disord. 2020; The authors demonstrated that wearable devices can quanitfy nocturnal movements in PD and detect differences based on disease stage.
51.
go back to reference Arroyo-Gallego T, Ledesma-Carbayo MJ, Sanchez-Ferro A, Butterworth I, Mendoza CS, Matarazzo M, et al. Detection of motor impairment in Parkinson’s disease via mobile touchscreen typing. IEEE Trans Biomed Eng. 2017;64:1994–2002.PubMedCrossRef Arroyo-Gallego T, Ledesma-Carbayo MJ, Sanchez-Ferro A, Butterworth I, Mendoza CS, Matarazzo M, et al. Detection of motor impairment in Parkinson’s disease via mobile touchscreen typing. IEEE Trans Biomed Eng. 2017;64:1994–2002.PubMedCrossRef
52.
go back to reference Iakovakis D, Diniz JA, Trivedi D, Chaudhuri RK, Hadjileontiadis LJ, Hadjidimitriou S, et al. Early Parkinson’s disease detection via touchscreen typing analysis using convolutional neural networks. Conf Proc IEEE Eng Med Biol Soc. 2019;2019:3535–8. Iakovakis D, Diniz JA, Trivedi D, Chaudhuri RK, Hadjileontiadis LJ, Hadjidimitriou S, et al. Early Parkinson’s disease detection via touchscreen typing analysis using convolutional neural networks. Conf Proc IEEE Eng Med Biol Soc. 2019;2019:3535–8.
53.
go back to reference Iakovakis D, Hadjidimitriou S, Charisis V, Bostantzopoulou S, Katsarou Z, Hadjileontiadis LJ. Touchscreen typing-pattern analysis for detecting fine motor skills decline in early-stage Parkinson’s disease. Sci Rep. 2018;8:7663.PubMedPubMedCentralCrossRef Iakovakis D, Hadjidimitriou S, Charisis V, Bostantzopoulou S, Katsarou Z, Hadjileontiadis LJ. Touchscreen typing-pattern analysis for detecting fine motor skills decline in early-stage Parkinson’s disease. Sci Rep. 2018;8:7663.PubMedPubMedCentralCrossRef
54.
go back to reference Liddle J, Ireland D, McBride SJ, Brauer SG, Hall LM, Ding H, et al. Measuring the lifespace of people with Parkinson’s disease using smartphones: proof of principle. JMIR Mhealth Uhealth. 2014;2:e13.PubMedPubMedCentralCrossRef Liddle J, Ireland D, McBride SJ, Brauer SG, Hall LM, Ding H, et al. Measuring the lifespace of people with Parkinson’s disease using smartphones: proof of principle. JMIR Mhealth Uhealth. 2014;2:e13.PubMedPubMedCentralCrossRef
55.
go back to reference Liddle J, Sundraraj A, Ireland D, Bennett S, Stillerova T, Silburn P. Impact of deep brain stimulation on people with Parkinson’s disease: a mixed methods feasibility study exploring lifespace and community outcomes. Hong Kong J Occup Ther. 2019;32:97–107.PubMedPubMedCentralCrossRef Liddle J, Sundraraj A, Ireland D, Bennett S, Stillerova T, Silburn P. Impact of deep brain stimulation on people with Parkinson’s disease: a mixed methods feasibility study exploring lifespace and community outcomes. Hong Kong J Occup Ther. 2019;32:97–107.PubMedPubMedCentralCrossRef
56.
go back to reference Antonini A, Gentile G, Giglio M, Marcante A, Gage H, MML T, et al. Acceptability to patients, carers and clinicians of an mHealth platform for the management of Parkinson's disease (PD_Manager): study protocol for a pilot randomised controlled trial. Trials. 2018;19:492.PubMedPubMedCentralCrossRef Antonini A, Gentile G, Giglio M, Marcante A, Gage H, MML T, et al. Acceptability to patients, carers and clinicians of an mHealth platform for the management of Parkinson's disease (PD_Manager): study protocol for a pilot randomised controlled trial. Trials. 2018;19:492.PubMedPubMedCentralCrossRef
57.
go back to reference Hssayeni MD, Burack MA, Jimenez-Shahed J, Ghoraani B. Assessment of response to medication in individuals with Parkinson’s disease. Med Eng Phys. 2019;67:33–43.PubMedCrossRef Hssayeni MD, Burack MA, Jimenez-Shahed J, Ghoraani B. Assessment of response to medication in individuals with Parkinson’s disease. Med Eng Phys. 2019;67:33–43.PubMedCrossRef
58.
go back to reference Vizcarra JA, Sanchez-Ferro A, Maetzler W, Marsili L, Zavala L, Lang AE, et al. The Parkinson’s disease e-diary: developing a clinical and research tool for the digital age. Mov Disord. 2019;34:676–81.PubMedCrossRefPubMedCentral Vizcarra JA, Sanchez-Ferro A, Maetzler W, Marsili L, Zavala L, Lang AE, et al. The Parkinson’s disease e-diary: developing a clinical and research tool for the digital age. Mov Disord. 2019;34:676–81.PubMedCrossRefPubMedCentral
59.
go back to reference Lopane G, Mellone S, Corzani M, Chiari L, Cortelli P, Calandra-Buonaura G, et al. Supervised versus unsupervised technology-based levodopa monitoring in Parkinson’s disease: an intrasubject comparison. J Neurol. 2018;265:1343–52.PubMedCrossRef Lopane G, Mellone S, Corzani M, Chiari L, Cortelli P, Calandra-Buonaura G, et al. Supervised versus unsupervised technology-based levodopa monitoring in Parkinson’s disease: an intrasubject comparison. J Neurol. 2018;265:1343–52.PubMedCrossRef
60.
go back to reference Lee W, Evans AH, Williams DR. Objective measurement and characterization of sleep benefit in Parkinson’s disease. Mov Disord Clin Pract. 2017;4:590–6.PubMedPubMedCentralCrossRef Lee W, Evans AH, Williams DR. Objective measurement and characterization of sleep benefit in Parkinson’s disease. Mov Disord Clin Pract. 2017;4:590–6.PubMedPubMedCentralCrossRef
61.
go back to reference Isaacson SH, Boroojerdi B, Waln O, McGraw M, Kreitzman DL, Klos K, et al. Effect of using a wearable device on clinical decision-making and motor symptoms in patients with Parkinson’s disease starting transdermal rotigotine patch: a pilot study. Parkinsonism Relat Disord. 2019;64:132–7.PubMedCrossRef Isaacson SH, Boroojerdi B, Waln O, McGraw M, Kreitzman DL, Klos K, et al. Effect of using a wearable device on clinical decision-making and motor symptoms in patients with Parkinson’s disease starting transdermal rotigotine patch: a pilot study. Parkinsonism Relat Disord. 2019;64:132–7.PubMedCrossRef
62.
go back to reference Joshi R, Bronstein JM, Keener A, Alcazar J, Yang DD, Joshi M, et al. PKG movement recording system use shows promise in routine clinical care of patients with Parkinson’s disease. Front Neurol. 2019;10:1027.PubMedPubMedCentralCrossRef Joshi R, Bronstein JM, Keener A, Alcazar J, Yang DD, Joshi M, et al. PKG movement recording system use shows promise in routine clinical care of patients with Parkinson’s disease. Front Neurol. 2019;10:1027.PubMedPubMedCentralCrossRef
63.
go back to reference Elm JJ, Daeschler M, Bataille L, Schneider R, Amara A, Espay AJ, et al. Feasibility and utility of a clinician dashboard from wearable and mobile application Parkinson’s disease data. NPJ Digit Med. 2019;2:95.PubMedPubMedCentralCrossRef Elm JJ, Daeschler M, Bataille L, Schneider R, Amara A, Espay AJ, et al. Feasibility and utility of a clinician dashboard from wearable and mobile application Parkinson’s disease data. NPJ Digit Med. 2019;2:95.PubMedPubMedCentralCrossRef
64.
65.
go back to reference Lakshminarayana R, Wang D, Burn D, Chaudhuri KR, Galtrey C, Guzman NV, et al. Using a smartphone-based self-management platform to support medication adherence and clinical consultation in Parkinson’s disease. NPJ Parkinsons Dis. 2017;3:2.PubMedPubMedCentralCrossRef Lakshminarayana R, Wang D, Burn D, Chaudhuri KR, Galtrey C, Guzman NV, et al. Using a smartphone-based self-management platform to support medication adherence and clinical consultation in Parkinson’s disease. NPJ Parkinsons Dis. 2017;3:2.PubMedPubMedCentralCrossRef
66.
go back to reference Horin AP, McNeely ME, Harrison EC, Myers PS, Sutter EN, Rawson KS, et al. Usability of a daily mHealth application designed to address mobility, speech and dexterity in Parkinson’s disease. Neurodegener Dis Manag. 2019;9:97–105.PubMedPubMedCentralCrossRef Horin AP, McNeely ME, Harrison EC, Myers PS, Sutter EN, Rawson KS, et al. Usability of a daily mHealth application designed to address mobility, speech and dexterity in Parkinson’s disease. Neurodegener Dis Manag. 2019;9:97–105.PubMedPubMedCentralCrossRef
67.
go back to reference Fung A, Lai EC, Lee BC. Usability and validation of the smarter balance system: an unsupervised dynamic balance exercises system for individuals with Parkinson’s disease. IEEE Trans Neural Syst Rehabil Eng. 2018;26:798–806.PubMedCrossRef Fung A, Lai EC, Lee BC. Usability and validation of the smarter balance system: an unsupervised dynamic balance exercises system for individuals with Parkinson’s disease. IEEE Trans Neural Syst Rehabil Eng. 2018;26:798–806.PubMedCrossRef
68.
go back to reference Balachandar A, Fasano A. Characterizing orthostatic tremor using a smartphone application. Tremor Other Hyperkinet Mov (N Y). 2017;7:488.CrossRef Balachandar A, Fasano A. Characterizing orthostatic tremor using a smartphone application. Tremor Other Hyperkinet Mov (N Y). 2017;7:488.CrossRef
69.
go back to reference Chien JH, Torres-Russotto D, Wang Z, Gui C, Whitney D, Siu KC. The use of smartphone in measuring stance and gait patterns in patients with orthostatic tremor. PLoS One. 2019;14:e0220012.PubMedPubMedCentralCrossRef Chien JH, Torres-Russotto D, Wang Z, Gui C, Whitney D, Siu KC. The use of smartphone in measuring stance and gait patterns in patients with orthostatic tremor. PLoS One. 2019;14:e0220012.PubMedPubMedCentralCrossRef
70.
go back to reference Yahalom H, Israeli-Korn S, Linder M, Yekutieli Z, Karlinsky KT, Rubel Y, et al. Psychiatric patients on neuroleptics: evaluation of parkinsonism and quantified assessment of gait. Clin Neuropharmacol. 2020;43:1–6.PubMedCrossRef Yahalom H, Israeli-Korn S, Linder M, Yekutieli Z, Karlinsky KT, Rubel Y, et al. Psychiatric patients on neuroleptics: evaluation of parkinsonism and quantified assessment of gait. Clin Neuropharmacol. 2020;43:1–6.PubMedCrossRef
71.
go back to reference Gordon MF, Grachev ID, Mazeh I, Dolan Y, Reilmann R, Loupe PS, et al. Quantification of motor function in Huntington disease patients using wearable sensor devices. Digit Biomark. 2019;3:103–15.PubMedPubMedCentralCrossRef Gordon MF, Grachev ID, Mazeh I, Dolan Y, Reilmann R, Loupe PS, et al. Quantification of motor function in Huntington disease patients using wearable sensor devices. Digit Biomark. 2019;3:103–15.PubMedPubMedCentralCrossRef
72.
go back to reference Adams JL, Waddell EM, Dinesh K, Spear KL, Tarolli CG, Elson MJ, et al. GEORGE® – The first smartphone application for Huntington disease: a pilot study (4467). Neurology. 2020;94(15 supplement):4467. Adams JL, Waddell EM, Dinesh K, Spear KL, Tarolli CG, Elson MJ, et al. GEORGE® – The first smartphone application for Huntington disease: a pilot study (4467). Neurology. 2020;94(15 supplement):4467.
73.
go back to reference Purcell NL, Goldman JG, Ouyang B, Bernard B, O'Keefe JA. The effects of dual-task cognitive interference and environmental challenges on balance in Huntington’s disease. Mov Disord Clin Pract. 2019;6:202–12.PubMedPubMedCentralCrossRef Purcell NL, Goldman JG, Ouyang B, Bernard B, O'Keefe JA. The effects of dual-task cognitive interference and environmental challenges on balance in Huntington’s disease. Mov Disord Clin Pract. 2019;6:202–12.PubMedPubMedCentralCrossRef
74.
go back to reference Kegelmeyer DA, Kostyk SK, Fritz NE, Fiumedora MM, Chaudhari A, Palettas M, et al. Quantitative biomechanical assessment of trunk control in Huntington’s disease reveals more impairment in static than dynamic tasks. J Neurol Sci. 2017;376:29–34.PubMedCrossRef Kegelmeyer DA, Kostyk SK, Fritz NE, Fiumedora MM, Chaudhari A, Palettas M, et al. Quantitative biomechanical assessment of trunk control in Huntington’s disease reveals more impairment in static than dynamic tasks. J Neurol Sci. 2017;376:29–34.PubMedCrossRef
75.
go back to reference Dinesh K, Snyder CW, Xiong M, Tarolli CG, Sharma S, Dorsey ER, et al. A longitudinal wearable sensor study in Huntington’s disease. Journal of Huntington's Disease. 2020;9:69–81.PubMedCrossRef Dinesh K, Snyder CW, Xiong M, Tarolli CG, Sharma S, Dorsey ER, et al. A longitudinal wearable sensor study in Huntington’s disease. Journal of Huntington's Disease. 2020;9:69–81.PubMedCrossRef
76.
go back to reference Nguyen N, Phan D, Pathirana PN, Horne M, Power L, Szmulewicz D. Quantification of axial abnormality due to cerebellar ataxia with inertial measurements. Sensors (Basel, Switzerland). 2018;18:2791.CrossRef Nguyen N, Phan D, Pathirana PN, Horne M, Power L, Szmulewicz D. Quantification of axial abnormality due to cerebellar ataxia with inertial measurements. Sensors (Basel, Switzerland). 2018;18:2791.CrossRef
77.
go back to reference Caliandro P, Conte C, Iacovelli C, Tatarelli A, Castiglia SF, Reale G, et al. Exploring risk of falls and dynamic unbalance in cerebellar ataxia by inertial sensor assessment. Sensors (Basel, Switzerland). 2019;19:5571.CrossRef Caliandro P, Conte C, Iacovelli C, Tatarelli A, Castiglia SF, Reale G, et al. Exploring risk of falls and dynamic unbalance in cerebellar ataxia by inertial sensor assessment. Sensors (Basel, Switzerland). 2019;19:5571.CrossRef
78.
go back to reference López-Blanco R, Velasco MA, Méndez-Guerrero A, Romero JP, del Castillo MD, Serrano JI, et al. Essential tremor quantification based on the combined use of a smartphone and a smartwatch: the NetMD study. J Neurosci Methods. 2018;303:95–102.PubMedCrossRef López-Blanco R, Velasco MA, Méndez-Guerrero A, Romero JP, del Castillo MD, Serrano JI, et al. Essential tremor quantification based on the combined use of a smartphone and a smartwatch: the NetMD study. J Neurosci Methods. 2018;303:95–102.PubMedCrossRef
79.
go back to reference Zheng X, Vieira Campos A, Ordieres-Meré J, Balseiro J, Labrador Marcos S, Aladro Y. Continuous monitoring of essential tremor using a portable system based on smartwatch. Front Neurol. 2017;8:96.PubMedPubMedCentralCrossRef Zheng X, Vieira Campos A, Ordieres-Meré J, Balseiro J, Labrador Marcos S, Aladro Y. Continuous monitoring of essential tremor using a portable system based on smartwatch. Front Neurol. 2017;8:96.PubMedPubMedCentralCrossRef
80.
go back to reference Krack P, Batir A, Van Blercom N, Chabardes S, Fraix V, Ardouin C, et al. Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med. 2003;349:1925–34.PubMedCrossRef Krack P, Batir A, Van Blercom N, Chabardes S, Fraix V, Ardouin C, et al. Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med. 2003;349:1925–34.PubMedCrossRef
81.
go back to reference Schuepbach WM, Rau J, Knudsen K, Volkmann J, Krack P, Timmermann L, et al. Neurostimulation for Parkinson’s disease with early motor complications. N Engl J Med. 2013;368:610–22.PubMedCrossRef Schuepbach WM, Rau J, Knudsen K, Volkmann J, Krack P, Timmermann L, et al. Neurostimulation for Parkinson’s disease with early motor complications. N Engl J Med. 2013;368:610–22.PubMedCrossRef
82.
go back to reference Benabid AL, Pollak P, Gervason C, Hoffmann D, Gao DM, Hommel M, et al. Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet. 1991;337:403–6.PubMedCrossRef Benabid AL, Pollak P, Gervason C, Hoffmann D, Gao DM, Hommel M, et al. Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet. 1991;337:403–6.PubMedCrossRef
83.
go back to reference Moro E, LeReun C, Krauss JK, Albanese A, Lin JP, Walleser Autiero S, et al. Efficacy of pallidal stimulation in isolated dystonia: a systematic review and meta-analysis. Eur J Neurol. 2017;24:552–60.PubMedPubMedCentralCrossRef Moro E, LeReun C, Krauss JK, Albanese A, Lin JP, Walleser Autiero S, et al. Efficacy of pallidal stimulation in isolated dystonia: a systematic review and meta-analysis. Eur J Neurol. 2017;24:552–60.PubMedPubMedCentralCrossRef
84.
go back to reference Heldman DA, Giuffrida JP, Cubo E. Wearable sensors for advanced therapy referral in Parkinson’s disease. J Parkinsons Dis. 2016;6:631–8.PubMedCrossRef Heldman DA, Giuffrida JP, Cubo E. Wearable sensors for advanced therapy referral in Parkinson’s disease. J Parkinsons Dis. 2016;6:631–8.PubMedCrossRef
85.
go back to reference Lieber B, Taylor BE, Appelboom G, McKhann G, Connolly ES Jr. Motion sensors to assess and monitor medical and surgical management of Parkinson disease. World Neurosurg. 2015;84:561–6.PubMedCrossRef Lieber B, Taylor BE, Appelboom G, McKhann G, Connolly ES Jr. Motion sensors to assess and monitor medical and surgical management of Parkinson disease. World Neurosurg. 2015;84:561–6.PubMedCrossRef
86.
go back to reference Chockalingam A, Boggs H, Prusik J, Ramirez-Zamora A, Feustel P, Belasen A, et al. Evaluation of quantitative measurement techniques for head tremor with thalamic deep brain stimulation. Neuromodulation. 2017;20:464–70.PubMedCrossRef Chockalingam A, Boggs H, Prusik J, Ramirez-Zamora A, Feustel P, Belasen A, et al. Evaluation of quantitative measurement techniques for head tremor with thalamic deep brain stimulation. Neuromodulation. 2017;20:464–70.PubMedCrossRef
87.
go back to reference Wang J, Gong D, Zhang W, Zhang H, Wang S. Quantifying the influence of DBS surgery in patients with Parkinson’s disease during perioperative period by wearable sensors. Conf Proc IEEE Eng Med Biol Soc. 2019;2019:3311–4. Wang J, Gong D, Zhang W, Zhang H, Wang S. Quantifying the influence of DBS surgery in patients with Parkinson’s disease during perioperative period by wearable sensors. Conf Proc IEEE Eng Med Biol Soc. 2019;2019:3311–4.
88.
go back to reference Lopes EM, Vilas-Boas MDC, Dias D, Rosas MJ, Vaz R, Cunha JPS. iHandU: a novel quantitative wrist rigidity evaluation device for deep brain stimulation surgery. Sensors (Basel). 2020;20:331.CrossRef Lopes EM, Vilas-Boas MDC, Dias D, Rosas MJ, Vaz R, Cunha JPS. iHandU: a novel quantitative wrist rigidity evaluation device for deep brain stimulation surgery. Sensors (Basel). 2020;20:331.CrossRef
89.
go back to reference Swann NC, de Hemptinne C, Thompson MC, Miocinovic S, Miller AM, Gilron R, et al. Adaptive deep brain stimulation for Parkinson’s disease using motor cortex sensing. J Neural Eng. 2018;15:046006.PubMedPubMedCentralCrossRef Swann NC, de Hemptinne C, Thompson MC, Miocinovic S, Miller AM, Gilron R, et al. Adaptive deep brain stimulation for Parkinson’s disease using motor cortex sensing. J Neural Eng. 2018;15:046006.PubMedPubMedCentralCrossRef
90.
go back to reference Herron JA, Thompson MC, Brown T, Chizeck HJ, Ojemann JG, Ko AL. Chronic electrocorticography for sensing movement intention and closed-loop deep brain stimulation with wearable sensors in an essential tremor patient. J Neurosurg. 2017;127:580–7.PubMedCrossRef Herron JA, Thompson MC, Brown T, Chizeck HJ, Ojemann JG, Ko AL. Chronic electrocorticography for sensing movement intention and closed-loop deep brain stimulation with wearable sensors in an essential tremor patient. J Neurosurg. 2017;127:580–7.PubMedCrossRef
91.
go back to reference Arlotti M, Marceglia S, Foffani G, Volkmann J, Lozano AM, Moro E, et al. Eight-hours adaptive deep brain stimulation in patients with Parkinson disease. Neurology. 2018;90:e971–6.PubMedPubMedCentralCrossRef Arlotti M, Marceglia S, Foffani G, Volkmann J, Lozano AM, Moro E, et al. Eight-hours adaptive deep brain stimulation in patients with Parkinson disease. Neurology. 2018;90:e971–6.PubMedPubMedCentralCrossRef
92.
go back to reference Pina-Fuentes D, Little S, Oterdoom M, Neal S, Pogosyan A, Tijssen MAJ, et al. Adaptive DBS in a Parkinson’s patient with chronically implanted DBS: a proof of principle. Mov Disord. 2017;32:1253–4.PubMedPubMedCentralCrossRef Pina-Fuentes D, Little S, Oterdoom M, Neal S, Pogosyan A, Tijssen MAJ, et al. Adaptive DBS in a Parkinson’s patient with chronically implanted DBS: a proof of principle. Mov Disord. 2017;32:1253–4.PubMedPubMedCentralCrossRef
93.
go back to reference Little S, Tripoliti E, Beudel M, Pogosyan A, Cagnan H, Herz D, et al. Adaptive deep brain stimulation for Parkinson’s disease demonstrates reduced speech side effects compared to conventional stimulation in the acute setting. J Neurol Neurosurg Psychiatry. 2016;87:1388–9.PubMedCrossRef Little S, Tripoliti E, Beudel M, Pogosyan A, Cagnan H, Herz D, et al. Adaptive deep brain stimulation for Parkinson’s disease demonstrates reduced speech side effects compared to conventional stimulation in the acute setting. J Neurol Neurosurg Psychiatry. 2016;87:1388–9.PubMedCrossRef
94.
go back to reference Tinkhauser G, Pogosyan A, Tan H, Herz DM, Kuhn AA, Brown P. Beta burst dynamics in Parkinson’s disease OFF and ON dopaminergic medication. Brain. 2017;140:2968–81.PubMedCrossRef Tinkhauser G, Pogosyan A, Tan H, Herz DM, Kuhn AA, Brown P. Beta burst dynamics in Parkinson’s disease OFF and ON dopaminergic medication. Brain. 2017;140:2968–81.PubMedCrossRef
95.
go back to reference Rosa M, Arlotti M, Marceglia S, Cogiamanian F, Ardolino G, Fonzo AD, et al. Adaptive deep brain stimulation controls levodopa-induced side effects in Parkinsonian patients. Mov Disord. 2017;32:628–9.PubMedPubMedCentralCrossRef Rosa M, Arlotti M, Marceglia S, Cogiamanian F, Ardolino G, Fonzo AD, et al. Adaptive deep brain stimulation controls levodopa-induced side effects in Parkinsonian patients. Mov Disord. 2017;32:628–9.PubMedPubMedCentralCrossRef
96.
go back to reference Piña-Fuentes D, Beudel M, Van Zijl JC, Van Egmond ME, Oterdoom DLM, Van Dijk JMC, et al. Low-frequency oscillation suppression in dystonia: implications for adaptive deep brain stimulation. Parkinsonism Relat Disord. 2020;79:105–9.PubMedCrossRef Piña-Fuentes D, Beudel M, Van Zijl JC, Van Egmond ME, Oterdoom DLM, Van Dijk JMC, et al. Low-frequency oscillation suppression in dystonia: implications for adaptive deep brain stimulation. Parkinsonism Relat Disord. 2020;79:105–9.PubMedCrossRef
97.
go back to reference Liu Z, Liu Y, Wan X, Yang Y, Wang L, Dou W, et al. Pallidal deep brain stimulation in patients with chorea-acanthocytosis. Neuromodulation. 2018;21:741–7.PubMedCrossRef Liu Z, Liu Y, Wan X, Yang Y, Wang L, Dou W, et al. Pallidal deep brain stimulation in patients with chorea-acanthocytosis. Neuromodulation. 2018;21:741–7.PubMedCrossRef
98.
go back to reference Fasano A, Mancini M. Wearable-based mobility monitoring: the long road ahead. Lancet Neurol. 2020;19:378–9.PubMedCrossRef Fasano A, Mancini M. Wearable-based mobility monitoring: the long road ahead. Lancet Neurol. 2020;19:378–9.PubMedCrossRef
99.
go back to reference Warmerdam E, Hausdorff JM, Atrsaei A, Zhou Y, Mirelman A, Aminian K, et al. Long-term unsupervised mobility assessment in movement disorders. Lancet Neurol. 2020;19:462–70.PubMedCrossRef Warmerdam E, Hausdorff JM, Atrsaei A, Zhou Y, Mirelman A, Aminian K, et al. Long-term unsupervised mobility assessment in movement disorders. Lancet Neurol. 2020;19:462–70.PubMedCrossRef
100.
go back to reference Martinez-Martin P, Rodriguez-Blazquez C, Kurtis MM, Chaudhuri KR, Group NV. The impact of non-motor symptoms on health-related quality of life of patients with Parkinson’s disease. Mov Disord. 2011;26:399–406.PubMedCrossRef Martinez-Martin P, Rodriguez-Blazquez C, Kurtis MM, Chaudhuri KR, Group NV. The impact of non-motor symptoms on health-related quality of life of patients with Parkinson’s disease. Mov Disord. 2011;26:399–406.PubMedCrossRef
101.
go back to reference Santos-Garcia D, de la Fuente-Fernandez R. Impact of non-motor symptoms on health-related and perceived quality of life in Parkinson’s disease. J Neurol Sci. 2013;332:136–40.PubMedCrossRef Santos-Garcia D, de la Fuente-Fernandez R. Impact of non-motor symptoms on health-related and perceived quality of life in Parkinson’s disease. J Neurol Sci. 2013;332:136–40.PubMedCrossRef
102.
go back to reference Prakash KM, Nadkarni NV, Lye WK, Yong MH, Tan EK. The impact of non-motor symptoms on the quality of life of Parkinson’s disease patients: a longitudinal study. Eur J Neurol. 2016;23:854–60.PubMedCrossRef Prakash KM, Nadkarni NV, Lye WK, Yong MH, Tan EK. The impact of non-motor symptoms on the quality of life of Parkinson’s disease patients: a longitudinal study. Eur J Neurol. 2016;23:854–60.PubMedCrossRef
105.
go back to reference Norris P (2001) Digital Divide: Civic Engagement, Information Poverty, and the Internet Worldwide, Cambridge University Press, Cambridge. Norris P (2001) Digital Divide: Civic Engagement, Information Poverty, and the Internet Worldwide, Cambridge University Press, Cambridge.
106.
go back to reference Cohen S, Waks Z, Elm JJ, Gordon MF, Grachev ID, Navon-Perry L, et al. Characterizing patient compliance over six months in remote digital trials of Parkinson’s and Huntington disease. BMC Med Inform Decis Mak. 2018;18:138.PubMedPubMedCentralCrossRef Cohen S, Waks Z, Elm JJ, Gordon MF, Grachev ID, Navon-Perry L, et al. Characterizing patient compliance over six months in remote digital trials of Parkinson’s and Huntington disease. BMC Med Inform Decis Mak. 2018;18:138.PubMedPubMedCentralCrossRef
107.
go back to reference Fan X, Wang D, Hellman B, Janssen MF, Bakker G, Coghlan R, et al. Assessment of health-related quality of life between people with Parkinson’s disease and non-Parkinson’s: using data drawn from the ‘100 for Parkinson’s’ smartphone-based prospective study. Int J Environ Res Public Health. 2018;15. Fan X, Wang D, Hellman B, Janssen MF, Bakker G, Coghlan R, et al. Assessment of health-related quality of life between people with Parkinson’s disease and non-Parkinson’s: using data drawn from the ‘100 for Parkinson’s’ smartphone-based prospective study. Int J Environ Res Public Health. 2018;15.
108.
go back to reference Schneider RB AS, Myers T, Kayson E, Omberg L, Tarolli C, Daeschler M, Macklin E, Dorsey ER, Mangravite L, Schwarzschild M, Simuni T (2019) in International Congress of Parkinson’s Disease and Movement Disorders Nice, France. Schneider RB AS, Myers T, Kayson E, Omberg L, Tarolli C, Daeschler M, Macklin E, Dorsey ER, Mangravite L, Schwarzschild M, Simuni T (2019) in International Congress of Parkinson’s Disease and Movement Disorders Nice, France.
109.
go back to reference Malekmohammadi M, Shahriari Y, AuYong N, O'Keeffe A, Bordelon Y, Hu X, et al. Pallidal stimulation in Parkinson disease differentially modulates local and network beta activity. J Neural Eng. 2018;15:056016.PubMedPubMedCentralCrossRef Malekmohammadi M, Shahriari Y, AuYong N, O'Keeffe A, Bordelon Y, Hu X, et al. Pallidal stimulation in Parkinson disease differentially modulates local and network beta activity. J Neural Eng. 2018;15:056016.PubMedPubMedCentralCrossRef
110.
go back to reference Hell F, Plate A, Mehrkens JH, Botzel K. Subthalamic oscillatory activity and connectivity during gait in Parkinson’s disease. Neuroimage Clin. 2018;19:396–405.PubMedPubMedCentralCrossRef Hell F, Plate A, Mehrkens JH, Botzel K. Subthalamic oscillatory activity and connectivity during gait in Parkinson’s disease. Neuroimage Clin. 2018;19:396–405.PubMedPubMedCentralCrossRef
111.
go back to reference Canessa A, Pozzi NG, Arnulfo G, Brumberg J, Reich MM, Pezzoli G, et al. Striatal dopaminergic innervation regulates subthalamic beta-oscillations and cortical-subcortical coupling during movements: preliminary evidence in subjects with Parkinson’s disease. Front Hum Neurosci. 2016;10:611.PubMedPubMedCentralCrossRef Canessa A, Pozzi NG, Arnulfo G, Brumberg J, Reich MM, Pezzoli G, et al. Striatal dopaminergic innervation regulates subthalamic beta-oscillations and cortical-subcortical coupling during movements: preliminary evidence in subjects with Parkinson’s disease. Front Hum Neurosci. 2016;10:611.PubMedPubMedCentralCrossRef
112.
go back to reference Panov F, Levin E, de Hemptinne C, Swann NC, Qasim S, Miocinovic S, et al. Intraoperative electrocorticography for physiological research in movement disorders: principles and experience in 200 cases. J Neurosurg. 2017;126:122–31.PubMedCrossRef Panov F, Levin E, de Hemptinne C, Swann NC, Qasim S, Miocinovic S, et al. Intraoperative electrocorticography for physiological research in movement disorders: principles and experience in 200 cases. J Neurosurg. 2017;126:122–31.PubMedCrossRef
113.
Metadata
Title
Digital Technology in Movement Disorders: Updates, Applications, and Challenges
Authors
Jamie L. Adams
Karlo J. Lizarraga
Emma M. Waddell
Taylor L. Myers
Stella Jensen-Roberts
Joseph S. Modica
Ruth B. Schneider
Publication date
01-04-2021
Publisher
Springer US
Published in
Current Neurology and Neuroscience Reports / Issue 4/2021
Print ISSN: 1528-4042
Electronic ISSN: 1534-6293
DOI
https://doi.org/10.1007/s11910-021-01101-6

Other articles of this Issue 4/2021

Current Neurology and Neuroscience Reports 4/2021 Go to the issue

Movement Disorders (T. Simuni, Section Editor)

The Role of Genetic Testing for Parkinson’s Disease

Demyelinating Disorders (J. Bernard and M. Cameron, Section Editors)

Telehealth in Multiple Sclerosis Clinical Care and Research